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Abstract: Independent components analysis (ICA) and principal components analysis (PCA) are meth-
ods used to analyze event-related potential (ERP) and functional imaging (fMRI) data. In the present
study, ICA and PCA were directly compared by applying them to simulated ERP datasets. Specifically,
PCA was used to generate a subspace of the dataset followed by the application of PCA Promax or
ICA Infomax rotations. The simulated datasets were composed of real background EEG activity plus
two ERP simulated components. The results suggest that Promax is most effective for temporal analy-
sis, whereas Infomax is most effective for spatial analysis. Failed analyses were examined and used to
devise potential diagnostic strategies for both rotations. Finally, the results also showed that decompo-
sition of subject averages yield better results than of grand averages across subjects. Hum Brain Mapp
28:742–763, 2007. VVC 2006 Wiley-Liss, Inc.
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INTRODUCTION

Principal components analysis (PCA) is a multivariate
technique that seeks to uncover latent variables responsible
for patterns of covariation in numerical datasets [Gorsuch,
1983; Harman, 1976]. It has long been used as a data
description and reduction technique to manage the copi-
ous quantities of measurements obtained in event-related
potential (ERP) studies [Donchin and Heffley, 1979; Möcks
et al., 1991]. Although it has been shown to have limita-

tions when applied to ERP data [Wood and McCarthy,
1984] and to be sensitive to parameters like component
overlap and correlation [Dien, 1998a], it has nonetheless
been utilized with reasonable success in numerous studies
when applied in a judicious fashion [Dien, 1999; Dien
et al., 1997, 2003a; Spencer et al., 2001; Squires et al., 1975].
Recognition of the limitations of the PCA procedure has

given rise to efforts to improve on the process. It has been
shown in simulations, for example, that the oblique rota-
tion Promax results in more accurate results with corre-
lated ERP components than the more customary orthogo-
nal rotation Varimax [Dien, 1998a; Dien et al., 2005]. The
use of a covariance matrix for the relationship matrix
[Kayser and Tenke, 2003] and the inclusion of Kaiser nor-
malization also yield improved results in comparison to
using covariance loadings during rotation [Dien et al.,
2005].
Recently, a related but quite different procedure called

independent components analysis (ICA) has been pro-
posed as an alternative to PCA and some promising
results have been reported with both ERPs [Jackson, 1991;
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Jung et al., 2000; Makeig et al., 1996, 1997, 1999a,b; Vigario,
1997] and hemodynamic measures [Calhoun et al., 2001;
Dodel et al., 2000; McKeown et al., 1998; Park et al., 2003].
There has been interest in how the two techniques com-
pare. It is not possible to state which will be more effective
for ERP datasets on the basis of the statistical principles
alone. Makeig et al. [1997: 10979] noted that ICA ‘‘. . .
requires the absence of higher-order as well as second-
order correlations between time courses . . . [and] is a stron-
ger condition than decorrelation . . .’’; however, since the
default setting in their implementation of ICA is to remove
the second-order relationships prior to ICA decomposition
via sphering and then to return them afterwards, ICA
(used in this fashion) relies on different statistical informa-
tion from PCA, rather than more statistical information.
Indeed, the ability of ICA components to be correlated is a
strength of the technique, in contrast to Varimax-rotated
PCA solutions [Jung et al., 2000: 1756].
The goal of this exercise is not to determine which is

globally better for all purposes, which would be an ill-
posed question. Rather, this report will attempt to deter-
mine the relative characteristics of the two techniques that
will allow investigators to determine which tool to use for
a given project. Every statistical technique is based on cer-
tain implicit assumptions upon which the model is con-
structed; the effectiveness of a statistical technique is most
often determined by the fit between the statistical assump-
tions and the characteristics of the datasets. We shall ex-
amine the unique aspects of ERP datasets, especially the
distinction between using time points or electrodes as vari-
ables, and how they relate to the statistical assumptions.
This report will first provide a brief review of the algo-
rithms underlying PCA and ICA, followed by a series of
tests using simulated and real data.

PRINCIPAL COMPONENTS ANALYSIS

Since comprehensive treatments of PCA are available
elsewhere [Gorsuch, 1983; Harman, 1976], this review will
focus on highlighting the aspects relevant to the present
comparison. Further information on its application to ERP
datasets is also available elsewhere [Dien and Frishkoff,
2004; Donchin and Heffley, 1979; Möcks and Verleger,
1991]. PCA has the ultimate purpose of expressing a data-
set as a set of linear combinations of variables that are
more interpretable, which is to say, relate simply to the
latent variables rather than being some sort of complex
combination of them. In the case of ERP data, some of
these linear combinations would ideally correspond to the
ERP components of interest. The linear combinations pro-
duced by PCA, as well as ICA, are conventionally termed
‘‘components’’ but in the remainder of this report will be
termed ‘‘factors’’ to avoid confusion with ERP ‘‘compo-
nents.’’
The core procedure of PCA is the decomposition of the

so-called relationship matrix. The relationship matrix, typi-

cally a correlation or covariance matrix, summarizes the
relationships between each variable and every other vari-
able. In a correlation matrix, the full set of variables is rep-
resented by the rows and again by the columns. The entry
for each cell of the matrix is the correlation between the
two variables represented by the respective row and col-
umn. The diagonal of the matrix is the correlation of each
variable with itself (unity). A covariance matrix is the same
as a correlation matrix except that the variables have not
been standardized so that the magnitude of the entries
reflects the size of the variable variance as well as the
degree of covariation.
The PCA algorithm sequentially fits a linear combination

to this matrix that accounts for the greatest possible var-
iance. The matrix is then ‘‘residualized,’’ which means that
the linear combination is subtracted out, leaving behind
the data that has not been accounted for yet, and then the
process is repeated with the remaining matrix. In this fash-
ion the dataset is reexpressed as a set of linear combina-
tions (of equal number to the original variables in the ab-
sence of collinearity) arranged in order of decreasing size.
These factors are uncorrelated with each other, regardless
of the nature of the underlying data. The smallest (pre-
sumably uninterpretable) factors are then dropped from
further analysis.
A rotation procedure is then utilized to increase inter-

pretability of the obtained factors. This step is necessary
since the statistically derived factors will usually be linear
combinations of the actual latent variables of interest (com-
binations of different ERP components in the present case).
For example, the Varimax rotation [Kaiser, 1958] translates
the factors to a mathematically equivalent set of linear
combinations, maximizing the variance of the squared fac-
tor loadings. This has the effect of generating factors that
are as close to zero on some variables as possible, while as
large as possible on the others; this may reasonably be
expected to yield a solution in which the factors more
closely correspond to single ERP components since ERP
components are nominally zero on most time points and
maximal in a limited set of time points. This process can
be graphed as a scatterplot in which each point represents
a single variable and the axes represent the two factors.
The rotation process rotates the axes of the coordinate sys-
tem such that the axes pass through the densest groupings
of points (which is equivalent to saying that the rotation
will arrange for the factor loadings of each variable to be
large for one factor and small for the other as much as
possible). This process proceeds iteratively for each pair-
wise combination of the variables until a pass through the
full set of pairwise rotations results in rotations that fall
below a low criterion point.
The Promax rotation [Hendrickson and White, 1964] uti-

lized in this report performs an initial Varimax rotation
and then relaxes the orthogonality restrictions, allowing
the factors to become correlated. It does so computation-
ally by rotating individual factors such that they approxi-
mate more closely a version of themselves taken to a
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higher power (such as a fourth power); in other words,
enhancing the large loadings relative to the smaller load-
ings. Graphically, this is equivalent to saying that each axis
is rotated individually without attempting to maintain
them at right angles to each other. The higher the power,
the greater is this final rotation. If the underlying latent
variables, like the ERP components, are in fact correlated,
then this can allow for a more accurate solution [Dien,
1998a; Dien et al., 2003b, 2005].

Assumptions and Issues in PCA of ERPs

PCA does not make any strong assumptions about the
data. No assumptions are made about the distribution of
the variables or of the factor scores [Gorsuch, 1983: 24].
The only assumption is that the variables are linear func-
tions of the factors. Variables do not even need to be line-
arly related as long as the assumption is met [Gorsuch,
1983: 18]. There is no particular reason to think that this
assumption will be violated for ERP datasets.
However, several issues need to be considered for PCA

to be successful, the first of which is factor overlap. Factors
are defined as being a specific pattern of factor loadings
(such as a particular time course for a temporal PCA or a
particular scalp topography for a spatial PCA). ERP com-
ponents that have an identical pattern (such as both peak-
ing at 300 ms for a temporal PCA) cannot by definition be
separated into different factors, even if they are separable
by some of the variance present in the observations, such
as condition variance. The more similar the two compo-
nents, the more difficult it may be to successfully separate
them. This is likely a greater concern for spatial PCA since
volume conduction (the property of voltage fields of
spreading throughout the conductive medium of the head)
ensures that every electrode will be affected by a compo-
nent and hence every component overlaps substantially
with every other component [Dien, 1998a]; conversely,
components in the time domain can be completely sepa-
rate.
A second issue is that of factor correlation. The initial

factor decomposition and Varimax rotation are both or-
thogonal, meaning that the factors are constrained to be
uncorrelated even if the actual ERP components are corre-
lated. Such a constraint causes the statistical model to be
distorted in order to force the factors to be orthogonal.
This issue can be addressed, sometimes quite effectively,
by the use of the Promax rotation, which adds a relaxation
step [Dien, 1998a; Dien et al., 2003b, 2005]. What is not
clear is to what degree this relaxation step can be effective.
It is likely that this procedure will only be effective up to
some unknown degree of factor correlation. Given the
increased amount of overlap found in the spatial dimen-
sion, it is expected that this will be a greater concern for
temporal PCA insofar as degree of spatial overlap induces
factor correlation for temporal PCA, and vice versa, since
it determines the extent to which the two components co-
occur in the observations [Dien, 1998a]. Lack of spatial

overlap would induce a negative correlation (observations
containing one component would not contain the other
component), but it would be diluted by the number of
observations containing neither, of which there would be
many in most temporal PCAs.
A third issue that can arise is ‘‘misretention,’’ leading to

either underextraction or overextraction [Fava and Velicer,
1992; Wood et al., 1996]. This occurs when too few or too
many factors are retained for rotation compared to the
actual number of substantial latent variables in the dataset.
Underextraction can cause ERP components to be com-
bined into a single factor, whereas overextraction can
cause minor (perhaps noise) factors being built up at the
expense of the major (ERP component) factors and/or fac-
tors with only one high loading [Comrey, 1978]. Careful
attention to the use of factor retention rules [see Dien,
1998a] and evaluation of factor results are required to
address this issue.
Two final issues have been identified for Varimax rota-

tions that could affect the present simulations [Cureton
and Mulaik, 1975: 224]. The first occurs when the bulk of
the variables load on both factors. One way of describing
this issue is by saying that Varimax makes an implicit
assumption that there will be large clusters of variables
that load only on one or the other factor; if this is not the
case, then the rotation will not occur properly. The second
occurs when a number of variables have zero loadings on
the first unrotated factor. In this case the factor is essen-
tially ‘‘pinned’’ against rotation since Varimax requires that
for rotation to occur, the criterion must be increased for
each pairwise rotation. In the language of connectionist
models, the solution becomes trapped at a local minimum
and cannot reach the global minimum. This situation only
applies for factor solutions with at least three dimensions.
The first unrotated factor typically has loadings on as
many of the variables as possible, so it is not clear how of-
ten this situation occurs.
A variant of the Varimax rotation, the weighted-Vari-

max, has been proposed to address these two situations
[Cureton and D’Agostino, 1983; Cureton and Mulaik,
1975]. It gives the most weight to factor loadings that are
located away from the initial unrotated factor (which is by
far the largest), essentially making the assumption that the
initial rotation is not aligned with the correct rotation. It is
not clear in advance how problematic these two situations
might be for spatial and temporal PCAs of ERP data, so it
seems worthwhile to evaluate this rotation as well. Since
Promax uses Varimax as an initial rotation, we imple-
mented Promax with Weighted-Varimax to supplement
the regular Promax with Varimax rotation.

