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Abstract
Combinational therapy that combines two or more therapeutic agents

is very common in cancer treatment. Currently, many clinical trials
aim to assess feasibility, safety and activity of combinational therapeu-
tics to achieve synergistic response. Dose-finding for combinational
agents is considerably more complex than single agent, because only
partial order of dose combinations’ toxicity is known. Prototypical
phase I designs may not adequately capture this complexity thus lim-
iting identification of the maximum tolerated dose (MTD) of combi-
national agents. In response, novel phase I clinical trial designs for
combinational agents have been extensively proposed. However, with
so many available designs, studies that compare their performances and
explore the impact of design parameters, along with providing recom-
mendations are limited. We are evaluating available phase I designs
that identify a single MTD for combinational agents using simulation
studies under various conditions. We are also exploring the influences
of different design parameters and summarizing the risks/benefits of
each design to provide general guidance in design selection.

KEY WORDS: clinical trial, combinational agents, dose-finding,
phase I

1 Introduction

Clinical trials investigating combinational therapies that combine two or
more therapeutic agents have garnered renewed attention with the develop-

1

http://arxiv.org/abs/2103.07746v2


ment of cancer therapy. Novel combinational agents require identification of
a maximum tolerated dose (MTD). The MTD is the highest dose level that
leads to a pre-specified target toxicity probability. However, dose-finding for
combinational agents could be challenging as we do not know the complete
order of dose combinations’ toxicity. To fill the gap, several phase I study
designs for combinational agents have been proposed.

Overall, there are 3 categories of designs: algorithm- or rule-based,
model-based, and model-assisted. Algorithm-based designs do not involve
any parametric relationship between dose combinations and their toxicity
probabilities. Ivanova and Wang (Ivanova and Wang, 2004) proposed an up-
and-down design and used isotonic regression to estimate the MTD. Later
Ivanova and Kim(Ivanova and Kim, 2009) updated the previous up-and-
down design using T-statistics. Lee and Fan (Lee and Fan, 2012) proposed a
two-dimensional search algorithm to identify MTD. Algorithm-based designs
usually lack statistical theory foundation, and their escalation/de-escalation
rules are ad-hoc. Therefore, their performances are not guaranteed.

Model-based designs assume a parametric dose-toxicity relationship. To
account for the design parameters’ estimation uncertainty in the beginning
of the trial, a start-up phase is usually used before transitioning to model-
based part. The main differences among model-based methods are the choice
of dose-toxicity relationship and the scheme of start-up phase. Thall et al.
(Thall et al., 2003) proposed to identify MTD contour with a six-parameter
logistic regression. Wang and Ivanova (Wang and Ivanova, 2005) proposed a
three parameter model to link doses and toxicity probabilities. Yin and Yuan
proposed a latent contingency table method (Yin and Yuan, 2009b) and an-
other one that used Copula to model toxicity probabilities through marginal
toxicity profile of individual agents (Yin and Yuan, 2009a). Riviere et al.
(Riviere et al., 2014) developed a method based on Bayesian logistic regres-
sion. Braun and Jia (Braun and Jia, 2013) used a proportional odds logistic
regression fitting model within each “row” of the dose combination matrix,
and later join them together. Braun and Wang (Braun and Wang, 2010)
proposed a hierarchical model through linking the effective doses with hyper-
parameter of dose toxicity probabilities. Tighiouart et al. (Tighiouart et al.,
2017) extended the escalation with overdose control (EWOC) method (Babb et al.,
1998) to two-dimensional setting to identify the MTD curve. Some other de-
signs were motivated by the main difficulty of two-dimensional dose-finding
where only the partial order of dose combinations’ toxicity is known. In this
case, we only know that doses (i+1, j) and (i, j+1) are more toxic than dose
(i, j), but we are not aware of the toxicity order of dose (i−1, j+1) and (i, j),
where (i, j) denotes the dose combination of the ith dose of one agent and
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the jth dose of the second agent. Therefore, several possible toxicity order-
ings which satisfy the partial order exist. Conaway et al. (Conaway et al.,
2004) proposed to identify all possible orderings of dose combination toxic-
ities so that the two dimensional dose-finding can be solved by continuous
reassessment method (CRM) (O’Quigley et al., 1990). Building upon this
methodology, Wages et al. (Wages et al., 2011a,b) proposed to use a subset
of possible orderings, which is more feasible especially when the total num-
ber of possible orderings is large. To avoid pre-specifying orderings, Lin and
Yin (Lin et al., 2016) proposed to dynamically update the ordering. How-
ever, model-based designs have several limitations in practice: (1) they are
relatively complicated and require constant model updating by statisticians,
which posit barriers to clinicians to understand and implement. (2) Most
designs need parameter calibration. (3) Some designs require prior knowl-
edge about agents (e.g., guesses of dose combinations’ toxicities) which is
not easy for clinicians to provide.

Model-assisted designs still utilize statistical models in decision making,
but focus on easier implementation through pre-tabulating escalation and
de-escalation rules before trial conduct (Yan et al., 2017). Therefore, they
have the advantages of algorithm-based and model-based designs. BOIN de-
sign (Liu and Yuan, 2015; Yuan et al., 2016) and Keyboard design (Yan et al.,
2017) are representative model-assisted designs. Later, Lin and Yin (Lin and Yin,
2017) extended the BOIN design, Pan et al. (Pan et al., 2020) extended the
Keyboard design to handle two-dimensional dose-findings.

In addition, there are designs that incorporate special features while con-
ducting two dimensional dose-finding. Liu and Ning (Liu and Ning, 2013)
proposed a design that is able to handle trials with delayed toxicities. Diniz
et al. (Diniz et al., 2018) built a Bayesian design for combinational doses
upon escalation with the EWOC method (Babb et al., 1998) accounting for
patient heterogeneity through taking baseline covariates into consideration.

With so many novel methods available yet very limited implementa-
tion in oncology trials, we have relatively little knowledge about which
methods are superior under which scenarios. Riviere et al. (Riviere et al.,
2015a) compared six phase I designs for combinational agents that are ei-
ther algorithm-based or model-based. Their paper claimed that all designs
were optimized to improve the percentage of correct MTD selection before
comparison. However, such claim itself is questionable as it is impossible
to achieve optimization under diverse scenarios using a universal set of pa-
rameters. Based on the sensitivity analyses the authors have conducted,
different scenarios actually required different parameter sets to achieve op-
timization. Therefore, simply comparing results using single set of design
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parameters makes the comparison less meaningful. Another limitation of
this study is that it did not discuss in detail about the influences of differ-
ent design settings, although sensitivity analyses were presented. Hirakawa
et al. (Hirakawa et al., 2015) compared performances of five model-based
designs for combinational agents. But this paper did not explore effects of
design parameter beyond cohort size. Harrington et al. (Harrington et al.,
2013) reviewed some algorithm-based and model-based combinational agents
designs, and discussed their advantages and limitations without simulation
studies. None of the above papers included the recently developed model-
assisted designs as they were published in earlier days. Moreover, the fea-
sibility of parameter tuning and the influences of design parameters for the
model-based designs were investigated in a limited fashion. Later Pan et al.
(Pan et al., 2020) compared two-dimensional BOIN, two-dimensional Key-
board, and Continual reassessment method for partial ordering (POCRM)
(Wages et al., 2011a,b). However, POCRM was the only model-based de-
sign in the comparison. Moreover, similar to those review studies mentioned
above, this one did not explore effects of design parameters for POCRM. To
provide a more recent view of phase I clinical trial designs for combinational
agents, we conducted a simulation study to evaluate the performances of
various designs under comprehensive scenarios.

Our study is different from previous review papers in several aspects: (1)
we included two recently-developed model-assisted designs in the study, (2)
for design parameters with no clear recommendations, we investigated mul-
tiple sets to investigate their influences instead of using single subjectively
selected set, (3) we used different sample sizes in simulations to check that
whether our findings are valid with different trial sizes, and (4) in addition to
the summary of each design’s characteristics, we discussed putative reasons
that led to their performances.

Specifically, in this paper we focus on the designs that (1) utilize tox-
icity information only, (2) identify single MTD instead of MTD contour
or curve, (3) assume monotonic dose-toxicity relationship within each in-
dividual agent, and (4) having programming codes/softwares available. As
a result, we have selected 9 designs: Dose finding in discrete dose space
(Wang and Ivanova, 2005), Bayesian dose finding by copula regression (Yin and Yuan,
2009a), Continual reassessment method for partial ordering (Wages et al.,
2011a,b), Hierarchical Bayesian Design (Braun and Wang, 2010), Logistic
model-Based Bayesian dose finding design (Riviere et al., 2014), General-
ized Continual Reassessment Method (Braun and Jia, 2013), Bootstrap Ag-
gregating Continual Reassessment Method (Lin et al., 2016), combinational
Bayesian optimal interval design (Lin and Yin, 2017), and combinational
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Keyboard design (Pan et al., 2020). We did not include few currently avail-
able algorithm-based designs as it is consensus that algorithm-based de-
signs usually have inferior performances compared with model-based ones
(Korn and Simon, 1993; Riviere et al., 2015a; Love et al., 2017).

The rest of the paper is organized as follows: we first reviewed nine
designs that will be included in our evaluation; then presented our simulation
studies and results; in the last, we discussed our findings.