INDEPENDENT COMPONENTS ANALYSIS

Independent components analysis provides an alterna-
tive approach to isolating ERP components. Since there are
many varieties of ICA, this report will focus on the version
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most commonly applied to ERP data, the Infomax rotation
[Bell and Sejnowski, 1995], as implemented by the EEGlab
toolkit [Delorme and Makeig, 2004]. Since in-depth mathe-
matical treatments already exist [Bell and Sejnowski, 1995;
Makeig et al., 1997], this brief review will focus on a more
applied description of the algorithm and its implications
(as instantiated in the EEGlab software).
A source of confusion for psychologists when discussing

ICA is the use of a different terminology grounded in the
engineering literature. To reduce reader confusion, for the
remainder of this text the equivalent terms from the PCA
literature, as summarized in Table I, will be used to refer
to both PCA and ICA. Another source of confusion for
psychologists is that, unlike PCA, there is no separate
extraction step; the rotations can be directly applied to the
starting variables. Thus, the term ‘‘PCA’’ applies to the
successive steps of extraction and rotation. In contrast, the
term ‘‘ICA’’ in effect applies only to a rotation procedure,
since no extraction is required (although, as will be dis-
cussed below, a PCA extraction may be used as a prepro-
cessing step for ICA).
A fundamental difference between the PCA and the ICA

procedures concerns the matrix being evaluated. In PCA,
during the rotation stage the matrix being evaluated is the
loading matrix, which represents the relationship between
the factors and the variables; the rotation alters the matrix
until the factor loadings meet the criterion (such as the
Varimax criterion of maximizing the variance of the
squared loadings). In ICA, the procedure evaluates the ma-
trix of factor interrelationships; in other words, the factor
scores rather than the factor loadings. The factors are sys-
tematically rotated until the relationships between the fac-
tors are as close to zero (i.e., independent) as possible.
The ICA algorithm begins by generating factor scores

that are initially set equal to the variables (one for each). A
relationship matrix is then generated between these factor
scores. The factor scoring matrix is then modified such that
factors that are different from each other are made even
more different. Through a sometimes lengthy training pro-
cess the factor scoring matrix is modified. New factor
scores are generated and used to compute a new relation-
ships matrix; this process is repeated until the changes to
the factors drop below a criterion threshold. In this man-
ner the relationships between the factors are gradually
reduced as they become increasingly differentiated from
each other.

Another difference is the metric by which these relation-
ships are measured. A factor loading matrix, as used in
PCA, can be thought of as containing the regression
weights needed to predict the variables from the factors.
Formally, correlation coefficients are the same as the
regression weight needed to predict one variable by the
other if the two variables are standardized: Y ¼ rX (where
Y is the variable and X is the factor and r is the regression
weight). In the ICA relationships matrix, the entries reflect
the higher moments as well, such as the third moment:
Y ¼ rX2 (keeping in mind that in this case Y is a factor,
like X, rather than a variable). These higher-order relations
are represented by an exponential sigmoid function that
has the form of y ¼ 1./(1 þ exp(�u)) and runs from �1 to
1 after some rescaling (2*y � 1), where u ¼ the factor score
and y is the sigma-transformed factor score. Just like with
a correlation, a positive score means a tendency to vary in
the same direction and a negative score means a tendency
to vary in the opposite direction.
Another issue is that in the relationship matrix the col-

umns are the factor scores and the rows are the sigmoid
(sig) transformed versions of the factor scores (fac). This
means that the relationship is asymmetric, with the rela-
tionship between each factor represented by two numbers
(i.e., the product of fac1 and sig[fac2] and the product of
sig[fac1] and fac2). In the subsequent rotation step the first
value determines the effect of the first factor on the second
factor, whereas the second value determines the effect of
the second factor on the first.
The ability for one factor to predict another based on

these higher moments is related to its Gaussianity. Along
the diagonal of the matrix, the entries represent the Gaus-
sianity of the factors. A perfectly Gaussian factor would
have a score of zero. The off-diagonals represent the non-
Gaussianity of the two factors (i.e., the scores will be maxi-
mal when both factors are non-Gaussian and in the same
way, which means that the two factors will be related
through the higher-order relationships). With each itera-
tion the degree to which a factor will be rotated depends
on the relative difference between its diagonal (how much
it will stay the same) and the off-diagonals (how much it
will change). The more non-Gaussian a factor is, the less it
will be rotated. This approach is based on the Central
Limit Theorem, which indicates that a mix of two latent
variables should be more Gaussian than the pure varia-
bles; maximizing non-Gaussianity of the factors should
therefore maximize how purely they reflect a single latent
variable [Hyvärinen et al., 2001: 9].
The sign of the relationship number controls how the

factor scoring coefficients, and hence the factor scores, are
changed at each iteration of the process. If the relationship
number is positive, a fraction of the second factor’s scoring
coefficients are subtracted from those of the first. The more
similar (and hence more positive the number), the more is
subtracted. The reverse happens if the relationship number
is negative (the two are similar in a mirror-like fashion). If
the factors started out similar, this process will push them

TABLE I. PCA and ICA glossary

PCA ICA

Factor loading matrix Mixing matrix
Factor scoring coefficient matrix Separation matrix
Factor scores Activations

PCA, principal components analysis; ICA, independent compo-
nents analysis.
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apart from each other. Ultimately, this process reaches an
equilibrium where the changes to the two factors cancel out.
The strongest relationship is likely to be the second-

order correlations. For this reason, the default approach is
to decorrelate the matrix by ‘‘sphering’’ the data by using
matrix division to divide it by the covariance matrix [see
also Hyvärinen et al., 2001: 160]. The result is to eliminate
the second-order covariances (they now equal zero) but
leaving intact the higher-order relations (e.g., the product
of the variable with its transformed version is not zero).
The sphering operation also has the important effect of

standardizing the data matrix, equalizing the contribution
of the different variables to the results, much as PCA nor-
mally uses correlational factor loadings at the rotation step.
This standardization could, in principle, be performed
without also sphering the data; the two do not need to go
together. Whereas PCA factor loadings are, by convention,
interpreted in correlation form, ICA factor loadings are, by
convention, interpreted in covariance form (with microvolt
metric). This conversion to microvolt metric automatically
occurs when the sphering operation is undone prior to
interpretation, and hence simply represents a difference in
convention rather than a fundamental difference between
PCA and ICA, since PCA factor loadings can also be read-
ily converted to microvolt metric [see Dien et al., 1997].
The sigmoid function also has the purpose of expanding

the influence of the most informative part of the data dis-
tribution (the center) compared to the outer fringes (the
outliers). The outliers are compacted into the floor and
ceiling values of –1 and 1, whereas the central numbers,
which may be closely spaced, are spaced further apart in
the sigmoid transformed variable. It is this maximization
of the information value of the data by this transformation
that leads to the name ‘‘Infomax’’ for this ICA algorithm
[Bell and Sejnowski, 1995: 1130].

Assumptions and Issues in ICA of ERPs

ICA makes two assumptions about the data. The first is
that the data are non-Gaussian in their distribution over
different possible values [Hyvärinen et al., 2001: 162], as
can be graphed by a histogram, which is to say that they
depart from normality. Such non-Gaussian distributions
make it possible for the higher-order moments to differen-
tiate the ERP components. It seems likely that most ERP
components analyzed in a spatial approach will be highly
non-Gaussian, since most of the observations will be zero
with just a few time points being nonzero. The actual time
course of the components will be relatively unimportant
compared to this effect of being temporally circumscribed.
It is not as clear what the case will be for a temporal
approach.
The second is that the ERP components be independent

of each other [Hyvärinen et al., 2001: 152], which means
that they should not be only uncorrelated but also unre-
lated in terms of the higher-order relations, as described in
the previous section. One of the prior simulation studies

[Makeig et al., 2000] examined the effect of correlated com-
ponents on ICA and showed that it can indeed cause dis-
tortions in the results. Decorrelating (sphering) the data
before the ICA rotation (and recorrelating afterwards) may
perhaps address this issue but it remains untested; further-
more, it remains unclear just how independent ERP com-
ponents tend to be, aside from the second-order correla-
tional moments, or what effect such nonindependence
might have on the results. Like with PCA, one would
expect that this issue be more serious for the temporal
approach. Another situation is when the factor loading
matrix is almost singular [Bell and Sejnowski, 1995]. This
could happen if two of the factors were too similar, and
hence the weights also. This statement is therefore homolo-
gous to the issue discussed with regard to PCA that fac-
tors that are too similar may be difficult to separate. As
with PCA, it is most likely to be an issue for the spatial
approach.
The factor loading matrix could also be singular if varia-

bles are too similar or if there are more variables than
there are latent variables to be modeled by factors. In such
a case, the phenomenon of ‘‘overfitting’’ or ‘‘overlearning’’
can occur. One way this phenomenon can be manifest is
that factors with isolated temporal bumps that represent
portions of a factor’s time series being split between differ-
ent factors [Hyvärinen et al., 2001; Särelä and Vigário,
2003]. It can also result in effects similar to that described
for PCA, such as single ERP components being split into
multiple single loading factors.
A final issue more specific to the Infomax algorithm is

that it is designed to handle super-Gaussian events that
have large amplitudes but limited presence across the
observations. When applied as a spatial ICA, typical ERP
components meet this description, as they are high ampli-
tude and short duration, which translates to being present
in relatively few of the observations (time points). When
applied as a temporal ICA, the observations are electrodes
and this may no longer be the case. Because ERP compo-
nents are present in most electrodes due to volume con-
duction, they should be present in most of the observa-
tions (channels) of a temporal ICA. It may therefore be the
case that they are better described as having a sub-Gaus-
sian distribution. A variant of the Infomax algorithm,
called Extended ICA, has been developed for such cases
[Lee et al., 1999]. This variant will also be applied to see if
it provides more effective results for temporal ICA.

DIFFERENCES BETWEEN PCA AND ICA

PCA can be applied to ERP datasets using either a tem-
poral [Donchin and Heffley, 1979] or a spatial approach
[Dien, 1998a; Kavanagh et al., 1976], a distinction that will
play a key part in the present simulation study. In the
temporal approach (temporal PCA) the time points are
arranged as the variables and the waveforms (combina-
tions of channels, subjects, and conditions) are the observa-
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tions. The factors are defined by a specific time course as
described by their respective factor loadings. Since the fac-
tor loadings are fixed in nature, it is not possible to exam-
ine latency changes across conditions or subjects. Scalp to-
pography information, as coded in the factor scores, is free
to vary. In the spatial approach (spatial PCA) the channels
are the variables and the scalp topographies (combinations
of time points, subjects, and conditions) are the observa-
tions. With the spatial approach it is possible to examine
latency effects but not topography changes. Counterintui-
tively therefore, the spatial approach is better for studying
temporal changes and vice versa.
Aside from the fundamental differences between PCA

and ICA, there has also been a history of differences in the
application of the techniques. These differences in applica-
tion need to be addressed as well. At the risk of overgen-
eralizing, it can be said that PCA studies of ERPs have
typically been temporal analyses on subject averages [e.g.,
Bentin et al., 1985; Chapman et al., 1978; Curry et al., 1983;
Dien, 1999; Dien et al., 1997, 2003a; Friedman et al., 1981;
Kayser et al., 1998; Kramer and Donchin, 1987; Lutzen-
berger et al., 1981; Polich, 1985; Rohrbaugh et al., 1978;
Ruchkin et al., 1990; Yee et al., 1987], whereas ICA studies
have typically been spatial analyses on either single sub-
jects or multisubject grand averages [e.g., Jung et al., 2000;
Makeig et al., 1997, 1999a,b; Vigario, 1997].
PCAs have historically been applied on a temporal basis,

as ERP researchers typically characterize ERP components in
terms of their time course, with scalp topography being a
secondary, albeit important, characteristic. Subject averages
have been analyzed because they facilitate subsequent analy-
sis of variance (ANOVA) analyses of the factor scores.
The application of ICA to ERP datasets has been moti-

vated, at least to some extent, by a basic difference
between the two procedures: PCA is oriented toward
‘‘lumping,’’ while ICA is oriented towards ‘‘splitting.’’
Since the PCA algorithm begins by extracting linear combi-
nations that account for as much variance as possible, the
early factors it yields combine as many variables as possi-
ble. This results in a maximally parsimonious set of factors
that will err toward conflating similar latent variables.
ICA, on the other hand, starts the process with a different
factor for every variable and, in seeking maximum inde-
pendence, will tend to make fine distinctions. ICA factors
therefore err in the direction of separating activity that
should not be separated, sometimes splitting activity into
multiple correlated factors that have primary loadings on
different variables [Makeig et al., 1999a; McKeown et al.,
1998], posing problems of parsimony. These multiple fac-
tors may, for example, reflect subtle individual differences.
It can even result in background noise combining with a
latent factor, splitting it into nearly identical versions at
different variables (channels for a spatial analysis). Such
splitting would complicate efforts to interpret the ICA
results and to compare them with the PCA results.
This parsimony issue is largely avoided with sparse

montages when using a spatial analysis. ICA articles that

have successfully applied a spatial approach to subject
averages have only examined the data from 14 ERP chan-
nel locations [i.e., Matsumoto et al., 2005; Sato et al., 2001].
Such an analysis would yield 14 factors (one for each
channel), which would avoid parsimony issues since this
is approximately the number of major ERP features (i.e.,
not leaving any factors to represent subject differences). A
study using 29 channels [Pritchard et al., 1999] reported
having to analyze each subject and condition separately,
because combined analyses resulted in factors correspond-
ing to only a single condition. While the single-subject
approach has been successfully used in a case study
[Makeig et al., 1997] and in artifact correction [Jung et al.,
2000; Vigario, 1997], trying to apply it to multiple subject
datasets can be difficult [e.g., Jung et al., 2001]. Conducting
a temporal analysis would similarly result in large num-
bers of factors (a 1-s epoch recorded at 250 Hz yields 250
time points and hence 250 factors) and high levels of split-
ting; in contrast, the ‘‘lumping’’ bias of PCA means that
only a relative handful of these factors explain enough var-
iance to be of interest, minimizing this concern.
One approach to countering this splitting issue is to use

the multisubject grand average data to avoid individual
difference factors and to reduce complications from back-
ground noise [Makeig et al., 1999a]. In principle, this
approach could reduce the quality of the results since it
loses information about individual difference variance that
could be helpful for separating component activity. It also
does not solve the fundamental issue of parsimony since a
dataset will typically produce as many factors as there are
variables, in the absence of collinearity. On the other hand,
a multisubject grand average ERP could have the advant-
age of an improved signal-to-noise ratio with respect to
subject averages.
A second approach is to use PCA as a preprocessing

step to reduce the dimensionality of the dataset, an option
apparently used in only one ERP report thus far [Johnson
et al., 2001], but used in a number of fMRI analyses [Cal-
houn et al., 2001; Dodel et al., 2000; Greicius and Menon,
2004]. Reduction of data dimensionality has been advo-
cated as a strategy for minimizing overfitting [Särelä and
Vigário, 2003].
The current report will focus on using the PCA prepro-

cessing approach since it also facilitates comparisons with
PCA rotations. One can then conceptualize the contrast as
between two different rotations, Promax and Infomax, of
the same initial PCA decomposition. Issues about ICA
component splitting and factor identification would be
comparable to PCA. The multisubject grand average
approach will also be evaluated in Simulation 4.
Two simulation comparisons (where it is possible to

evaluate accuracy, since the true answer is known) have
been made of PCA and ICA of ERP data, both recom-
mending ICA (using the Infomax algorithm) over PCA
[Makeig et al., 2000; Richards, 2004]. The present report
will seek to extend these studies as follows. First, it will
utilize real EEG for the background noise. Second, it will
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explicitly examine the distinction between spatial and tem-
poral approaches. Third, it will seek to parameterize the
cases in which one or the other technique fails so that
users have some basis for choosing which one to use for a
given dataset.
This report will also address the Varimax issues noted

earlier when there are no large clusters of variables that load
on only one factor or if there are a number of variables with
zero loadings on the first unrotated factor [Cureton and
D’Agostino, 1983 : 224]. A variant of the Varimax rotation,
the weighted-Varimax, has been proposed to address these
two situations [Cureton and D’Agostino, 1983; Cureton and
Mulaik, 1975]. It gives the most weight to factor loadings
that are located away from the initial unrotated factor
(which is by far the largest), essentially making the assump-
tion that the initial rotation is not aligned with the correct
rotation. It is not clear in advance how problematic these
two situations might be for spatial and temporal PCAs of
ERP data, so it seems worthwhile to evaluate this rotation as
well. Since Promax uses Varimax as an initial rotation, we
implemented Promax with Weighted-Varimax to supple-
ment the regular Promax with Varimax rotation.
We will also examine the previously described Extended

ICA algorithm, which is intended for sub-Gaussian distribu-
tions [Lee et al., 1999]. This variant will also be applied to
see if it provides more effective results for temporal ICA.
This report consists of five simulations. Simulation 1

examines the reliability of ICA results. Simulation 2 evalu-
ates Infomax and Promax under minimal noise conditions.
Simulation 3 examines the effects of different levels of real
background EEG noise. Simulation 4 examines the effects
of individual differences and of using multisubject grand
averages rather than subject averages. Simulation 5 deter-
mines if these results still apply when all five simulated
components are included in the simulations.

SIMULATION 1

Before direct comparisons can be made between ICA
and PCA, an essential issue is determining whether ICA
solutions are replicable, since there is a random element to
the process (the random selection of data subsets) that can
cause some variability in the results, as noted on the very
helpful website of Makeig and colleagues (http://www.
sccn.ucsd.edu/~scott/tutorial/icafaq.html).

Methods: Simulation 1

A realistic simulation dataset was constructed for testing
purposes, as previously described [Dien et al., 2005]. The
simulation dataset represents a typical ERP dataset with 20
subjects, two conditions, and 65 channels (using the origi-
nal montage of the Electrical Geodesics, Eugene, OR, net).
Realistic background noise was obtained by using the data
obtained from 20 subjects with EEG free from artifacts
from a previously published experiment [Dien et al.,
2003a]. Trials containing blinks were rejected, resulting in

an average of 55 trials per condition. The data was aver-
aged using the 6 reference [Schimmel, 1967], which elimi-
nates the ERP signal, but preserves the random back-
ground noise level, by inverting every other trial. This
noise average was filtered using a 30-Hz low-pass filter.
The data represents 125 time points, starting 184 ms before
baseline, with a sampling rate of 125 Hz. The standard
deviation (SD) of the noise ranged from 0.46 to 1.37 (me-
dian 1.04) microvolts across the epoch. Each channel of the
data were referenced to the average of the data at a given time
point, otherwise known as the average reference [Bertrand
et al., 1985; Dien, 1998b].
Superimposed on the noise average were two simulated

ERP components (Fig. 1). The topography of the ERP com-
ponents was generated by the Dipole Simulator v. 2.1.0.5

Figure 1.

Simulated ERP components. The scalp topographies represent

the voltage map at the peak time point. The time courses repre-

sent the voltages at the peak channel.
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(written by Patrick Berg and available for download from
http://www.megis.com/udbesa.htm). One dipole was ori-
ented roughly toward scalp location Cz of the Interna-
tional 10-20 System of electrode placement [Jasper, 1958],
while the other dipole was oriented roughly toward Pz.
The time course of the two components were generated
using a half-sine wave covering 10 and 30 time points
each. The peak latencies of the two components are 160
and 256 ms, respectively. The amplitudes of the two com-
ponents were separately varied from 2–4 microvolts. Sub-
ject variance (correlation between the two component
amplitudes) was simulated by setting the amplitude of
Component 2 to be equal to the Component 1 amplitude
plus 2–4 microvolts, divided by 2. The peak amplitude of
Component 2 at the focal channel (the channel with the
highest amplitude) in the small and large Component 1
cells had a mean (SD in parentheses) of 1.72 mv (0.34) and
1.71 mv (0.34), respectively. A condition effect was intro-
duced by multiplying Component 1 by a factor of 0.9 for
the small Component 1 cell and 1.1 for the large Compo-
nent 1 cell. The peak amplitude of Component 1 at the
focal channel had a mean of 2.2 mv (0.30) in the small
Component 1 cell and 2.6 mv (0.39) in the large Compo-
nent 1 cell. This level of effect was intended to yield F-val-
ues comparable to published P300 studies, since it has
been shown that unrealistically large condition effects can
exaggerate the degree of misallocation variance effects
[Beauducel and Debener, 2003]. The two components are
temporally overlapping and spatially correlated, both of
which can be deleterious for PCA solutions [Dien, 1998a].
Aside from the correlation from the simulated subject

variance, the substantial temporal overlap induces a corre-
lation between the two ERP components for a spatial anal-
ysis since they tend to be present in the same observations
[Dien, 1998a], resulting, in this case, in a Pearson’s R of
0.10 when calculated across all the observations (the obser-
vations are not independent so an inferential test is not
warranted). The correlation was calculated for each simu-
lation, Fisher-Z-transformed, averaged, and then back-
transformed. A correlation is a reasonable measure of simi-
larity in the context of PCA because even analyses with a
covariance matrix actually use correlations (factor load-
ings) during the rotation step. The choice between covari-
ance and correlation relationship matrices affects the factor
retention step, not the rotation step.
In order to evaluate reproducibility of the ICA results,

the same dataset was analyzed 100 times using a spatial
analysis. EEGlab 4.08 [Delorme and Makeig, 2004] running
under Matlab 7.01 (MathWorks, Natick, MA) was used to
compute the ICA solutions. Similarity of the analyses was
assessed by examining the two factors correlating most
highly with the two simulated components. When two fac-
tors correlated most highly with the same simulated com-
ponent, the one that correlated most highly was paired
with it.
Because PCA is biased toward combining latent varia-

bles together into a single factor, this procedure will tend

to favor ICA; such cases will essentially be tabulated as
being an error because the second simulated component
will be paired with an unsuitable factor instead of the
combined factor. Conversely, ICA has a bias toward split-
ting components into multiple factors, and since only one
of these multiple factors will be chosen, this factor will fit
only part of the variance and will score poorly. Implicit in
this procedure, therefore, is the conscious judgment that
both such situations represent an error on the part of the
statistical analysis.
Correlations were assessed with the factor loadings

scaled in microvolts, which for ICA takes the form of the
pseudoinverse of the product of the sphering matrix and
the weight matrix. To examine the effect of using a PCA
preprocessing step, the exercise was repeated with six
retained factors (as suggested by the Scree test).