2 Review of Designs

2.1 Notations

Here we define some common notations used in these methods. As most of
the designs we selected apply to dual-agent dose finding only (Copula has
been extended to handle more than two agents), we assume two agents A
and B, with J and K doses respectively. Define πjk to be the true toxicity
probability of the dose combination (j, k), j = 1, 2, . . . , J , k = 1, 2, . . . ,K;
define pj to be the true toxicity probability of agent A when used as a
monotherapy, j = 1, 2, . . . , J , and qk to be the true toxicity probability of
agent B when used as a monotherapy, k = 1, 2, . . . ,K. Define φ to be the
pre-specified target toxicity probability. Define N to be maximum sample
size in the trial. Define njk to be number of subjects that received dose (j, k)
and yjk to be number of dose-limiting toxicities (DLTs) observed among
those njk patients.

2.2 Model-based: Dose finding in discrete dose space (I2D)

This method is a Bayesian design that extends CRM to accommodate dose-
finding in dual agents.

Dose-toxicity model:

πjk(θ) = 1− (aj)
α(1− bk)

β+γ log(1−aj ), (1)

where θ = (α, β, γ) is a vector of unknown design parameters and restricts
α > 0, β > 0, γ < 0 to satisfy the assumption of toxicity monotonicity;
0 ≤ a1 < · · · < aJ and 0 ≤ b1 < · · · < bK are constants instead of actual
doses of agents. If no interaction between two agents exists in Equation 1,
the model becomes

πjk(θ) = 1− (aj)
α(1− bk)

β . (2)

Start-up phase: the trial is initiated with a dose combination (1, 1).
Next, escalate agent A while agent B is maintained at the lowest dose if
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no DLT is observed. If still no DLT is observed when agent A reaches its
maximum dose, agent B is escalated to its second lowest dose combining
with agent A’s (J − 2)th dose. Then if no DLT is observed, we continue to a
combination where agent B is at its third lowest dose and agent A’s (J−4)th

dose, namely the one used in previous combination minus 2. When agent
B reaches its maximum dose, if agent A is at its mth dose, we evaluate all
combinations from (m,K), (m+ 1,K), . . . , (J,K). The start-up phase ends
if at least one DLT is observed at any time.

Post start-up escalation / de-escalation dose set: if the current
combination is (j, k), I2D only considers doses (j−1, k), (j+1, k), (j, k), (j, k+
1), (j, k−1), (j+1, k−1), (j−1, k+1) to the next subject prohibiting diagonal
moves.

Post start-up trial conduct: after the start-up phase ends, the work-
ing model Equation 1 or Equation 2 will be used to obtain toxicity estimates
of all dose combinations. Due to safety concerns, the working model starts
at the combination dose where agent B is at its lowest dose and agent A
is at the dose that makes the combination’s estimated toxicity probability
closest to φ.

MTD determination: the dose combination whose posterior probabil-
ity of toxicity is closest to φ will be selected as the MTD.

2.3 Model-based: Bayesian dose finding by copula regression
(Copula)

This method utilizes copula to model the dose-toxicity relationship because
copula allows to link the joint distribution and marginal distributions via a
dependence parameter.

Dose-toxicity model:

πjk = 1− {(1 − pαj )
−γ + (1− qβk )

−γ − 1}−1/γ , (3)

where α and β are power parameters as in CRM to accommodate the un-
certainty, and γ > 0 represents the interaction between two agents. Inter-
mediate informative prior distributions with prior mean 1 and a relatively
small variance will be assigned to α and β (e.g. Gamma (2,2)). A Gamma
distribution with a large variance is usually chosen as the non-informative
prior for γ. If only one agent is involved, this approach reduces to regular
CRM.

Start-up phase: the start-up phase begins with the lowest dose com-
bination (1, 1). It proceeds vertically (1, 2), (1, 3), . . . , (1,K) until the first
toxicity is observed, then it proceeds horizontally (2, 1), (3, 1), . . . , (J, 1) until
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the first toxicity is observed. Once one toxicity is observed in both direc-
tions, the formal design starts.

Post start-up escalation / de-escalation dose set: if the current
combination is (j, k), the dose escalation set is defined as AE = {(j +
1, k), (j, k + 1), (j + 1, k − 1), (j − 1, k + 1)}, dose de-escalation set is de-
fine to be AD = {(j − 1, k), (j, k − 1), (j + 1, k − 1), (j − 1, k + 1)}. As
we only know the partial order of dose toxicity in combinational agents, we
do not know whether dose combinations (j + 1, k − 1) and (j − 1, k + 1)
are more/less toxic than dose combination (j, k). Therefore, the authors
included (j+1, k− 1) and (j− 1, k+1) in both escalation and de-escalation
sets.

Post start-up trial conduct: this design involves two parameters ce
and cd that represent the fixed probability cut-offs for dose escalation and
de-escalation, respectively, and ce + cd > 1. Detailed algorithm is laid out
as below.

a if at current dose combination (j, k), P (πjk < φ) > ce, we will escalate
to the dose that belongs to AE and with the toxicity probability closest
to φ and higher than that of (j, k). If current dose is (J,K), then stay
at the same combination.

b If at current dose combination (j, k), P (πjk > φ) > cd, we will de-
escalate to the dose that belongs to AD and with the toxicity proba-
bility closest to φ and lower than that of (j, k). If current dose is (1, 1),
the trial is terminated.

c Otherwise, stays at the same dose combination.

MTD determination: after N subjects are exhausted, the MTD is de-
termined as the dose combination with the estimated probability of toxicity
closest to φ.

2.4 Model-based: Continual reassessment method for partial
ordering (POCRM)

To solve the problem of only knowing partial order of dose toxicity, POCRM
proposes to pre-specify a subset of possible orderings, then utilize the CRM
on each of them. This way, two-dimensional dose-finding is reduced to a
one-dimensional problem.

Dose-toxicity model: define T as the total number of dose combina-
tions, T = J ×K; dn as the dose assigned to subject n; R(dn) as the true
toxicity probability of dn; yn as a binary indicator of whether subject n has
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toxicity or not, n = 1, 2, . . . , N ; and Ωn as data collected after having n
subjects where Ωn = {d1, y1, . . . , dn, yn}. Assume we have M possible par-
tial ordering in total. For a specific ordering m, m = 1, 2, . . . ,M , R(dn) is
modeled as below, similar to the CRM

R(dn) = E(Yn|dn) .= ψm(dn, a) (4)

where ψm is some working dose-toxicity model, a is the model parameter.
After having n patients, the likelihood under partial order m is

Lm(a|Ωn) =

n
∏

i=1

ψyi
m(di, a){1 − ψm(di, a)}(1−yi). (5)

Then, the estimate of parameter a under ordering m, âm, could be obtained
through maximizing Equation 5. Then we could obtain the posterior prob-
ability of partial order m:

p(m|Ωn) =
p(m)Lm(âm|Ωn)

∑M
l=1 p(l)Ll(âl|Ωn)

. (6)

Start-up phase: when POCRM was first proposed, it was a single
stage method (Wages et al., 2011a). Later it was extended to include a
start-up phase (Wages et al., 2011b). The start-up phase partitions the
dose combination matrix to different “zones” and starts the first cohort with
zone 1, which is the lowest dose combination. If no DLT is observed, then it
assigns next cohort to doses in zone 2. If there are multiple combinations in
zone 2, it randomly selects one of them. If no DLT is observed, it continues
to assign the next cohort to other combinations in the same zone. Moving
to the next zone is only allowed when all the dose combinations have been
explored in lower zones. The start-up phase ends when one DLT is observed.
POCRM also allows users to specify their own scheme in the start-up phase
as they see appropriate.

Post start-up escalation / de-escalation dose set: since POCRM
pre-specifies a subset of possible orderings, the escalation and de-escalation
dose are known within each ordering.

Post start-up trial conduct: after the start-up phase ends, the au-
thors used weighted randomization to select the partial ordering with p(m|Ωn)
from Equation 6 being the weight. After selecting the working partial or-
dering m, πt is estimated for all t ∈ {1, 2, . . . , T} through Equation 4 and
assign the dose combination that minimizes |π̂t − φ| to the next subject.
But for final MTD determination, the ordering with the maximum posterior
probability will be chosen among all candidate orderings.

8



MTD determination: after N subjects are exhausted, the MTD is de-
termined as the dose combination with the estimated probability of toxicity
closest to φ, given the ordering with maximum posterior probability.

2.5 Model-based: Hierarchical Bayesian Design (Hierarchy)

Dose-toxicity model: This method employs a hierarchical model:

πjk ∼ Beta(αjk, βjk), (7)

log(αjk) = θ0 + θ1aj + θ2bk, (8)

log(βjk) = φ0 + φ1aj + φ2bk, (9)

where θ = {θ0, θ1, θ2} follows a multivariate normal distribution with mean
µ = {µ0, µ1, µ2} and variance covariance matrix σ2I where I is a 3 × 3
identity matrix; φ = {φ0, φ1, φ2} follows a multivariate normal distribution
with mean ω = {ω0, ω1, ω2} and the same variance covariance matrix; aj
and bk are “effective doses” instead of actual clinical values. This method
omits the interaction effects between two agents.