Results: Simulation 1

While the results across the 100 analysis runs were quite
similar, they were not identical. The correlation coefficients
for the time course of Component 1, as regenerated from
the factor scores, varied from 0.9858–0.9861, while the spa-
tial distribution varied from 0.9979–0.9982. The time course
of Component 2 correlated at 0.9993 in all cases, while the
scalp distribution varied from 0.9890–0.9893. In general,
the parameters were stable up to about the third digit. Ex-
amination of the actual factor loadings revealed a similar
situation.
PCApreprocessing yieldedmoderatelymore stable param-

eters, with numbers also being generally stable up to the third
digit. Component 1 time courses varied from 0.9913–0.9915,
while the spatial topography varied from 0.9913–0.9917. The
Component 2 time course ranged from 0.9982–0.9982 for
temporal patterns and 0.9863–0.9865 for spatial patterns.

Discussion: Simulation 1

Although the ICA solutions were largely reliable, vari-
ability is observable in the less significant digits. This vari-
ability can potentially have a noticeable impact. While the
variability was not serious enough in the present study to
be an issue, it is unknown whether it may be greater
under some conditions such as when the signal-to-noise
ratio of the data is lower.
One way to address this issue is to standardize the

‘‘random’’ number generation. Conventional computers cannot
generate truly random numbers since their programming
is wholly deterministic (http://computer.howstuffworks.
com/question697.htm); instead, they use a complicated
formula with a starting ‘‘seed’’ number to produce unpre-
dictable numbers (the output using the initial seed is uti-
lized as the seed to generate the next ‘‘random’’ number).
It may be advisable to modify the pseudorandom number
generator so that it uses a known seed that can be repli-
cated as needed. Matlab’s pseudorandom number genera-
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tor is reset at startup, producing the identical output each
time the program is started. The same result can be accom-
plished by inserting the command ‘‘rand(‘state’,0);’’ at the
start of the ‘‘runica’’ code. This approach will be used for
the remainder of this report.

SIMULATION 2

With the reliability issues addressed in Simulation 1, a
preliminary comparison of ICA and PCA can now be con-
ducted. A simulation dataset will be analyzed using both
spatial and temporal approaches with both PCA and ICA.
To increase the generalizability to real datasets, as de-
scribed in the Methods section, five simulated components
were constructed from five ERP components from real
datasets. For this initial simulation, only minimal nonco-
herent background noise was added to maximize inter-
pretability of the results (described in Methods). For this
reason, the results of Simulation 2 will provide observa-
tions about the basic principles that will be largely free
from concerns about confounds from the background noise
but will not be generalizable to real datasets (maximizing
control at the cost of ecological validity). Because it is not
possible to systematically vary all aspects of such compli-
cated datasets, Simulation 2 will be approached as repre-
sentative of a larger universe of possible datasets wherein
general principles may be observed for greater under-
standing of the relevant parameters.
We argue that making an effort to form a fully realistic

ERP dataset and offering an evaluation on this basis would
be an ill-posed question. Every ERP dataset will have dif-
ferent combinations of ERP components and it would not
be possible to cover every eventuality. Instead, the goal of
this article is to identify the parameters that result in suc-
cessful separations of components, such as due to compo-
nent correlations or the sigma covariance measure that we
present later on. We therefore used pairs of components,
reasoning that larger sets of simulated components could
be difficult to interpret, much as trying to interpret a five-
way ANOVA is extremely complicated due to all the pos-
sible patterns of interactions. Any time an experimental
study of any kind, simulation or otherwise, is conducted
one must choose a balance between interpretability and ec-
ological validity; we argue that the current work chose a

balance that allowed us to best meet the goals of this
study. We are, however, mindful of the concern that the
dataset has a realistic level of dimensionality. We therefore
include a high level of coherent background noise in Simu-
lation 3 that provides this dimensionality, while address-
ing as best we can the potential for interactions between
the simulated components and the background noise char-
acteristics by comparing with Simulation 2 results (where
there was no coherent background noise). Finally, in Simu-
lation 5 we do include all five simulated components to
determine if the prior results generalize to larger numbers
of components.
It is not clear how weighted-Varimax will perform with

temporal and spatial PCAs. The ‘‘pinning’’ situation
(described in the Introduction) only applies to three or
more factors, so it will not occur with the present simula-
tion. The off-axis clusters situation (described in the Intro-
duction) might be more likely to occur with spatial PCAs
because more overlap (and hence variables with loadings
on both factors) should occur in the spatial domain.
Extended ICA will be applied to determine if it provides

any benefits. This variant will be most likely to improve
temporal ICA since the data is mostly likely to be sub-
Gaussian with this approach.

Methods: Simulation 2

Simulation 2 was constructed in the same fashion as
Simulation 1 with two modifications. The first modification
was that five real ERP components were utilized, as shown
in Figure 1 and summarized in Table II. Two visual ERP
components were obtained from a previously published
study [Dien et al., 2003a]. The left frontal effect (focus near
F3, peak at 432 ms), which we term an N400 because it is
from an N400 study, although it has a more frontal distri-
bution than usual, was obtained from the multisubject
grand average difference wave between the congruent and
incongruent ending conditions. A visual P1 was obtained
from the same dataset from the congruent ending condi-
tion (focus near O2, peak at 120 ms). Three auditory ERP
components were obtained from another previously pub-
lished study [Dien et al., 1997]. An auditory N1 was
obtained using the multisubject grand average for all audi-

TABLE II. Statistical properties of the five simulated ERP components

Peak
Temporal

SD
Temporal

skew
Temporal
kurtosis

Spatial
SD

Spatial
skew

Spatial
kurtosis

N400 432 ms 0.95 �0.04 �0.93 0.63 1.64 1.15
P1 120 ms 0.75 0.77 �0.64 0.30 4.43 19.00
N1 108 ms 2.61 �0.17 �1.21 0.98 �3.64 12.10
P300 400 ms 1.06 0.50 �0.80 0.76 1.13 �0.28
P2 200 ms 2.16 0.84 �0.12 1.32 2.70 5.89

SD, standard deviation, represents the microvolt values at the peak channel.
The parameters are calculated from the base components without the addition of condition or subject variance. Temporal
columns represent the figures for the temporal approach and the spatial columns are for the spatial approach.
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tory conditions (focus near Fz, peak at 108 ms). An audi-
tory P300 was obtained from the difference wave between
target and standard conditions (focus between Cz and Pz,
peak at 400 ms). Finally, an auditory P2 was obtained from
the multisubject grand average of all auditory conditions
(focus near Fz, peak at 200 ms).
To ensure that these waveforms are statistically unidi-

mensional in both the spatial and temporal dimensions
(without additional dimensions contributed by noise or
overlapping components), the components were con-
structed from the time course at the focus channel matrix
(with the periods before and after the component set to
zero) multiplied by the maximum normalized scalp distri-
bution at the peak time point (with a reversed N1 topogra-
phy to ensure correct polarity of reconstructed compo-
nent). This procedure generated a component with the
same time course at all channels and the same scalp distri-
bution at all time points, as should be the case for a single
component due to volume conduction of a single source
electric field. This procedure was also necessary since it is
known that some of these ERP features are in fact com-
posed of multiple components, an issue that is outside the
scope of this report [see Näätänen and Picton, 1987; Sutton
and Ruchkin, 1984]. This procedure reduced these simu-
lated ERP features from their true unknown dimensional-
ity to a known single dimension.
The second modification is that for this initial simulation

the background EEG noise was removed. To prevent the
data matrices from becoming singular, a very small
amount of noise was added to each data point (�0.01 to
þ0.01 microvolts). The noise had no coherence between
data points. The same set of random noise was used for
every simulation to keep it constant with regard to the
manipulations of interest.
One hundred different datasets were generated and ana-

lyzed in each of the four approaches (spatial and temporal,
each with PCA and ICA). Test simulations with the 10 dif-

ferent pairwise combinations of the five simulated compo-
nents were generated. For each of these 10 combinations,
10 simulation datasets were generated for a total of 100
simulation datasets. The component amplitudes were var-
ied as described for Simulation 1 with random variation
for each simulated subject average, subject variance, and a
condition effect for one of the two components. Table III
presents the similarity of the pairs of components in terms
of both the factor scores and in terms of the variables.
The PCA Toolbox 1.091 (http://www.people.ku.edu/

~jdien/downloads.html) was used to compute the PCA
solutions. As we have recommended elsewhere on the ba-
sis of simulation studies [Dien et al., 2005], the PCAs were
carried out using covariance matrices, Kaiser normaliza-
tion, Promax rotation, and correlation loadings. Promax
was conducted with a kappa of 3, which is the parameter
that determines how oblique the rotations will be. To con-
vert the factor loadings into microvolt metric for compari-
son with the original data, the factor pattern matrix was
multiplied by the SDs of the variables [Dien et al., 1997].
The ICA was conducted using PCA preprocessing. Only
two factors were retained since there is no coherent noise
to be accounted for by the PCA solution. The extended-
ICA was conducted with the specification that both of the
factors would be sub-Gaussian (e.g., ‘‘‘extended,’ –2’’).
Although we have some reservations about applying

inferential statistics to artificial simulation data results, we
applied paired t-tests to selected comparisons of interest to
further evaluate the results. Note that t-tests compare
means, whereas the tables present median statistics. We
chose median statistics for the tables because of a judg-
ment that overall consistency is more important than high-
lighting the effect of dramatic outliers. However, we chose
conventional t-tests, which compare means, since they will
be the most familiar for readers. For the most part, the
resulting t-tests do seem to correspond with the median
statistics.

TABLE III. Relations between pairwise comparisons of simulated components

C1 C2
Temporal
scores

Spatial
scores

Temporal
loadings

Spatial
loadings

Temporal
sig cov

Spatial
sig cov

1 N400 P1 0.43 0.12 0.13 0.43 1.20 0.17
2 N400 N1 0.81 0.14 0.15 0.82 1.07 0.14
3 N400 P300 0.63 0.91 0.93 0.63 1.32 1.44
4 N400 P2 0.89 0.18 0.19 0.90 1.03 0.23
5 P1 N1 0.75 0.92 0.94 0.76 1.04 2.86
6 P1 P300 0.25 0.16 0.17 0.25 1.61 0.32
7 P1 P2 0.34 0.09 0.09 0.34 1.07 0.11
8 N1 P300 0.22 0.19 0.20 0.22 1.33 0.21
9 N1 P2 0.74 0.10 0.10 0.75 1.37 0.09

10 P300 P2 0.73 0.18 0.19 0.75 1.19 0.33

‘‘Sig Cov’’ is the sigma covariance measures as described in the text.
C1 and C2 are the two simulated components in the dataset. Temporal scores are the correlation of the true factor scores for the
temporal approach (if the factors are reconstructed accurately), including subject, cell, and spatial variance. Spatial scores are
the equivalent figure for the spatial approach. The scores are the median results across the ten replicates. Temporal loadings
are the correlation between the time course (scaled loadings) of the two components that quantifies the variable overlap for the
temporal approach. Spatial loadings are the complementary figures for the spatial approach.
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An effort was made to find potential predictors of ICA
performance, based on some preliminary examinations of
the results. In the Infomax algorithm, independence is
operationalized as the product of a factor score with the
sigma transformed version of the other factor score.
Inspection of the sigma scatterplots (as presented in Figs. 4
and 5) suggested that a useful measure might be the co-
variance between each pair of independence measures
(u1*y2 and u2*y1) to produce a sigma covariance measure,
where u ¼ the factor score and y is the sigma-transformed
factor score. Also, the absolute sigma values were gener-
ated and the mean of both sets of sigmas were calculated
to produce a mean sigma measure. Finally, since the actual
rotations are a function of the ratio of the self-sigmas (on
the diagonal of the relationships matrix) and the sigmas
(on the off-diagonals), the absolute values of all four sigma
measures were generated, then the ratio of the off-diagonal
and its paired self-sigma were calculated (which jointly
determine the rotation of a given factor), and finally, the
two ratios were added together to produce a relative
sigma measure. These three measures were calculated for
each of the 100 simulations and the correlations between
these potential diagnostics and the accuracy measures
were calculated. The sigma measures were calculated on a
prerotation basis (using the known correct results) and on
a postrotation basis (using the ICA results). The premeas-
ures assess the utility of the ICA factors given known com-
ponents and the postmeasures assess their utility when the
correct answer is not known. An effort to develop an anal-
ogous measure for Promax rotations was not successful.

Results and Discussion: Simulation 2

As can be seen in the median scores of Tables IV and V,
spatial ICA provided the most accurate results, followed

closely by temporal PCA. All four analysis types were

highly effective for some simulations and highly ineffective

for others. Table VII presents the potential rotation diag-

nostics. Overall, the sigma covariance measure yielded the

strongest results.
Comparing PCA using Varimax and Weighted-Varimax

presteps, the results were mixed. For temporal analyses,

time correlations were borderline significantly better for

the conventional Varimax: t(99) ¼ 1.9, P ¼ 0.055. However,

space correlations were better for weighted Varimax for

both temporal PCA (t(99) ¼ 3.6, P ¼ 0.0005) and spatial

PCA (t(99) ¼ 5.9, P < 0.0001). Time correlations for spatial

PCA were not significantly different.
Comparing ICA and Extended ICA, the results were

much more consistent. For temporal analyses, conventional

ICA yielded higher time correlations (t(99) ¼ 6.0, P <

0.0001) and space correlations (t(99) ¼ 8.3, P < 0.0001). For

spatial analyses, conventional ICA also yielded higher time

correlations (t(99) ¼ 52.0, P < 0.0001) and space correla-

tions (t(99) ¼ 14.3, P < 0.0001).
Finally, comparing conventional PCA and conventional

ICA, for temporal analyses PCA yielded higher time cor-

relations (t(99) ¼ 3.2, P ¼ 0.0020) and space correlations

(t(99) ¼ 2.8, P ¼ 0.0059). For spatial analyses, conven-
tional ICA also yielded higher time correlations (t(99) ¼
6.8, P < 0.0001) and space correlations (t(99) ¼ 7.7, P <

0.0001). Although spatial ICA appeared to be the most
effective overall in this simulation, it is important to keep

in mind that this simulation did not use realistic back-
ground EEG noise and was therefore not representative

of real datasets. The goal of the present simulation was to

observe whether the analyses perform as expected to var-
iations in the simulation parameters as well as to identify

unexpected issues.

TABLE IV. Results of Simulation 2 comparing principal components analysis (PCA)

under temporal and spatial approaches

C1 C2
TPCA
time

tPCA
space

sPCA
time

sPCA
space

tPCAw
time

tPCAw
space

sPCAw
time

sPCAw
space

1 N400 P1 1.00 1.00 1.00 0.99 0.87 0.96 0.91 0.93
2 N400 N1 0.67 0.69 0.99 0.99 1.00 0.98 0.93 0.99
3 N400 P300 0.97 0.64 0.82 0.95 0.98 0.97 0.93 0.97
4 N400 P2 0.35 0.29 0.84 0.98 0.89 0.99 0.76 0.97
5 P1 N1 0.85 0.99 0.36 0.51 0.37 0.85 0.91 0.88
6 P1 P300 1.00 1.00 0.90 0.59 0.52 0.88 0.69 0.92
7 P1 P2 1.00 1.00 0.99 0.99 0.54 0.90 0.77 0.98
8 N1 P300 1.00 1.00 0.72 0.73 0.99 0.99 0.90 0.87
9 N1 P2 0.96 0.97 0.93 0.93 1.00 1.00 0.99 0.99

10 P300 P2 0.96 0.99 0.78 0.91 0.96 0.99 0.82 0.93
Median Totals 0.97 0.99 0.87 0.94 0.93 0.98 0.91 0.95

C1 and C2 are the two simulated components in the dataset. tPCA and tPCAw are the results for the temporal approaches and sPCA
and sPCAw are the results for the spatial approaches. PCA means Promax with the regular Varimax prestep, whereas PCAw means
Promax with a weighted-Varimax prestep. The ‘‘time’’ columns are the accuracy of the reconstructions of the factor time courses,
expressed as the correlation between the scaled factor results and the matching original component. For each analysis the accuracy was
calculated for both simulated components and the lowest accuracy of the two factors was recorded. The ‘‘space’’ columns are the accu-
racy of the reconstructions of the factor spatial topographies. The bottom row is the median score down each column of the table.
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Figure 2a presents an example simulation, one of the 10
replicates of Case 1 (‘‘Case’’ being one of the simulated
component pairings listed in Table III), where the temporal
PCA was highly effective. The first column is a scatterplot
of the factor loadings (factor pattern matrix). Each circle
represents a single factor loading with the coordinates of
the first factor corresponding to the horizontal axis and the
coordinates of the second factor corresponding to the verti-
cal axis. Time points not loading on either factor appear in
the middle since their factor loadings were essentially zero
on both factors. Note how the nonzero factor loadings
appear either along the horizontal axis or along the vertical
axis, representing time points that load only for one or the
other factor. The lines show where the axes should be
located if the factor solution is accurate, based on time
points that should be zero on one factor and nonzero on
the other factor given a successful factor solution. In this
case the lines do in fact fall along the two axes of the fac-
tor solution, reflecting the success of the solution.
Note that the scatterplot describes the final loadings that

do not entirely correspond to the rotation space. The PCA
rotations were conducted using Kaiser normalization,
which constrains all the pairs of squared loadings to sum
to one, meaning that all the dots actually were placed at
the circumference of a round circle. The inactive time
points with close to zero loadings were located at essen-
tially random locations on the circle, and hence overall
cancelled each other out. For didactic reasons, we find it
more helpful to refer to the final loadings as if they were
the actual rotation space, which in practical terms is
largely equivalent.
The second column presents the unscaled loadings of

the two factor waveforms. Note how the waveforms
appear box-like, since the corresponding factor loadings
are either 0 or 1. If the levels of background noise were

higher, then the factor loadings would look less box-like,
as they would represent the ratio between the signal and
the background noise. The third column presents the load-
ings of the two factor waveforms after they have been
translated into microvolt scaling by multiplying them by
the SDs of the respective time point variables [Dien et al.,
1997]. Comparison of the results in Figure 2a with the
original time courses in Figure 1 reveals them to be accu-
rate reconstructions. In this case, it seems likely that the
results were especially accurate, because these two particu-
lar simulated components suffer minimal overlap in both
the spatial and temporal dimensions. As we will see, other
possible pairings of simulated components can yield less
accurate results.
As expected, the first two issues of factor overlap and

factor correlation interacted with whether temporal or spa-
tial PCA was utilized. With regard to temporal PCA, factor
correlations due to spatial overlap did indeed cause distor-
tions in the factor results, but only to a limited extent due
to the use of the Promax rotation rather than the more
common Varimax rotation [see Dien, 1998a; Dien et al.,
2003b, 2005]. Even the simulations where the factor corre-
lations were as high as about 0.75 showed only moderate
distortions. Only the two highest factor correlations (0.81
and 0.89) showed substantial breakdown of the PCA
results. The results from the worst case (#4) are presented
in Figure 2b. As can be seen, the nonzero factor loadings
are clustered together to an extent that the PCA was
unable to resolve. The lines show that an accurate solution
would require a much more oblique rotation than was pro-
vided by the Promax rotation, at least at a kappa of 3. The
resulting factor solutions show a classic contrast pattern in
which one factor (the gray one) is maximal on all the vari-
ables involved while the other factor represents the extent
to which the two latent variables are different, being posi-

TABLE V. Results of Simulation 2 comparing independent components analysis (ICA)

under temporal and spatial approaches

C1 C2
tICA
time

tICA
space

sICA
time

sICA
space

tICAe
time

tICAe
space

sICAe
time

sICAe
space

1 N400 P1 0.95 0.95 1.00 0.99 0.52 0.58 0.62 0.12
2 N400 N1 0.94 0.70 1.00 1.00 0.65 0.65 0.68 0.54
3 N400 P300 0.40 0.47 0.65 0.91 0.09 0.45 0.45 0.93
4 N400 P2 0.61 0.80 1.00 1.00 0.35 0.28 0.62 0.68
5 P1 N1 0.98 0.84 0.71 0.86 0.91 0.21 0.38 0.99
6 P1 P300 0.40 0.82 0.99 0.95 0.97 0.94 0.67 0.17
7 P1 P2 0.98 0.93 1.00 1.00 0.39 0.74 0.65 0.08
8 N1 P300 0.90 0.90 0.99 1.00 0.85 0.89 0.59 0.65
9 N1 P2 0.82 0.65 1.00 1.00 0.81 0.64 0.68 0.28

10 P300 P2 0.88 0.85 0.99 1.00 0.45 0.45 0.60 0.22
Median Totals 0.89 0.83 1.00 1.00 0.58 0.61 0.62 0.41

C1 and C2 are the two simulated components in the dataset. tICA is the results for the temporal approach and sICA is the results for
the spatial approach. tICAe and sICAe are for the extended-ICA results. The ‘‘time’’ columns are the accuracy of the reconstructions of
the factor time courses, expressed as the correlation between the scaled factor results and the matching original component. For each
analysis the accuracy was calculated for both simulated components and the lowest accuracy of the two factors was recorded. The
‘‘space’’ columns are the accuracy of the reconstructions of the factor spatial topographies. The bottom row is the median score down
each column of the table.
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tive for one set and negative for the other. Factor solutions
with this kind of pattern are clear indications that the rota-
tion was unsuccessful.
Conversely, temporal overlap had less effect than

expected. For example, the overlap between the P1 and the
N1 components was nearly total, with the peaks being 108
and 120 ms, respectively. The N1 fully covered all the
points corresponding to the P1 but had a time point just
before and after the P1 that were without overlap. None-
theless, the time course reconstruction seen in Figure 2c
was quite healthy, with a 0.85 and the spatial reconstruc-
tion was nearly perfect with a 0.99. On the other hand, the
second highest temporal correlation (between the N400
and the P300) did result in some serious spatial distortion
(not shown in figure).
In any case, of the 10 pairwise comparisons, four

resulted in notable distortions (less than 0.9 correlation in
either time or space). Two corresponded to the highest

temporal factor correlations 2 and 4) and two corre-
sponded to the highest temporal variable correlations (3
and 5). The results are therefore in line with expectations
and could be predicted in advance based on the data in
Table III, with the results of the simulation providing some
guidance as to the point at which distortions can be
expected. Simulation 3 was included to determine if the
addition of substantial levels of coherent noise changes the
threshold points.