The authors provided recommendations about selecting priors and meth-
ods to calculate “effective doses”. They used the fact that Kπ̃11

K(1−π̃11)
= exp{µ0}

exp{ω0}
to obtain the solutions for µ0 and ω0:

µ0 = log(Kπ̃11), ω0 = log(K(1 − π̃11)).

They suggested setting µ1 = µ2 = ω1 = ω2 = 2
√
σ2 and selecting σ2 ∈

[5, 10]. They set a1 = b1 = 0, then

aj = (µ1 + ω1)
−1 log(ÕRj.),

bk = (µ2 + ω2)
−1 log(ÕR.k)

where

ÕRj. = exp{ π̃j1/(1− π̃j1)

π̃11/(1− π̃11)
},

ÕR.k = exp{ π̃1k/(1− π̃1k)

π̃11/(1− π̃11)
}.

Therefore, this design needs inputs of πj1 and π1k, j = 1, 2, . . . , J, k =
1, 2, . . . ,K from the clinicians.

Start-up phase: this method is a single stage design without a start-up
phase.
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Escalation / de-escalation dose set: if the current combination is
(j, k), acceptable dose combination set to the next subject S is defined as
(j − 1, k), (j + 1, k), (j, k), (j, k + 1), (j, k − 1), (j + 1, k − 1), (j − 1, k + 1),
(j+1, k+1), (j−1, k−1). As dose combinations (j+1, k+1) and (j−1, k−1)
are included, this design allows simultaneous dose escalation or de-escalation
of both agents.

Trial conduct:

a Compute a 95% CI for overall toxicity rate from cumulative data of
currently recruited subjects.

b If the lower bound of this CI is greater than φ, terminate the trial.

c If the lower bound of this CI is less than or equal to φ, use all previ-
ous information to obtain posterior mean of πjk, j = 1, 2, . . . , J, k =
1, 2, . . . ,K.

d Select a dose that belongs to set S and is closest to φ. Assign this dose
combination to the next patient.

e Continue until all N subjects are exhausted.

MTD determination: Use the outcomes and assignments of all N
subjects to derive posterior mean of πjk, j = 1, 2, . . . , J, k = 1, 2, . . . ,K.
If the last subject received dose (j′, k′), then the dose combination that
is among set S of (j′, k′) and with estimated toxicity closest to φ will be
selected as the MTD.

2.6 Model-based: Logistic model-Based Bayesian dose find-
ing design (DFCOMB)

Dose-toxicity model: this method uses logistic regression to link doses
and toxicities of the two agents:

logit(πjk) = β0 + β1aj + β2bk + β3ajbk, (10)

where aj and bk are “effective doses” instead of actual clinical values, β1 > 0,
β2 > 0, β1 + β3bk > 0, β2 + β3aj > 0 to ensure monotonicity. The authors
define “effective doses” as aj = log(

pj
1−pj

), bk = log( qk
1−qk

) and recommend a

vague normal prior N(0, 1) for β0 and β3, an informative prior exp{1} for
β1 and β2.

Start-up phase: the start-up phase starts from dose (1, 1). If no tox-
icity is observed, escalate the dose along the diagonal until at least one
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agent reaches maximum dose. If still no toxicity is observed when one agent
reaches its maximum dose, we increase the dose of the other agent until
both agents reach maximum doses. The start-up phase ends once the first
toxicity is observed and the model-based design starts.

Post start-up escalation / de-escalation dose set: if the current
combination is (j, k), the dose escalation set is defined as AE = {(j +
1, k), (j, k + 1), (j + 1, k − 1), (j − 1, k + 1)}, dose de-escalation set is de-
fine as AD = {(j − 1, k), (j, k − 1), (j + 1, k − 1), (j − 1, k + 1)}. As we
only know the partial order of dose toxicity in combinational agents, we
do not know whether dose combinations (j + 1, k − 1) and (j − 1, k + 1)
are more/less toxic than dose combination (j, k). Therefore, the authors
included (j+1, k− 1) and (j− 1, k+1) in both escalation and de-escalation
sets.

Post start-up trial conduct: in the model-based design part, the esca-
lation and de-escalation rule is the same as in Copula design (Yin and Yuan,
2009a).

MTD determination: DFCOMB utilizes a different method to identify
MTD after the trial is completed. The dose combination that has the largest
posterior probability P (πjk ∈ [φ− δ, φ+ δ]) and is used to treat at least one
cohort will be selected as the MTD. Parameter δ is the length around the
target toxicity probability.

2.7 Model-based: A Generalized Continual Reassessment
Method (gCRM)

This method is another generalization of the CRM.
Dose-toxicity model: it uses proportional odds logistic regression to

model the dose-toxicity relationship:

logit(πjk) = αk + βaj , (11)

where αk is agent B specific intercept, k = 1, 2, . . . ,K; β is a common
coefficient across models; aj is the “effective dose” of agent A, j = 1, 2, . . . , J .
For example, if agent B has three dose levels, then gCRM will need three
models: logit(πj1) = α1 + βaj , logit(πj2) = α2 + βaj , and logit(πj3) =
α3 + βaj . Later these “sub” models will be aggregated together through a
joint prior distribution that forces correlation among (α1, α2, . . . , αk). As
observed, gCRM assumes no interaction between two agents as well.

In terms of parameters αk and β, their paper assumes that β follows
a Gamma distribution with mean µβ and variance σ2β, α1 ∼ N(µα, σ

2
α),

and defines ∆k = αk − αk−1 ∼ N(δk, 2σ
2
α) for k = 2, 3, . . . ,K so the joint
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distribution of α = (α1, . . . , αK)T is multivariate normal. If one assumes
that logit(πj1) = E(α1)+E(β)aj , aj ≈ [logit(πj1)−µα]/µβ can be obtained.
One can approximately obtain δk = logit(π1k)− logit(π1,k−1). The authors
recommend setting µα = −8, µβ = 1, σ2α = σ2β = 1. Therefore, with the
inputs of πj1 and π1k for j = 1, 2, . . . , J, k = 1, 2, . . . ,K from clinicians, all
parameters can be calculated.

Start-up phase: this method is a single stage design without a start-up
phase.

Escalation / de-escalation dose set: if the current combination is
(j, k), define acceptable dose combination set to the next subject S to be
(j − 1, k), (j + 1, k), (j, k), (j, k + 1), (j, k − 1), (j + 1, k − 1), (j − 1, k + 1),
(j+1, k+1), (j−1, k−1). As dose combination (j+1, k+1) and (j−1, k−1)
are included, this design allows simultaneous dose escalation or de-escalation
of both agents.

Trial conduct:

a Treat the first patient at dose (1, 1).

b For patient 2, 3, . . . , N , compute π̂jk from logit(π̂jk) = α̂k + β̂aj where

α̂k and β̂ are posterior means.

c As the posterior distribution of π11 will be updated constantly, check
that whether the stopping rule of P (π11 > φ) > 0.95 has been reached.
If yes, then terminate the trial; otherwise assign next subject to the
dose in set S where π̂jk is closest to φ.

d Continue until all N subjects are exhausted.

MTD determination: if the last subject received dose (j′, k′), then the
dose combination that is among set S of (j′, k′) and with estimated toxicity
closest to φ will be selected as the MTD.

2.8 Model-based: Bootstrap Aggregating Continual Reassess-
ment Method (bCRM)

Bootstrap aggregating CRM is similar to POCRM as they both use one-
dimensional CRM to identify the MTD. However, bCRM keeps updating
the toxicity ordering of dose combinations rather than pre-specifying them.

Dose-toxicity model: in bCRM, it assigns a beta prior to πjk and
obtain its posterior mean π̄jk. Then bCRM applies two-dimensional pool-
adjacent-violators algorithm (PAVA) (Bril et al., 1984) on π̄jk to obtain π̃jk
to ensure that these estimates satisfy partial ordering. To avoid ties among
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π̃jk, a term rjkǫ is added, where rjk is the rank of dose (j, k) and ǫ is a

small positive number. The resulted estimates are denoted as π̃†jk and, as
a result, one can obtain a new ordering O. As noted by the authors, such
orderings could vary dramatically due to data sparsity. Therefore, they
bootstrapped B samples of data to obtain corresponding orderings Ob, and
toxicity probability estimates π̂bjk, b ∈ 1, 2, . . . , B. The final estimate of πjk
is

π̂Bagging
jk =

B
∑

b=1

P (Ob|D)π̂bjk, (12)

where D =

[

t1 . . . tn
d1 . . . dn

]

represents cumulative data up to nth subject,

ti indicates whether subject i experienced DLT or not; di indicates dose
combination subject i received, i = 1, 2, . . . , n.

Start-up phase: the start-up phase is similar to DFCOMB.
Post start-up escalation / de-escalation dose set: similar to POCRM,

bCRM uses one-dimensional CRM in the dose-finding process, therefore, the
escalation and de-escalation dose is certain within each ordering.

Post start-up trial conduct: the trial conduct procedures are similar
to DFCOMB.

MTD determination: After the trial is completed, one could select
the combination that has been administered to patients and has the largest
posterior probability of falling into the ε-neighbourhood of φ, where ε is a
small positive number.

2.9 Model-assisted: Combinational Bayesian optimal inter-
val design (cBOIN)

Combinational BOIN is a model-assisted design that is generalized from the
single agent BOIN design (Liu and Yuan, 2015; Yuan et al., 2016).