Figure 2.

Simulation 2 temporal PCA results. The scatterplots display the

rotated factor loadings. The lines represent the axes of the cor-

rect solution. The graphs present the microvolt-scaled factor

waveforms normalized to the maximum value (to facilitate com-

parison of the two factors). Sign of the factor loadings is arbi-

trary. The first column is for the unscaled factor loadings. The

second column is for the microvolt-scaled factor loadings. The

numbers next to the legends indicate the accuracy of the scalp

topography reconstruction (absolute correlation with the simu-

lated component); the topographies are not shown.

Figure 3.

Simulation 2 spatial PCA results. The scatterplots display the

rotated factor loadings. The lines represent the axes of the cor-

rect solution. The topography plots indicate the microvolt-scaled

factor topographies normalized to the maximum value (to facili-

tate comparison of the two factors). Sign of the factor loadings

is arbitrary. The first column is for the unscaled correlation

maps. The second column is for the microvolt-scaled maps. The

numbers on the far right side indicate the accuracy of the scalp

topography reconstruction (absolute correlation with the simu-

lated component).
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Turning to the spatial PCAs, again the expectation is
that high factor score correlations and high variable over-
lap will cause distortions. Figure 3a presents a solution
where the spatial PCA was highly successful (Case 1). The
first column presents the scatterplot of the factor loadings.
Note how the factor rotation has arranged itself so that a
maximal number of points fall along the horizontal and
vertical axes. This is the physical manifestation of the Vari-
max criterion, which is further enhanced by the Promax
relaxation step. Note also how the increased amount of
spatial overlap has manifested as an increased number of
points along the intermediate points between the axes,
compared to the comparable plots in Figure 2. The second
column shows the scalp topography of the unscaled factor
loadings and the third column presents the scalp topogra-
phy of the scaled factor loadings. Keep in mind that the
sign of the factor loadings are arbitrary and in this case
the factor loadings for the P300 and P1 locations are nega-
tive; only the product of the factor loadings and the factor
scores correspond to the sign of the original data.
Figure 3b presents the results of the highest factor score

correlation (#4) due to high spatial correlation. The lines
give a sense of the degree of distortion, which is nonethe-
less quite moderate (0.98 in the spatial dimension and 0.84
in the time dimension) compared to the results of the tem-
poral PCA shown in Figure 2b. It can therefore be seen
how the presence of a high spatial correlation has a much
more adverse effect on the temporal PCA than on the spa-
tial PCA. The case with the second-highest spatial correla-
tion (Case 2) suffered only minimal effects (0.99 for space
and 0.94 for time).
Figure 3c presents a case of high temporal correlation

(Case 5) corresponding to the temporal PCA presented in
Figure 2c. Whereas the high temporal correlation had only
modest effects on the temporal PCA, the effects were quite
severe for the spatial PCA. Both of the cases of high tem-
poral correlation (Case 5, shown, and Case 3, not shown)
suffered distortion in the spatial PCA.
In contrast to the temporal PCA results, a number of

spatial PCA cases with neither high spatial nor temporal
correlation nonetheless were distorted, which appear to
reflect a fifth issue of too many variables loading on both
factors. One such case is #6, where the factor correlations
were only 0.16 and the spatial correlation was only 0.25.
Examination of Figure 3d shows that the factor loadings
have adopted the classic contrast pattern in which the
upper factor represents the electrodes common to both the
P1 and the P300, whereas the lower factor is the extent to
which the two differ (with positive loadings for the P1
electrodes and negative for the P300 electrodes).
Examination of Figure 3d suggests that the cause of the

problem is that most of the variables loaded on both fac-
tors. The lines representing the correct solution indicate
that in fact the bulk of the points should fall between the
two axes. The relaxation step of the Promax rotation can-
not provide an improvement in this case, since the factors
are nearly uncorrelated with each other (0.16). This prob-

lem is a direct result of the high levels of overlap present
in the spatial domain due to volume conduction. There are
very few electrodes where one factor is zero and the other
factor is nonzero. Volume conduction ensures that all the
electrodes will reflect the influence of both components.
Thus, the only electrodes that will register zero amplitude
for a given component are the ones where the reference
choice has designated its level of voltage as corresponding

Figure 4.

Simulation 2 spatial ICA results. The scatterplots display the

joint sigma values for the two factors using the known true solu-

tion. The topography plots indicate the microvolt-scaled factor

topographies normalized to the maximum value (to facilitate

comparison of the two factors). Sign of the factor loadings is ar-

bitrary. The numbers beside the legends indicate the accuracy of

the scalp topography reconstruction (absolute correlation with

the simulated component). The original topography of the simu-

lated factors is presented in Figure 1.
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to zero voltage, with nearby electrodes being close to zero.
For an extended discussion of reference site issues, see
Dien [1998b].
As designed, the weighted-Varimax provided some

improvement for this example (Case 6) and the others with
similar characteristics, but yielded inferior results for still
others. Overall, the weighted-Varimax produced better
results for spatial PCA, consistent with our discussion of
Figure 3d, but worse for temporal PCA. Even for spatial
PCA the weighted-Varimax rotation improved half of the
cases but degraded the other half. It appears that, in gen-
eral, weighted-Varimax may have some utility for spatial
PCA but not for temporal PCA. Overall, there did not
appear to be compelling reasons to switch to weighted-
Varimax, especially given the stronger performance of spa-
tial ICA.
This simulation did not address the other two issues.

There were no issues of misretention (described in the
Introduction) since there were only two sources of coher-
ent variance in the datasets, the two simulated compo-
nents. There were likewise no pinning issues, since this
only occurs when there are at least three factors being
rotated.
Next, Table V presents the results of the ICA for both

spatial and temporal approaches. For the temporal
approach, ICA yielded clearly inferior results compared to
both types of PCA. In contrast, the results for the spatial
approach were quite impressive, yielding the best results
of any of the procedures thus far evaluated (Figure 4).
There are two possible reasons for why the spatial ICA

yielded better results than the temporal ICA. The first pos-
sibility is that, as seen in Table I, overall the components
fit the super-Gaussian distribution (with kurtoses over 1,
except for P300), whereas the components in the temporal
arrangement are all sub-Gaussian. The two spatial ICA
cases that yielded weak results (Cases 3 and 5) had com-
ponent time courses that were highly similar, as seen in
the Spatial Scores column of Table III (both over 0.9,
whereas the others are below 0.2). Some evidence against
this interpretation is provided by extended ICA, which is
designed to work with sub-Gaussian distributions. As seen

in Table VI, this algorithm did not change the pattern of
temporal analyses, overall performing more poorly than
spatial analyses (and overall yielding inferior results).
The other possibility is that the spatial scores are simply

more easily separated than the temporal scores (in other
words, these results are a property of the relationship
between the two scores rather than of the Gaussianity of
the scores taken individually). Evidence for this supposi-
tion is found in the sigma covariance measure, which is
overall higher for the temporal scores. Furthermore, the
sigma covariance measures are especially high for the two
spatial cases, which did not separate successfully.
As for the temporal ICA cases, while the results are gen-

erally less successful than for the spatial ICA approach,
there are still successful solutions. Examples of both suc-
cessful and unsuccessful solutions are displayed in Figure 5.
There was a nearly significant correlation between the pre-
analysis diagnostic measures and the accuracy of the
factor loadings for the 10 temporal ICA cases (r[8] ¼ –0.60,
P ¼ 0.066) as seen in Table VI in the row marked ‘‘covari-
ance,’’ which is impressive given the low n. (It may not be
appropriate to use the full 100 cases as the n since they
consist of 10 replicates of the 10 cases. Of course, whether
to use all 100 cases as the sample size depends on what
larger population is to be generalized to; since this is an
artificial dataset, it is unclear what statistical significance
means, let alone which is the appropriate sample. None-
theless, these tests do provide some sense of how to inter-
pret the results).

SIMULATION 3

While Simulation 2 provided results that provided some
insights into the boundary conditions for PCA and ICA,
and how they are affected by the differences between the
temporal and the spatial approaches, the comparisons can-
not be generalized to real datasets until realistic noise lev-
els have been added to the simulations. In the following
simulations the background EEG noise used in Simulation
1 are added to the simulated ERP components.

TABLE VI. Independent components analysis (ICA) rotation diagnostics for Simulation 2

tICA
time Pre

tICA
space Pre

sICA
time Pre

sICA
space Pre

tICA
time Post

tICA
space Post

sICA
time Post

sICA
space Post

Covariance 0.60 0.22 0.88 0.96 0.52 0.58 0.65 0.83
Mean 0.34 0.14 0.67 0.49 0.65 0.65 0.12 0.22
Relative 0.06 0.47 0.26 0.16 0.09 0.45 0.59 0.79

tICA is the results for the temporal approach and sICA is the results for the spatial approach. The numbers are the correlations between the
putative ICA diagnostic measure and the accuracy measures. The ‘‘time’’ columns are for the reconstructions of the factor time courses and the
‘‘space’’ columns are for the reconstructions of the factor spatial topographies. The nature of the three putative diagnostic measures are
described in the Methods section. The accuracy measures were calculated as the correlation between the scaled factor results and the matching
original component. For each analysis the accuracy was calculated for both simulated components and the lowest accuracy of the two factors
was used. The ‘‘pre’’ measures were based on the correct solution and the ‘‘post’’ measures were based on the actual ICA results.
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Methods: Simulation 3

Simulation 3 was constructed in the same fashion as
Simulation 2, with the one modification of using the real
background EEG noise from Simulation 1. This noise cor-
responds to roughly the noise from 55 averaged trials. A
low-noise version was also constructed with the noise
amplitudes reduced by half and a high noise version was
constructed with double noise amplitudes. Insofar as the
relationship between noise levels and numbers of trials is
a square root function [Regan, 1989: 47], this corresponds

to 110 and 28 trials, respectively. Scree plots [Cattell, 1966;
Cattell and Jaspers, 1967] suggested that retaining seven
factors was appropriate for the temporal analyses and six
factors was appropriate for the spatial analyses. The Scree
test was chosen as it is a well-established procedure for
estimating dimensionality and because it should not be bi-
ased toward either rotation. Other methods of estimating
dimensionality do exist [e.g., Hansen et al., 2001].