Dose escalation and de-escalation rule: BOIN mainly involves two
important parameters ∆L and ∆U which are lower and upper cut-offs. At
current dose j, the escalation and de-escalation rules are below:

• if p̂j ∈ (φ−∆L, φ+∆U), then the next cohort stays at current dose;

• if p̂j ≤ φ−∆L, then the next cohort escalates to dose j + 1;

• if p̂j ≥ φ+∆U , then the next cohort de-escalates to dose j − 1;
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where p̂j is the estimated toxicity probability of dose j in single agent dose-
finding and it is simply proportion of patients experiencing toxicities among
those who receive dose j.

In two-dimensional dose-finding, p̂jk is calculated the same way: p̂jk =
yjk/njk.

An important task of cBOIN is to determine ∆L and ∆U . Through
minimizing the probability of incorrect movement given data at current dose,

∆L = φ−
log{1−φ1

1−φ }
log{φ(1−φ1)

φ1(1−φ)}
,∆U =

log{ 1−φ
1−φ2

}
log{φ2(1−φ)

φ(1−φ2)
}
− φ.

The authors suggested using φ1 = 0.6φ and φ2 = 1.4φ through their simu-
lation calibration.

Start-up phase: this method does not have a start-up phase.
Escalation / de-escalation dose set: admissible dose escalation set is

defined as AE = {(j +1, k), (j, k+1)}, admissible de-escalation set is define
as AD = {(j − 1, k), (j, k − 1)}.

Trial conduct:

a Treat the first cohort at dose (1, 1).

b Suppose that current dose is combination (j, k). If p̂jk ≤ φ − ∆L,
escalate to the dose combination that belongs toAE and has the largest
P [pj′k′ ∈ (φ−∆L, φ+∆U )|yj′k′].

c If p̂jk ≥ φ+∆U , de-escalate to the dose combination that belongs to
AD and has the largest P [pj′k′ ∈ (φ−∆L, φ+∆U )|yj′k′].

d Otherwise if φ−∆L < p̂jk < φ+∆U , stay at current dose.

e Dose combinations with P (pjk > φ|yjk) ≥ λ will be permanently ex-
cluded, where λ is pre-specified threshold probability. If dose combi-
nation (1, 1) satisfies this stopping rule, the trial will be terminated
early.

f Continue until all N subjects are exhausted.

MTD determination: after the trial is completed, isotonic regression
will be used on p̂jk to obtain estimator p̃jk so that they satisfy monotonic
dose-toxicity within one agent when fixing the other agent’s dose. The MTD
is the dose combination with p̃jk closest to φ.
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2.10 Model-assisted: Combinational Keyboard design (cK-
eyboard)

Similar to combinational BOIN, combinational Keyboard is a model-assisted
design as well. Combinational Keyboard design starts with specifying a
target toxicity interval Jtarget = (φ−ε1, φ+ε2), where ε1 and ε2 are tolerable
deviations from φ. This interval Jtarget is called target key. Then a series
of equal-width keys are identified along both sides of the target key.

Dose escalation and de-escalation rule: in the setting of the sin-
gle agent design, the escalation and de-escalation rules are straightforward.
Define Jmax to be the strongest key based on the posterior distribution of
current dose j,

• if Jmax ≺ Jtarget, then next cohort escalates to dose j + 1;

• if Jmax ≡ Jtarget, then next cohort stays at current dose;

• if Jmax ≻ Jtarget, then next cohort de-escalates to dose j − 1;

To address two-dimensional dose-finding, the authors define five strate-
gies of admissible escalate and de-escalate sets. After simulations, the strat-
egy whose admissible escalation and de-escalation sets are the same with
combinational BOIN design is recommended.

Start-up phase: this method does not have a start-up phase.
Escalation / de-escalation dose set: several dose assignment algo-

rithms have been proposed for Keyboard design and the authors recommend
to define admissible dose escalation set to be AE = {(j + 1, k), (j, k + 1)},
admissible de-escalation set to be AD = {(j − 1, k), (j, k − 1)}.

Trial conduct:

a Treat the first cohort at dose (1, 1).

b Suppose that current dose is combination (j, k). If Jmax ≺ Jtarget,
escalate to dose combination that belongs to AE and has the largest
P [pj′k′ ∈ Jtarget|(njk, yjk)].

c If Jmax ≻ Jtarget, de-escalate to dose combination that belongs to AD

and has the largest P [pj′k′ ∈ Jtarget|(njk, yjk)].

d Otherwise if Jmax ≡ Jtarget, stay at current dose.

e Dose combinations with P (pjk > φ|yjk) ≥ λ will be permanently ex-
cluded, where λ is pre-specified threshold probability. If dose combi-
nation (1, 1) satisfies this stopping rule, the trial will be terminated
early.
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f Continue until all N subjects are exhausted.

MTD determination: after the trial is completed, isotonic regression
will be used to identify the MTD.

3 Simulation Studies

In the simulation studies, our goal is to identify single MTD of two combined
agents. Simulation settings are borrowed from previous studies (Riviere et al.,
2015a; Hirakawa et al., 2013) and shown in Table 2. The target toxicity
probability is 0.3. All designs started with the lowest dose combination.
Cohort size was set to be 3 for all designs that use cohorts as dose assign-
ment unit, unless otherwise specified. 2000 simulation runs were generated
for each scenario.

3.1 Simulation scenarios

A total of 15 scenarios are displayed in Table 2. In the first 10 scenarios,
agent A has 5 dose levels and agent B has 3. In scenarios 11 to 15, both
agents have 4 dose levels. Target toxicity rate 0.3 is bolded. Among the first
ten 5×3 matrices: scenario 1 contains multiple MTD locations that are in the
middle of matrix and diagonally connected; scenarios 2 and 4 represent over-
toxic situations while scenario 4 is more extreme; scenarios 3 and 5 represent
over-conservative situations while scenario 5 is more extreme; scenarios 6 and
7 contain multiple MTD locations but those locations are more scattered;
scenarios 8, 9, and 10 contain single MTD at different locations. Among the
last five 4×4 square matrices: scenario 11 contains multiple MTD locations
that are in the middle of matrix and diagonally connected; scenarios 12 and
13 contain multiple but more scattered MTD locations; scenario 14 contains
two MTD locations that are at the bottom left and top right; scenario 15
has single MTD location.

3.2 Evaluation metrics

Four evaluation metrics are used: (1) correct MTD selection SC , defined as
proportion of simulation runs that correctly identified the MTD among all
2000 simulations; (2) over-toxic MTD selection SOT , defined as the propor-
tion of simulation runs that identified over-toxic doses as MTD among all
2000 simulations; (3) correct patient assignment AC , defined as the average
proportion of patients that were assigned to the MTD during the trial across
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all 2000 simulations; (4) over-toxic patient assignment AOT , defined as the
average proportion of patients that were assigned to over-toxic doses during
the trial across all 2000 simulations. Metrics SC and SOT will be used to
evaluate the performance of designs in terms of MTD selection. The larger
the SC is, the more accurate the design is in selecting the correct MTD.
The larger the SOT is, the more aggressive the design is in selecting MTD.
Metrics AC and AOT will be used to evaluate the characteristics of designs
during trial conduct. The larger the AC is, the more accurate patient as-
signment is during the trial. The larger the AOT is, the more aggressive the
design is in dose escalation during the trial. Ideally, a design should show
relatively large SC and AC but small SOT and AOT .

3.3 Design specifications

For I2D, we implemented published R codes (Ezzalfani, 2019). We set cohort
size of start-up phase to be 1 based on suggestions from simulation studies
when target toxicity rate is 0.3 (Ivanova et al., 2003; Wang and Ivanova,
2005), and interaction to be 0 so that it is consistent with the paper’s focus.
The prior of parameters (α, β) is the product of two independent exponential
distributions with mean 1, which is the same as the one used in the I2D study
(Wang and Ivanova, 2005).

For Copula, the website (http://www.blackwellpublishing.com/rss)
where simulation programs were originally published is not accessible now, so
we used the executable file on the website https://odin.mdacc.tmc.edu/~yyuan/index_code.html.
The executable file used escalation and de-escalation probability boundaries
fixed at 0.8 and 0.45, respectively.

Hierarchy was implemented via R codes from website http://www-personal.umich.edu/~tombraun/software.html.
We set σ2 to be 10 based on the suggestion in the paper (Braun and Wang,
2010). Together with other recommendations from the authors, we could
obtain priors for all involved parameters. Details are described in Section
2.5.

POCRM was implemented via R package pocrm. We utilized six possible
partial ordering as suggested (Wages and Varhegyi, 2013; Wages and Conaway,
2013): across rows, across columns, up diagonals, down diagonals, up-down
diagonals, and down-up diagonals. As we do not have information about
which partial ordering is more likely, the prior probabilities of all 6 par-
tial ordering were set to be equal. The skeleton required by the program
was obtained using getprior function in package dfcrm from algorithm of
Lee and Cheung (Lee and Cheung, 2009) as suggested (Wages and Varhegyi,
2013). For the start-up phase, we used the “zoning” method as suggested
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(Wages et al., 2011a,b).
Design cBOIN was implemented via R package BOIN. For cBOIN, the

interval boundaries were set to be 0.18 and 0.42 as suggested (Lin and Yin,
2017).

Design cKeyboard was implemented via R package Keyboard.
DFCOMB was implemented via R package dfcomb. As recommended by

the authors, a vague normal prior N(0, 1) for β0 and β3, an informative prior
exp{1} for β1 and β2 (Riviere et al., 2014). For DFCOMB, we set the target
toxicity boundaries as 0.18 and 0.42 to be consistent with cBOIN. As one of
our reviewers suggested, we also tried setting these toxicity boundaries as
0.25 and 0.35.

Design gCRMwas implemented via R codes from website http://www-personal.umich.edu/~tombraun/software.html.
As the authors suggested, we used a Gamma prior with mean 1 and variance
1 for β, normal prior with mean -8 and variance 1 for α1, normal prior with
mean logit(π1k)− logit(π1,k−1) and variance 2 for δk, where k = 2, 3, . . . ,K
(Braun and Jia, 2013).

Design bCRM was implemented via R codes from the authors. Its skele-
ton setting is the same as POCRM.

For most model-based designs, there are several design parameters in-
volved. Some of these parameters have recommended specifications provided
by the authors, for example, interval boundaries in design cBOIN are rec-
ommended to set as 0.6φ and 1.4φ where φ is the target toxicity probability
(Lin and Yin, 2017). However, some design parameters lack authors’ sug-
gested specifications and their influences to design performances are not
clear. Therefore, we list such design parameters and corresponding designs
in Table 1 where column “Main setting” and column “Alternative setting”
contain parameter specifications used in our simulation studies.

For all designs and scenarios, the maximum sample size was set to be
60. This number is widely used in other studies (Yin and Yuan, 2009a;
Braun and Jia, 2013; Lin et al., 2016; Lin and Yin, 2017; Pan et al., 2020;
Riviere et al., 2015a). To verify that our conclusions are still valid with a
different sample size, we repeated all simulations with a maximum sample
size of 30.

4 Results

4.1 When maximum sample size is 60

Table 3, Table 4, Table 5, and Table 6 display design performances of
SC , SOT , AC , and AOT , respectively. In these tables, I2D with parame-
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ter pj and qk specification in column “Main setting” of Table 1 is denoted
as “I2D”; I2D with parameter pj and qk specification in column “Alter-
native setting” is denoted as “I2D.pq”. Copula with parameter pj and
qk specification in column “Main setting” is denoted as “Copula”; Copula
with parameter pj and qk specification in column “Alternative setting” is
denoted as “Copula.pq”. Hierarchy with π1k and πj1 specification in col-
umn “Main setting” is denoted as “Hierarchy”; Hierarchy with π1k and πj1
specification in column “Alternative setting” is denoted as “Hierarchy.pi”.
POCRM with skeleton specification in column “Main setting” is denoted
as “POCRM”; POCRM with skeleton specification in column “Alternative
setting” is denoted as “POCRM.skeleton”. DFCOMB with pj and qk, and
escalation/de-escalation probability cutoff specifications in column “Main
setting” is denoted as “DFCOMB”; DFCOMB with parameter pj and qk
specification in column “Alternative setting” is denoted as “DFCOMB.pq”;
DFCOMB with escalation/de-escalation probability cutoff specification in
column “Alternative setting” is denoted as “DFCOMB.cut”; DFCOMB with
pj and qk, and escalation/de-escalation probability cutoff specifications in
column “Main setting”, but with toxicity boundaries being 0.25 and 0.35
as suggested by one of our reviewers, is denoted as “DFCOMB.sensitive”.
Design gCRM with π1k and πj1 specification in column “Main setting”
is denoted as “gCRM”; gCRM with π1k and πj1 specification in column
“Alternative setting” is denoted as “gCRM.pi”. Design bCRM with skele-
ton and escalation/de-escalation probability cutoff specifications in column
“Main setting” is denoted as “bCRM”; bCRM with skeleton specification in
column “Alternative setting” is denoted as “bCRM.skeleton”; bCRM with
escalation/de-escalation probability cutoff specification in column “Alterna-
tive setting” is denoted as “bCRM.cut”. We marked designs metrics that are
“outstandingly” poor as red, and those that are poor, but not “outstanding”
from the others as magenta.

I2D shows unstable performances in MTD identification in most simula-
tion scenarios. While under extreme conditions like scenario 4 and 5, its SC
is among the best, under scenarios like scenarios 1, 3, 8, 9, and 15, its SC is
among the worst. With alternative toxicity profile of individual agents (pj
and qk), some scenarios had improved performances while some had worse,
but its overall characteristics remain the same. Part of the reason of the
unstable performance is that, I2D always starts its model-based part with
agent B’s lowest dose no matter what happens in the start-up phase. This
way, the starting dose combination of model-based part could be very far
from the location of true MTDs, which makes I2D harder to identify them.
Overall I2D is not an aggressive design as its SOT and AOT are relatively
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small under most scenarios.
Copula performed poorly in MTD identification as its SC and SOT are

among the worst in several scenarios. This indicates that Copula is quite
aggressive as it is more likely to select higher dose combinations as the MTD.
With alternative toxicity profile of individual agents (pj and qk), Copula’s
performances fluctuated in several scenarios, but overall poor performances
and aggressiveness were still observed. One potential reason of the unsat-
isfactory performances is the limited flexibility on changing parameters like
escalation and de-escalation probability cutoffs in the executable file. There-
fore, it is reasonable to argue that the default values (0.8 and 0.45) are not
optimal for some scenarios. On the other hand, as we do not know what the
true dose toxicity matrix looks like in real life, obtaining a uniform parame-
ter set to achieve best performances under all scenarios through simulation
calibration is not feasible.

Hierarchy is quite aggressive overall in trial conduct as it has the worst
AOT under several scenarios. We can observe that incorrect πj1 and π1k per-
formed much worse than using correct ones in most scenarios. A possible
reason for the aggressiveness is that, unlike most other designs, Hierarchy
allows simultaneous dose escalation of both agents during trial conduct.
Another aspect we should emphasize is that despite a high proportion of
patients assigned to over-toxic doses, Hierarchy did not outperform other
designs in terms of SC . Some features of Hierarchy like omitting the inter-
action effect between agents and no start-up phase may contribute to this
poor performance as well.

POCRM shows satisfactory characteristics across all scenarios except
low SC in scenario 5. Then we found that the alternative skeleton setting in
Table 1 improved SC from 0.54 to 0.73 in scenario 5. However, the alterna-
tive skeleton setting led to much worse performance metrics in scenario 15.
Another finding is that POCRM performed well under scenarios (e.g., sce-
nario 9) when the underlying true toxicity orderings of dose combinations
are not among any of the six orderings we used. Such results “validate”
the idea of POCRM: in practice we do not need to specify the correct tox-
icity ordering in POCRM, providing orderings close to the correct one is
sufficient.

DFCOMB performed poorly in terms of SC under several scenarios. But
overall DFCOMB is not an aggressive design as its SOT and AOT are rel-
atively small under most scenarios. With alternative escalation and de-
escalation probability cutoffs, some scenarios had improved SC (e.g. scenar-
ios 9 and 10) while some had worse SC (e.g. scenarios 6 and 8). In addition,
we observed worse AOT and better SOT with alternative specification (0.6
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and 0.6 as escalation and de-escalation probability cutoffs). Worse AOT is
expected as the alternative cutoff pairs make DFCOMB easier for dose es-
calation but more difficult for de-escalation. With more patients assigned
to over-toxic doses, the estimation of dose toxicity probabilities were more
accurate, which leads to better SOT . With alternative toxicity profile of
individual agents (pj and qk), a few scenarios showed obvious impact: SC in
scenario 1 was improved from 0.54 to 0.69, SC in scenario 11 was improved
from 0.44 to 0.57, SC in scenario 14 was improved from 0.18 to 0.35, but
SC in scenario 10 and 15 were dramatically reduced from 0.47 to 0.14, and
from 0.67 to 0.45, respectively. With the “sensitivity run” of target toxicity
boundaries suggested by one of our reviewers, we observed slightly worse
SOT in some scenarios. Such results imply that the optimal design parame-
ters are scenario-dependent. Therefore, it is not feasible for us to calibrate
the parameters through simulations in real life clinical trials.

Design gCRM performed well in most scenarios. Comparing results us-
ing correct πj1 and π1k with incorrect ones, we observed that using incorrect
inputs leads to worse operating characteristics under some scenarios, and
similar performances under the other ones. Interestingly, although gCRM
allows simultaneous dose escalation of both agents, it did not show much
aggressiveness as its SOT and AOT are not among the largest under most
scenarios. One possible reason could be that gCRM uses single patient as
unit, instead of cohorts during trial conduct. Therefore, every time when
an over-toxic dose combination is assigned, only one patient instead of a co-
hort of several patients will receive it. From this perspective, gCRM could
be viewed as more “flexible” in the dose-finding process and such flexibility
may dilute the aggressiveness.

Design bCRM is another one whose performances were unstable across
different scenarios. Its SC in scenario 5 and SOT in scenario 4 are among the
worst. Metrics in other scenarios are acceptable. Similar to DFCOMB, we
observed worse AOT with alternative escalation and de-escalation probability
cutoffs. However, SOT was not improved. Alternative skeleton setting has
influences to bCRM as well as it improved the SC in scenario 5 and SOT in
scenario 4, but worsened SC in scenario 10 and SOT in scenario 9 and 10.
Therefore, unstable performances remains an issue even using alternative
skeleton setting or escalation and de-escalation probability cutoffs.