Results and Discussion: Simulation 3

As can be seen in the median scores of Tables VII–IX,
noise levels had a marked effect on accuracy. For low
noise, the time correlations were not different for either
temporal or spatial analyses. For space correlations, the
temporal PCA was higher than the temporal ICA: t(99) ¼
2.9, P ¼ 0.0045. Conversely, the spatial ICA was higher
than the spatial PCA: t(99) ¼ 6.8, P < 0.0001. For medium
noise, the only significant difference was higher spatial
correlations for spatial ICA than for spatial PCA: t(99) ¼
5.4, P < 0.0001. For high noise, there were no significant
differences. Overall, the conclusions of Simulation 2 hold
fairly well: PCA is most effective for temporal analyses
and ICA is most effective for spatial analyses at all three
noise levels, although the differences became statistically
insignificant for higher noise levels.

SIMULATION 4

Simulation 4 seeks to further improve the realism of the
simulation analyses by adding a further complication. In
the simulations thus far the time course and the spatial to-
pography of the simulated components are the same for
all the simulated subjects. In real data there is considerable
variability, which could affect the relative performances of
PCA and ICA. The present simulation therefore adds such
individual variability. This addition also makes it possible
to evaluate the alternative approaches of using the subject
averages (favored by PCA studies) and the grand averages
(favored by ICA studies).

Methods: Simulation 4

Simulation 4 was constructed in the same manner as
Simulation 3’s medium noise condition. The main differ-
ence was that instead of using the same scalp topography
and time course for each simulated ERP component
(derived from the grand average) for each simulated sub-
ject, an individual scalp topography and time course was
used for each simulated subject. These individual topogra-
phies and time courses were derived from the real individ-
ual subject averages, thus adding a realistic level of indi-
vidual variation into the simulated dataset. Although this
means this simulation is a step closer to using real ERPs,
this dataset is still simulated in that the dimensionality of
the ERP features was reduced to a single dimension, and
so the correct answer is still known. The time windows

Figure 5.

Simulation 2 temporal ICA results. The scatterplots display the

joint sigma values for the two factors using the known true solu-

tion. The waveforms indicate the microvolt-scaled factor wave-

forms normalized to the maximum value (to facilitate compari-

son of the two factors). Sign of the factor loadings is arbitrary.

The numbers beside the legends indicate the accuracy of the

time course reconstruction (absolute correlation with the simu-

lated component). The original time course of the simulated fac-

tors are presented in Figure 1.
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were all the same, corresponding to those used in the prior
simulations (such that if the subject averages were aver-
aged, it would result in the grand average waveform).
Likewise, the time point used to form the scalp topogra-
phies were the same for all the subjects, corresponding to
those used for the prior simulations. Because the auditory
components were obtained from a dataset with only 16
subjects, it was necessary to have only 16 simulated sub-
jects in this simulation. Scree charts suggested that seven
factors be retained for the temporal analyses and six fac-
tors be retained for the spatial analyses.
Although in principle it would be desirable to also

include temporal jitter, this step was not taken in the
interests of interpretability. Once temporal jitter was

added, it would be difficult to evaluate the accuracy of
the analyses. For example, in the presence of temporal
jitter (where each waveform has a different time course),
what is the definition of an accurate solution? Would ac-
curacy be having a different factor corresponding to each
of the different subject averages? Would accuracy be hav-
ing a single factor corresponding to the central tendency?
The former would favor Infomax and the latter would
favor Promax. And how would one define central tend-
ency? We therefore elected to keep the time course con-
stant to provide a basis for making an unambiguous
evaluation of analysis accuracy. Furthermore, we suggest
that the issue of subject variability is already addressed
by the observations made for the spatial domain and it is

TABLE VIII. Results of Simulation 3 ICA and PCA under medium noise conditions

C1 C2
tPCA
time

tPCA
space

sPCA
time

sPCA
space

tICA
time

tICA
space

sICA
time

sICA
space

1 N400 P1 1.00 1.00 0.63 0.25 0.87 0.94 0.99 0.99
2 N400 N1 0.84 0.95 0.92 0.59 0.91 0.76 0.99 0.97
3 N400 P300 0.44 0.62 0.99 0.89 0.96 0.83 0.48 0.36
4 N400 P2 0.37 0.43 0.46 0.70 0.65 0.81 0.99 0.98
5 P1 N1 0.84 0.74 0.94 0.58 0.95 0.91 0.16 0.55
6 P1 P300 1.00 1.00 0.90 0.82 0.49 0.84 0.99 0.96
7 P1 P2 0.99 1.00 0.92 0.96 0.93 0.92 0.99 0.95
8 N1 P300 1.00 1.00 0.75 0.81 0.95 0.92 0.99 1.00
9 N1 P2 0.96 0.96 0.82 0.67 0.85 0.72 1.00 1.00

10 P300 P2 0.93 0.99 0.62 0.85 0.87 0.88 0.99 0.99
Median Totals 0.95 0.97 0.86 0.75 0.89 0.86 0.99 0.98

PCA, principal components analysis; ICA, independent components analysis.
C1 and C2 are the two simulated components in the dataset. tPCA is the results for the temporal PCA approach and
sPCA is the results for the spatial approach. tICA and sICA are for the ICA results. The ‘‘time’’ columns are the accuracy
of the reconstructions of the factor time courses, expressed as the correlation between the scaled factor results and the
matching original component. For each analysis the accuracy was calculated for both simulated components and the low-
est accuracy of the two factors was recorded. The ‘‘space’’ columns are the accuracy of the reconstructions of the factor
spatial topographies. The bottom row is the median score down each column of the table.

TABLE VII. Results of Simulation 3 ICA and PCA under low noise conditions

C1 C2
tPCA
time

tPCA
space

sPCA
time

sPCA
space

tICA
time

tICA
space

sICA
time

sICA
space

1 N400 P1 1.00 1.00 0.99 0.90 0.94 0.95 1.00 1.00
2 N400 N1 0.78 0.90 0.95 0.77 0.93 0.55 1.00 1.00
3 N400 P300 0.53 0.72 0.97 0.95 0.96 0.77 0.66 0.91
4 N400 P2 0.41 0.43 0.64 0.93 0.62 0.81 0.99 1.00
5 P1 N1 0.88 0.78 0.86 0.69 0.97 0.88 0.24 0.52
6 P1 P300 1.00 1.00 0.92 0.73 0.51 0.83 0.99 0.97
7 P1 P2 1.00 1.00 0.99 0.99 0.95 0.92 1.00 1.00
8 N1 P300 1.00 1.00 0.72 0.78 0.94 0.92 0.99 1.00
9 N1 P2 0.94 0.93 0.90 0.89 0.84 0.69 1.00 1.00

10 P300 P2 0.90 0.97 0.80 0.93 0.86 0.87 0.99 1.00
Median Totals 0.92 0.95 0.91 0.89 0.93 0.85 0.99 1.00

PCA, principal components analysis; ICA, independent components analysis.
C1 and C2 are the two simulated components in the dataset. tPCA is the results for the temporal PCA approach and
sPCA is the results for the spatial approach. tICA and sICA are for the ICA results. The ‘‘time’’ columns are the accuracy
of the reconstructions of the factor time courses, expressed as the correlation between the scaled factor results and the
matching original component. For each analysis the accuracy was calculated for both simulated components and the low-
est accuracy of the two factors was recorded. The ‘‘space’’ columns are the accuracy of the reconstructions of the factor
spatial topographies. The bottom row is the median score down each column of the table.
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therefore not necessary to repeat this examination in the
temporal domain.
A follow-up comparison between using subject and grand

averages was also conducted. For the grand average analy-
sis, the analyses were applied to the grand average and
then the resulting factor scoring coefficients were applied to
the subject average data. The factor loadings and factor
scores were then evaluated in the usual manner.

Results and Discussion: Simulation 4

The initial subject average results can be observed in
Table X. The time correlations of the temporal analyses
were not significantly different. The space correlations of

the temporal PCA was higher than the temporal ICA: t(99)

¼ 2.1, P ¼ 0.036. The time correlations of the spatial ICA

were higher than the spatial PCA: t(99) ¼ 5.9, P < 0.0001.

The space correlations of the spatial ICA were higher than

the spatial PCA: t(99) ¼ 18.2, P < 0.0001.
The grand average results are presented in Table XI. The

time correlations of the temporal analyses were not signifi-

cantly different. The space correlations of the temporal

PCA was higher than the temporal ICA: t(99) ¼ 7.7, P <

0.0001. The time correlations of the spatial ICA were

higher than the spatial PCA: t(99) ¼ 4.0, P ¼ 0.0001. The

space correlations of the spatial ICA were higher than the

spatial PCA: t(99) ¼ 8.2, P < 0.0001.

TABLE IX. Results of Simulation 3 ICA and PCA under high noise conditions

C1 C2
tPCA
time

tPCA
space

sPCA
time

sPCA
space

tICA
time

tICA
space

sICA
time

sICA
space

1 N400 P1 0.98 0.99 0.65 0.80 0.79 0.88 0.89 0.89
2 N400 N1 0.96 0.99 0.83 0.88 0.85 0.79 0.95 0.74
3 N400 P300 0.35 0.58 0.99 0.84 0.91 0.88 0.27 0.33
4 N400 P2 0.70 0.12 0.39 0.76 0.73 0.83 0.97 0.75
5 P1 N1 0.60 0.59 0.91 0.30 0.89 0.84 0.08 0.55
6 P1 P300 0.98 0.99 0.89 0.87 0.54 0.86 0.98 0.89
7 P1 P2 0.97 0.99 0.46 0.82 0.74 0.93 0.95 0.76
8 N1 P300 0.99 0.99 0.74 0.74 0.93 0.95 0.99 0.98
9 N1 P2 0.98 0.98 0.83 0.65 0.84 0.63 0.99 0.99

10 P300 P2 0.99 0.99 0.53 0.79 0.90 0.89 0.97 0.89
Median Totals 0.98 0.99 0.79 0.79 0.84 0.87 0.96 0.83

PCA, principal components analysis; ICA, independent components analysis.
C1 and C2 are the two simulated components in the dataset. tPCA is the results for the temporal PCA approach and
sPCA is the results for the spatial approach. tICA and sICA are for the ICA results. The ‘‘time’’ columns are the accuracy
of the reconstructions of the factor time courses, expressed as the correlation between the scaled factor results and the
matching original component. For each analysis the accuracy was calculated for both simulated components and the low-
est accuracy of the two factors was recorded. The ‘‘space’’ columns are the accuracy of the reconstructions of the factor
spatial topographies. The bottom row is the median score down each column of the table.