Both designs cBOIN and cKeyboard performed well across all scenarios.
They may not always be the top performers, but their operating character-
istics are never among the worst. This is especially important in real life
clinical trials, as we do not know which scenario could be the truth. There-
fore, cBOIN and cKeyboard are able to guarantee satisfactory performances
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in practice.

4.2 When maximum sample size is 30

Results using 30 as the maximum sample size are shown in Supplementary
Materials Table 5 to Table 12. All the findings discussed above are observed
when maximum sample size is reduced from 60 to 30. Additionally, we found
that in Supplementary Materials Table 5, POCRM with alternative skeleton
had unsatisfactory SC in scenario 15 given maximum sample size of 30. This
indicates that parameter calibration is not feasible for POCRM as well.

5 Discussion

Despite recent advances in novel statistical designs for combinational agents,
we found that they are seldomly cited and used in ongoing clinical trials.
In dose-finding studies for “combinational agents”, the investigators often
conducted dose-finding for one agent, while the second agent remained fixed.

Riviere et al. (Riviere et al., 2015b) reviewed 543 clinical trial papers
published between 2011 and 2013 that investigated combinational agents.
Among these papers, 162 had at least two agents dose-escalated and the
rest (381) had only one agent dose-escalated with the others fixed. Only
one out of 543 papers used a design that was ideal for combinational agents.
On the website https://clinicaltrials.gov/, we found 591 phase I/early
phase I intervention studies in the U.S. for combinational agents with trial
results, with primary completion dates after 1/1/2010; however, the nine
designs we evaluate here were only cited in less than 5 trial papers. While
these 591 trials include trials that have yet to be published, it would ap-
pear that optimal designs for combination therapies are underutilized. The
discrepancy between low acceptance of novel designs in clinical practice and
the endeavor of promoting better designs should be reconciled.

There are several barriers to implementing more optimal designs for clin-
ical trials exploring combinational agents. First, there is no practical guid-
ance in terms of design selection to the investigators. Second, model-based
designs are not easily understood, and are relatively complicated in imple-
mentation as they usually require robust assumptions, parameter calibra-
tion, and ongoing statistical support to update toxicity probability estima-
tion. In addition, the start-up phases of various model-based designs could
be quite different from each other. Some designs’ start-up phases could even
largely influence their operating characteristics. Such complexity places an-
other layer of barrier to the broader usage of model-based designs. Motivated
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by these existing hurdles, our simulation study aims to provide practical rec-
ommendations to investigators in designing phase I clinical trials and explore
the impact of different design parameters in running model-based designs.

From our simulation results, we observed considerable performance fluc-
tuations for several model-based designs in different scenarios. Such unstable
performances may be due to assumptions of their specific parametric dose-
toxicity relationships. When the assumed relationship fits the true scenario,
those designs may result in favorable performances, and vice versa. Overall,
designs POCRM, gCRM, cBOIN, and cKeyboard perform better than the
others regarding our evaluation metrics and we recommend them in future
combinational dose-finding studies.

From practical perspective, we would like to promote broader usage of
cBOIN and cKeyboard for combination trials. The reasons are multifocal.
First, cBOIN and cKeyboard have guaranteed stable operating character-
istics in all scenarios. This feature is crucial in practice without knowing
the truth. Second, cBOIN and cKeyboard are convenient as they require
neither parameter calibration nor the agents’ prior information. Finally,
cBOIN and cKeyboard are much easier to implement as they are able to
provide a dose escalation/de-escalation table before trial conduct (similar to
the conventional 3+3 design). This feature is ideal for investigators who pre-
fer the 3+3 design over model-based designs due to simplicity, even though
3+3 designs have lower accuracy in MTD identification and more exposure
to patients to subtherapeutic doses (Simon et al., 1997; Reiner et al., 1999).
Our findings are quite consistent with a recently published study from the
ASA biopharmaceutical working group (Liu et al., 2022) whose aim is to
evaluate the accuracy and safety among various Phase I designs for combi-
national agents. Under the situation of finding one MTD, the ASA working
group paper also concludes that combinational BOIN is more attractive than
algorithm-based and model-based designs in planning phase I clinical trials
for combinational agents.

In addition to evaluating the nine designs, we explored the impact of
four design parameters that are commonly encountered in model-based de-
signs and do not have researchers’ recommendations: monotherapy toxicity
profiles, skeleton settings, dose escalation/de-escalation probability cutoffs,
and prior guesses of dose combinations’ toxicity probabilities. After re-
running designs using alternative parameter settings, we found that dose
escalation/de-escalation probability cutoffs have negligible impact on design
operating characteristics in all scenarios. But all other parameters showed
impacts on design performances. When monotherapy toxicity profiles are
available, their impact on design performances is not a big concern. How-
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ever, for dose combinations’ toxicity probabilities, it is often difficult to
provide accurate guesses. Similarly, it is almost impossible to calibrate the
skeleton setting through simulation in practice without knowing the true
toxicity profile of dose combinations.

Lastly, we repeated all simulations with a different maximum sample size
and observed that almost all findings are consistent.

Our simulation study also has limitations. Some designs, such as gCRM,
fix their cohort size to be one, making the performance comparison less fair
with other designs that have the flexibility of changing cohort sizes.

Our hope is that this paper will contribute to appropriate and respon-
sible study design utilization for phase I trials with combinational agents.
Therefore, heightened awareness of these new designs can only deliver im-
proved results.
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Table 1: Explored Design Parameters

Design Parameter
Main Setting Alternative Setting

5× 3 4× 4 5× 3 4× 4

I2D
pj and qk

pj: 0.1, 0.2, 0.25, 0.3, 0.35
qk: 0.1, 0.3, 0.35

pj: 0.1, 0.2, 0.25, 0.3
qk: 0.1, 0.2, 0.25, 0.3

pj : 0.05, 0.1, 0.2, 0.25, 0.3
qk: 0.1, 0.2, 0.25

pj : 0.05, 0.1, 0.2, 0.22
qk: 0.05, 0.1, 0.2, 0.22

Copula
DFCOMB

POCRM
Skeleton setting

half width: 0.05
MTD position: 11

half width: 0.05
MTD position: 12

half width: 0.03
MTD position: 13

half width: 0.03
MTD position: 15bCRM

DFCOMB Escalation/de-escalation
probability cutoff

0.85 and 0.45 0.6 and 0.6
bCRM

Hierarchy
π1k and πj1 truth of each scenario incorrect guess

gCRM
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Table 2: Simulation Settings

Agent B
Agent A

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Scenario 1 Scenario 2 Scenario 3
1 0.05 0.1 0.15 0.3 0.45 0.15 0.3 0.45 0.5 0.6 0.02 0.07 0.1 0.15 0.3
2 0.1 0.15 0.3 0.45 0.55 0.3 0.45 0.5 0.6 0.75 0.07 0.1 0.15 0.3 0.45
3 0.15 0.3 0.45 0.5 0.6 0.45 0.55 0.6 0.7 0.8 0.1 0.15 0.3 0.45 0.55

Scenario 4 Scenario 5 Scenario 6
1 0.3 0.45 0.6 0.7 0.8 0.01 0.02 0.08 0.1 0.11 0.05 0.08 0.1 0.13 0.15
2 0.45 0.55 0.65 0.75 0.85 0.03 0.05 0.1 0.13 0.15 0.09 0.12 0.15 0.3 0.45
3 0.5 0.6 0.7 0.8 0.9 0.07 0.09 0.12 0.15 0.3 0.15 0.3 0.45 0.5 0.6

Scenario 7 Scenario 8 Scenario 9
1 0.07 0.1 0.12 0.15 0.3 0.02 0.1 0.15 0.5 0.6 0.005 0.01 0.02 0.04 0.07
2 0.15 0.3 0.45 0.52 0.6 0.05 0.12 0.3 0.55 0.7 0.02 0.05 0.08 0.12 0.15
3 0.3 0.5 0.6 0.65 0.75 0.08 0.15 0.45 0.6 0.8 0.15 0.3 0.45 0.55 0.65

Scenario 10 Scenario 11 Scenario 12
1 0.05 0.1 0.15 0.3 0.45 0.08 0.14 0.19 0.3 0.05 0.1 0.2 0.3
2 0.45 0.5 0.6 0.65 0.7 0.1 0.2 0.3 0.55 0.08 0.3 0.45 0.5
3 0.7 0.75 0.8 0.85 0.9 0.15 0.3 0.52 0.6 0.15 0.35 0.5 0.55
4 0.3 0.5 0.6 0.7 0.3 0.5 0.6 0.7

Scenario 13 Scenario 14 Scenario 15
1 0.05 0.08 0.1 0.3 0.01 0.05 0.1 0.3 0.01 0.1 0.15 0.45
2 0.08 0.1 0.2 0.35 0.05 0.1 0.45 0.5 0.03 0.3 0.4 0.5
3 0.1 0.2 0.3 0.4 0.1 0.45 0.5 0.6 0.05 0.5 0.55 0.65
4 0.3 0.35 0.4 0.6 0.3 0.5 0.6 0.65 0.08 0.55 0.6 0.75
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Table 3: Performance of MTD Selection of Designs across Scenarios when
Maximum Sample Size Is 60

Simulation Scenario

Design 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Selection of correct MTD (SC)

I2D 0.43 0.71 0.41 0.9 0.86 0.34 0.59 0.11 0.15 0.43 0.47 0.47 0.23 0.25 0.24
I2D.pq 0.58 0.73 0.54 0.81 0.88 0.35 0.54 0.2 0.09 0.3 0.58 0.45 0.28 0.4 0.16
Copula 0.53 0.6 0.52 0.1 0.9 0.44 0.65 0.15 0.32 0.26 0.56 0.45 0.12 0.12 0.42
Copula.pq 0.59 0.6 0.58 0.06 0.91 0.37 0.55 0.4 0.12 0.01 0.53 0.26 0.4 0.05 0.13
Hierarchy 0.61 0.64 0.62 0.61 0.81 0.45 0.45 0.3 0.47 0.52 0.6 0.28 0.47 0.24 0.52
Hierarchy.pi 0.61 0.5 0.71 0.32 0.78 0.42 0.52 0.42 0.09 0.11 0.6 0.24 0.39 0.11 0.17
POCRM 0.75 0.71 0.69 0.78 0.54 0.59 0.56 0.59 0.52 0.58 0.74 0.52 0.46 0.57 0.48
POCRM.skeleton 0.74 0.67 0.71 0.8 0.73 0.57 0.51 0.6 0.49 0.53 0.77 0.5 0.44 0.54 0.35
DFCOMB 0.54 0.76 0.66 0.65 0.54 0.33 0.69 0.48 0.15 0.47 0.44 0.63 0.37 0.18 0.67
DFCOMB.pq 0.69 0.8 0.65 0.64 0.52 0.34 0.71 0.3 0.09 0.14 0.57 0.56 0.33 0.35 0.45
DFCOMB.cut 0.59 0.79 0.64 0.65 0.54 0.26 0.70 0.36 0.24 0.57 0.51 0.63 0.36 0.15 0.60
DFCOMB.sensitive 0.54 0.78 0.66 0.62 0.58 0.33 0.69 0.44 0.15 0.47 0.46 0.61 0.38 0.20 0.64
gCRM 0.69 0.65 0.71 0.42 0.81 0.59 0.67 0.34 0.47 0.55 0.64 0.47 0.49 0.17 0.48
gCRM.pi 0.58 0.64 0.61 0.47 0.81 0.5 0.74 0.26 0.48 0.51 0.61 0.57 0.34 0.22 0.23
cBOIN 0.7 0.69 0.7 0.62 0.72 0.58 0.74 0.38 0.4 0.45 0.75 0.57 0.38 0.4 0.37
cKeyboard 0.67 0.7 0.7 0.6 0.72 0.56 0.71 0.38 0.4 0.45 0.73 0.58 0.38 0.43 0.36
bCRM 0.72 0.75 0.66 0.76 0.52 0.51 0.63 0.51 0.37 0.5 0.62 0.54 0.39 0.35 0.47
bCRM.skeleton 0.75 0.72 0.73 0.84 0.69 0.59 0.64 0.51 0.36 0.36 0.69 0.52 0.47 0.33 0.45
bCRM.cut 0.75 0.67 0.71 0.71 0.59 0.56 0.63 0.54 0.40 0.52 0.71 0.53 0.40 0.37 0.43

I2D: design I2D with parameter pj and qk specified in “Main setting” of Table 1.
I2D.pq: design I2D with parameter pj and qk specified in “Alternative setting”.
Copula: design Copula with parameter pj and qk specified in “Main setting”.
Copula.pq: design Copula with parameter pj and qk specified in “Alternative setting”.
Hierarchy: design Hierarchy with π1k and πj1 specified in “Main setting”.
Hierarchy.pi: design Hierarchy with π1k and πj1 specified in “Alternative setting”.
POCRM: design POCRM with skeleton specified in “Main setting”.
POCRM.skeleton: design POCRM with skeleton specified in “Alternative setting”.
DFCOMB: design DFCOMB with pj and qk, and escalation/de-escalation probability cutoff specified in “Main setting”.
DFCOMB.pq: design DFCOMB with pj and qk specified in “Alternative setting”, and escalation/de-escalation prob-
ability cutoff specified in “Main setting”.
DFCOMB.cut: design DFCOMB with pj and qk specified in “Main setting”, and escalation/de-escalation probability
cutoff specified in “Alternative setting”.
DFCOMB.sensitive: design DFCOMB with pj and qk, and escalation/de-escalation probability cutoff specified in
“Main setting”, but target toxicity interval boundaries suggested by one of our reviewers.
gCRM: design gCRM with π1k and πj1 specified in “Main setting”.
gCRM.pi: design gCRM with π1k and πj1 specified in “Alternative setting”.
bCRM: design bCRM with skeleton, and escalation/de-escalation probability cutoff specified in “Main setting”.
bCRM.skeleton: design bCRM with skeleton specified in “Alternative setting”, and escalation/de-escalation probability
cutoff specified in “Main setting”.
bCRM.cut: design bCRM with skeleton specified in “Main setting”, and escalation/de-escalation probability cutoff
specified in “Alternative setting”.
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Table 4: Performance of MTD Selection of Designs across Scenarios when
Maximum Sample Size Is 60

Simulation Scenario

Design 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Selection of over-toxic MTD (SOT )

I2D 0.18 0.18 0.18 0.10 0 0.29 0.07 0.26 0.39 0.32 0.12 0.18 0.43 0.31 0.28
I2D.pq 0.19 0.19 0.18 0.19 0 0.25 0.17 0.30 0.42 0.41 0.19 0.32 0.43 0.35 0.45
Copula 0.32 0.19 0.36 0.09 0 0.43 0.22 0.58 0.55 0.63 0.19 0.43 0.66 0.69 0.50
Copula.pq 0.30 0.16 0.33 0.09 0 0.46 0.33 0.44 0.53 0.78 0.22 0.51 0.41 0.62 0.54
Hierarchy 0.22 0.18 0.21 0.16 0 0.30 0.31 0.30 0.17 0.20 0.13 0.37 0.39 0.41 0.22
Hierarchy.pi 0.22 0.23 0.14 0.24 0 0.29 0.24 0.27 0.40 0.39 0.13 0.43 0.44 0.54 0.47
POCRM 0.12 0.24 0.08 0.22 0 0.11 0.19 0.17 0.18 0.26 0.04 0.30 0.28 0.32 0.31
POCRM.skeleton 0.15 0.24 0.12 0.20 0 0.17 0.21 0.18 0.23 0.27 0.06 0.34 0.32 0.34 0.39
DFCOMB 0.18 0.08 0.17 0.06 0 0.27 0.09 0.27 0.57 0.32 0.08 0.19 0.25 0.61 0.21
DFCOMB.pq 0.10 0.06 0.14 0.08 0 0.31 0.13 0.37 0.62 0.52 0.08 0.30 0.28 0.51 0.45
DFCOMB.cut 0.08 0.07 0.11 0.08 0 0.07 0.05 0.19 0.37 0.20 0.02 0.12 0.16 0.53 0.23
DFCOMB.sensitive 0.25 0.10 0.21 0.09 0 0.36 0.13 0.36 0.65 0.37 0.12 0.25 0.32 0.66 0.27
gCRM 0.15 0.13 0.13 0.10 0 0.18 0.10 0.31 0.11 0.33 0.06 0.32 0.31 0.52 0.29
gCRM.pi 0.18 0.14 0.17 0.10 0 0.19 0.08 0.29 0.13 0.26 0.07 0.22 0.38 0.45 0.44
cBOIN 0.16 0.21 0.15 0.17 0 0.19 0.13 0.21 0.13 0.31 0.08 0.29 0.43 0.34 0.29
cKeyboard 0.17 0.21 0.14 0.17 0 0.20 0.14 0.21 0.12 0.31 0.09 0.27 0.43 0.34 0.30
bCRM 0.08 0.22 0.05 0.24 0 0.11 0.15 0.20 0.20 0.38 0.03 0.27 0.19 0.53 0.42
bCRM.skeleton 0.12 0.22 0.08 0.16 0 0.17 0.21 0.29 0.43 0.50 0.05 0.33 0.21 0.58 0.46
bCRM.cut 0.12 0.30 0.07 0.29 0 0.12 0.19 0.19 0.17 0.36 0.04 0.32 0.24 0.53 0.44