TABLE X. Results of Simulation 4 comparing PCA and ICA under temporal and spatial approaches

C1 C2
tPCA
time

tPCA
space

sPCA
time

sPCA
space

tICA
time

tICA
space

sICA
time

sICA
space

1 N400 P1 0.97 0.99 0.82 0.78 0.95 0.93 0.97 0.94
2 N400 N1 0.97 0.99 0.91 0.57 0.88 0.95 0.96 0.93
3 N400 P300 0.31 0.49 0.93 0.56 0.88 0.21 0.74 0.76
4 N400 P2 0.97 0.98 0.64 0.72 0.90 0.95 0.97 0.94
5 P1 N1 0.44 0.63 0.96 0.70 0.96 0.94 0.96 0.87
6 P1 P300 0.95 0.93 0.88 0.72 0.88 0.96 0.89 0.90
7 P1 P2 0.97 0.99 0.65 0.80 0.97 0.98 0.96 0.93
8 N1 P300 0.91 0.94 0.41 0.75 0.51 0.81 0.77 0.87
9 N1 P2 0.98 1.00 0.89 0.75 0.90 0.91 0.99 0.98

10 P300 P2 0.56 0.67 0.24 0.66 0.71 0.88 0.28 0.75
Median Totals 0.96 0.96 0.85 0.72 0.89 0.94 0.96 0.91

PCA, principal components analysis; ICA, independent components analysis.
C1 and C2 are the two simulated components in the dataset. tPCA and tICA are the results for the temporal approaches
and sPCA and sICA are the results for the spatial approaches. The ‘‘time’’ columns are the accuracy of the reconstructions
of the factor time courses, expressed as the correlation between the scaled factor results and the matching original compo-
nent. For each analysis the accuracy was calculated for both simulated components and the lowest accuracy of the two
factors was recorded. The ‘‘space’’ columns are the accuracy of the reconstructions of the factor spatial topographies. The
bottom row is the median score down each column of the table.
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Efforts to directly compare the results of Simulation 4
to the prior simulations must be tempered by the under-
standing that Simulation 4 had fewer simulated subjects
(16 rather than 20) since real data was available from only
16 subjects for the auditory components. Nonetheless, the
data in Table X bears a striking resemblance to that in
the comparable medium noise Table VIII of Simulation 3.
The median totals were essentially the same, except for
that of spatial ICA, which were noticeably reduced. This
difference was somewhat balanced by an improvement for
the temporal ICA (space) scores. Overall, PCA yields the
best results for the temporal approach and ICA yields the
best results for the spatial approach.
Turning to the grand average results presented in Table

XI, it appears that it yields degraded results compared to
that obtained with subjects averages. This makes sense in
that a factor scoring coefficient obtained from one dataset
may not fully apply to a dataset with different variance
components; even going from a grand average to subject
averages could potentially change the composition of the
dataset variance.

SIMULATION 5

A final question that we shall examine is whether these
observations continue to apply when all five simulated
components are included in the simulations.

Methods: Simulation 5

Simulation 5 was constructed in the same manner as
Simulation 4 except that all five simulated components
were included in each of the 100 simulated datasets. One
other difference is that for this dataset no condition effect

or individual difference variance was included. For each
simulation the factor most closely matching each original
simulated component was identified with the constraint
that each factor could only be matched to one simulated
component; if a factor was the best match for two simu-
lated components, the simulated component with the
lesser fit was instead matched to the next best factor. Over-
all fit of each simulation was computed as the average of
the absolute correlations of each of the five matched fac-
tors; the median value across the 100 simulations was uti-
lized as the summary statistic. Ten factors were retained
for spatial analyses and nine for temporal analyses.

Results and Discussion: Simulation 5

The overall results are summarized in Table XII. For the
temporal analyses, the time correlations of the PCA were
higher than for the ICA: t(99) ¼ 19.5, P < 0.0001. Likewise,
the space correlations of the PCA were higher than for the
ICA: t(99) ¼ 21.8, P < 0.0001. Conversely, for the spatial
analyses, the time correlations of the ICA were higher than

TABLE XI. Results of Simulation 4 comparing PCA and ICA under temporal and

spatial approaches using the grand average

C1 C2
tPCA
time

tPCA
space

sPCA
time

sPCA
space

tICA
time

tICA
space

sICA
time

sICA
space

1 N400 P1 0.98 0.98 0.91 0.89 0.95 0.90 0.94 0.99
2 N400 N1 0.72 0.98 0.92 0.61 0.86 0.52 0.93 0.99
3 N400 P300 0.34 0.52 0.55 0.64 0.35 0.57 0.47 0.70
4 N400 P2 0.46 0.51 0.86 0.96 0.87 0.63 0.87 0.98
5 P1 N1 0.98 0.90 0.96 0.80 0.54 0.84 0.91 0.80
6 P1 P300 0.90 0.81 0.56 0.50 0.80 0.04 0.88 0.89
7 P1 P2 0.95 0.94 0.69 0.86 0.96 0.89 0.96 0.99
8 N1 P300 0.85 0.39 0.79 0.93 0.86 0.43 0.81 0.83
9 N1 P2 0.79 0.97 0.93 0.99 0.64 0.27 0.91 1.00

10 P300 P2 0.77 0.67 0.52 0.42 0.78 0.37 0.72 0.83
Median Totals 0.82 0.86 0.82 0.83 0.83 0.55 0.90 0.94

PCA, principal components analysis; ICA, independent components analysis.
C1 and C2 are the two simulated components in the dataset. tPCA and tICA are the results for the temporal
approaches and sPCA and sICA are the results for the spatial approaches. The ‘‘time’’ columns are the accuracy of
the reconstructions of the factor time courses, expressed as the correlation between the scaled factor results and the
matching original component. For each analysis the accuracy was calculated for both simulated components and the
lowest accuracy of the two factors was recorded. The ‘‘space’’ columns are the accuracy of the reconstructions of
the factor spatial topographies. The bottom row is the median score down each column of the table.

TABLE XII. Results of Simulation 5 comparing results

with all five simulated components

Temporal
time

Temporal
space

Spatial
time

Spatial
space

PCA 0.74 0.75 0.61 0.60
ICA 0.70 0.53 0.84 0.67

PCA, principal components analysis; ICA, independent compo-
nents analysis.
Temporal, temporal approach; Spatial, spatial approach; Time,
time course; Space, scalp topography.
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for the PCA: t(99) ¼ 6.7, P < 0.0001. Likewise, the space
correlations of the ICA were higher than for the PCA:
t(99) ¼ 77.0, P < 0.0001.

DISCUSSION

In this report we sought to compare the efficacy of Pro-
max and Infomax rotations for decomposing averaged
ERPs. Since published analyses of these two techniques
have often differed in terms of the approach (temporal vs.
spatial) and the averaging procedure (subject averages and
grand averages), these two parameters were examined as
well. In addition, related issues such as variability in ICA
solutions and solutions diagnostics were evaluated. Over-
all, it was found that Promax is most effective for the tem-
poral approach and Infomax was the most effective for the
spatial approach.
The first simulation demonstrated the presence of variabil-

ity in ICA results, as previously noted by Makeig and col-
leagues in their web page (see above), suggesting it may be
prudent to reset the pseudorandom number generator
before each ICA run. The second simulation suggested that
PCA may be most effective for the temporal approach and
ICA may be most effective for the spatial approach. The
third simulation suggested that these observations apply
even in the presence of real noise. The fourth simulation
suggested that this conclusion is applicable even with the
addition of subject variability in component time course and
topography. It also suggested that analyses based on the
subject averages are preferable to those based on the grand
average. The fifth simulation suggested that these results
generalize to the case of all five simulated components.
The generality of these conclusions are circumscribed in a

number of ways. The five simulated components represent five

common ERP components but do not by any means constitute

an exhaustive sampling of ERP components. The simulated

datasets also differ from real datasets in that no more than five

components were present. This choice was made in order to

facilitate evaluation of the results. We argue that the addition

of real EEG background noise increased the dimensionality to

something approaching that of real datasets. Furthermore, we

suggest that the use of PCA dimensionality reduction rendered

such concerns largely moot since all but the largest sources of

variance would be eliminated. The simulation datasets also

did not include condition time course and topography variabil-

ity. Given the minimal effects of introducing subject variability,

we do not think such an addition would have notable effects.

Finally, it should be kept in mind that there are many varieties

of both PCA and ICA rotations, and so the present results are

restricted to the ones that were evaluated.
Overall, we consider the general question of whether

PCA or ICA is more effective to be poorly posed. The
results of these simulations suggest that when utilizing a
temporal approach to ERPs the PCA rotation Promax can
be more effective, whereas when utilizing a spatial ap-

proach the ICA rotation Infomax can be more effective.
This result can be described as occurring because for ERP
data components are most cleanly separated in the tempo-
ral domain. Promax performs better for temporal analyses
because it puts the temporal variance in the factor load-
ings, which is what Promax operates on when rotating.
Infomax performs better for spatial analyses because it
puts the temporal variance in the factor scores, which is
what Infomax operates on when rotating. However, as dis-
cussed earlier, these conclusions should be considered to
be general guidelines and not necessarily applicable to ev-
ery dataset; for a given dataset, the characteristics of the
features should be evaluated with respect to the parame-
ters identified in this article.
Whether to use a temporal Promax or a spatial Infomax,

on the other hand, cannot be stated categorically. As these
simulations show, sometimes one or the other approach is
more effective, depending on the characteristics of the
data. Furthermore, as discussed elsewhere [Dien, 1998a],
the spatial approach is more appropriate for analyzing
temporal changes, whereas the temporal approach is more
appropriate for analyzing spatial changes (such as lateral-
ity shifts). Finally, the case has been made elsewhere that
for many datasets a two-step PCA [Dien et al., 2003b;
Spencer et al., 1999] approach (spatio-temporal or tem-
poro-spatial) is appropriate. For such an analysis, the pres-
ent results suggest that the optimal procedure would use
both PCA Promax and ICA Infomax for the temporal and
spatial steps, respectively; however, since the first step col-
lapses one of the dimensions (spatial or temporal), it is not
clear if these observations would still apply for the second
step. A future report is in the planning stages to examine
the issues involved in two-step PCA in more detail.
The present simulations also provide some potential

diagnostics for determining whether results may be prob-
lematic for both PCA and ICA. PCA results can be diag-
nosed by plotting the factor loadings in 2D space. The ICA
results can be diagnosed by computing the sigma covari-
ance measure. Further studies will be required for the lat-
ter measure to confirm its utility. In general, it is possible
to diagnose problems by evaluating whether the factor
time course has the accustomed unipolar pattern (although
bipolar ERP effects are known). Problems with spatial to-
pography are more difficult to diagnose but using degree
of fit to dipole models may have utility. Mismatches
between the topography of condition effects and the over-
all factor topography can also be indicative of problems in
the analysis [see Dien et al., 1997, 2003a].
The pace of methodological improvements has quickened in

recent years with the increased availability of computing
resources. We may expect continuing improvements in both
PCA and ICA methodologies to parallel this computing power.
Currently, the main challenge is translating the methodological
innovations of engineers and statisticians into more general
use. It is sincerely hoped that this report helps this process and
that it serves as a roadmap for physiologists and cognitive neu-
roscientists utilizing PCA and ICA to analyze their data.
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