I2D: design I2D with parameter pj and qk specified in “Main setting” of Table 1.
I2D.pq: design I2D with parameter pj and qk specified in “Alternative setting”.
Copula: design Copula with parameter pj and qk specified in “Main setting”.
Copula.pq: design Copula with parameter pj and qk specified in “Alternative setting”.
Hierarchy: design Hierarchy with π1k and πj1 specified in “Main setting”.
Hierarchy.pi: design Hierarchy with π1k and πj1 specified in “Alternative setting”.
POCRM: design POCRM with skeleton specified in “Main setting”.
POCRM.skeleton: design POCRM with skeleton specified in “Alternative setting”.
DFCOMB: design DFCOMB with pj and qk, and escalation/de-escalation probability cutoff specified in “Main
setting”.
DFCOMB.pq: design DFCOMB with pj and qk specified in “Alternative setting”, and escalation/de-escalation
probability cutoff specified in “Main setting”.
DFCOMB.cut: design DFCOMB with pj and qk specified in “Main setting”, and escalation/de-escalation probability
cutoff specified in “Alternative setting”.
DFCOMB.sensitive: design DFCOMB with pj and qk, and escalation/de-escalation probability cutoff specified in
“Main setting”, but target toxicity interval boundaries suggested by one of our reviewers.
gCRM: design gCRM with π1k and πj1 specified in “Main setting”.
gCRM.pi: design gCRM with π1k and πj1 specified in “Alternative setting”.
bCRM: design bCRM with skeleton, and escalation/de-escalation probability cutoff specified in “Main setting”.
bCRM.skeleton: design bCRM with skeleton specified in “Alternative setting”, and escalation/de-escalation prob-
ability cutoff specified in “Main setting”.
bCRM.cut: design bCRM with skeleton specified in “Main setting”, and escalation/de-escalation probability cutoff
specified in “Alternative setting”.
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Table 5: Performance of Patient Assignment of Designs across Scenarios
when Maximum Sample Size Is 60

Simulation Scenario

Design 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Patient receiving correct MTD during trials (AC)

I2D 0.38 0.57 0.45 0.71 0.58 0.23 0.50 0.07 0.05 0.33 0.44 0.39 0.25 0.27 0.18
I2D.pq 0.45 0.56 0.44 0.55 0.61 0.26 0.42 0.15 0.03 0.28 0.50 0.34 0.27 0.28 0.11
Copula 0.33 0.57 0.31 0.72 0.46 0.29 0.41 0.12 0.31 0.09 0.32 0.33 0.08 0.07 0.34
Copula.pq 0.41 0.55 0.37 0.63 0.49 0.27 0.43 0.26 0.18 0.00 0.40 0.23 0.27 0.07 0.12
Hierarchy 0.42 0.50 0.43 0.68 0.68 0.31 0.35 0.22 0.30 0.35 0.43 0.27 0.38 0.15 0.39
Hierarchy.pi 0.42 0.40 0.52 0.49 0.65 0.30 0.41 0.26 0.07 0.04 0.43 0.23 0.27 0.10 0.16
POCRM 0.53 0.53 0.47 0.64 0.33 0.37 0.43 0.35 0.30 0.36 0.57 0.39 0.33 0.36 0.33
POCRM.skeleton 0.52 0.48 0.48 0.68 0.47 0.36 0.38 0.35 0.29 0.33 0.56 0.38 0.34 0.35 0.20
DFCOMB 0.23 0.45 0.37 0.91 0.39 0.16 0.33 0.23 0.13 0.16 0.20 0.28 0.12 0.11 0.35
DFCOMB.pq 0.34 0.48 0.37 0.91 0.37 0.17 0.33 0.20 0.06 0.04 0.28 0.29 0.19 0.23 0.28
DFCOMB.cut 0.34 0.46 0.39 0.77 0.51 0.23 0.41 0.17 0.17 0.28 0.39 0.33 0.21 0.11 0.26
DFCOMB.sensitive 0.23 0.45 0.37 0.91 0.39 0.16 0.33 0.23 0.13 0.16 0.20 0.28 0.12 0.11 0.35
gCRM.b 0.46 0.45 0.49 0.75 0.69 0.36 0.46 0.27 0.29 0.36 0.44 0.34 0.34 0.14 0.33
gCRM.pi 0.37 0.44 0.41 0.75 0.68 0.32 0.54 0.16 0.25 0.31 0.43 0.40 0.25 0.18 0.18
cBOIN 0.43 0.49 0.40 0.72 0.43 0.34 0.46 0.21 0.26 0.20 0.44 0.37 0.23 0.21 0.25
cKeyboard 0.42 0.49 0.40 0.72 0.43 0.33 0.44 0.21 0.25 0.20 0.43 0.37 0.23 0.22 0.24
bCRM 0.43 0.52 0.37 0.70 0.24 0.26 0.35 0.24 0.18 0.24 0.36 0.37 0.26 0.21 0.30
bCRM.skeleton 0.46 0.49 0.44 0.77 0.34 0.28 0.37 0.25 0.16 0.19 0.42 0.37 0.31 0.20 0.28
bCRM.cut 0.47 0.44 0.47 0.52 0.36 0.30 0.35 0.26 0.15 0.25 0.47 0.35 0.29 0.21 0.24

I2D: design I2D with parameter pj and qk specified in “Main setting” of Table 1.
I2D.pq: design I2D with parameter pj and qk specified in “Alternative setting”.
Copula: design Copula with parameter pj and qk specified in “Main setting”.
Copula.pq: design Copula with parameter pj and qk specified in “Alternative setting”.
Hierarchy: design Hierarchy with π1k and πj1 specified in “Main setting”.
Hierarchy.pi: design Hierarchy with π1k and πj1 specified in “Alternative setting”.
POCRM: design POCRM with skeleton specified in “Main setting”.
POCRM.skeleton: design POCRM with skeleton specified in “Alternative setting”.
DFCOMB: design DFCOMB with pj and qk, and escalation/de-escalation probability cutoff specified in “Main setting”.
DFCOMB.pq: design DFCOMB with pj and qk specified in “Alternative setting”, and escalation/de-escalation prob-
ability cutoff specified in “Main setting”.
DFCOMB.cut: design DFCOMB with pj and qk specified in “Main setting”, and escalation/de-escalation probability
cutoff specified in “Alternative setting”.
DFCOMB.sensitive: design DFCOMB with pj and qk, and escalation/de-escalation probability cutoff specified in
“Main setting”, but target toxicity interval boundaries suggested by one of our reviewers.
gCRM: design gCRM with π1k and πj1 specified in “Main setting”.
gCRM.pi: design gCRM with π1k and πj1 specified in “Alternative setting”.
bCRM: design bCRM with skeleton, and escalation/de-escalation probability cutoff specified in “Main setting”.
bCRM.skeleton: design bCRM with skeleton specified in “Alternative setting”, and escalation/de-escalation probability
cutoff specified in “Main setting”.
bCRM.cut: design bCRM with skeleton specified in “Main setting”, and escalation/de-escalation probability cutoff
specified in “Alternative setting”.
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Table 6: Performance of Patient Assignment of Designs across Scenarios
when Maximum Sample Size Is 60

Simulation Scenario

Design 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Patient receiving over-toxic doses during trials (AOT )

I2D 0.29 0.27 0.19 0.29 0 0.26 0.16 0.37 0.35 0.31 0.15 0.28 0.36 0.38 0.42
I2D.pq 0.26 0.35 0.22 0.45 0 0.30 0.25 0.33 0.36 0.34 0.20 0.38 0.40 0.44 0.55
Copula 0.17 0.13 0.19 0.28 0 0.18 0.13 0.31 0.23 0.41 0.13 0.28 0.39 0.44 0.30
Copula.pq 0.17 0.20 0.16 0.37 0 0.18 0.17 0.26 0.23 0.45 0.14 0.36 0.27 0.44 0.41
Hierarchy 0.35 0.35 0.31 0.32 0 0.36 0.36 0.43 0.30 0.44 0.24 0.44 0.44 0.60 0.38
Hierarchy.pi 0.34 0.46 0.23 0.51 0 0.33 0.33 0.38 0.38 0.52 0.24 0.48 0.47 0.58 0.51
POCRM 0.16 0.32 0.11 0.36 0 0.15 0.24 0.24 0.21 0.38 0.10 0.33 0.25 0.36 0.34
POCRM.skeleton 0.20 0.37 0.16 0.29 0 0.21 0.27 0.29 0.26 0.40 0.12 0.34 0.29 0.38 0.45
DFCOMB 0.11 0.05 0.14 0.09 0 0.14 0.08 0.23 0.25 0.23 0.06 0.15 0.21 0.45 0.26
DFCOMB.pq 0.09 0.07 0.14 0.09 0 0.17 0.13 0.29 0.28 0.33 0.06 0.18 0.19 0.36 0.30
DFCOMB.cut 0.21 0.17 0.24 0.23 0 0.22 0.19 0.35 0.42 0.30 0.10 0.24 0.28 0.55 0.44
DFCOMB.sensitive 0.11 0.05 0.14 0.09 0 0.14 0.08 0.23 0.25 0.23 0.06 0.15 0.21 0.45 0.26
gCRM.b 0.27 0.27 0.24 0.25 0 0.29 0.21 0.34 0.23 0.42 0.16 0.37 0.38 0.54 0.35
gCRM.pi 0.31 0.28 0.27 0.25 0 0.28 0.17 0.36 0.23 0.37 0.17 0.31 0.41 0.47 0.46
cBOIN 0.20 0.27 0.17 0.28 0 0.22 0.20 0.27 0.21 0.38 0.15 0.28 0.33 0.37 0.32
cKeyboard 0.20 0.27 0.17 0.28 0 0.22 0.21 0.27 0.20 0.38 0.15 0.28 0.33 0.37 0.32
bCRM 0.11 0.27 0.06 0.30 0 0.11 0.17 0.23 0.16 0.33 0.07 0.21 0.15 0.40 0.33
bCRM.skeleton 0.15 0.26 0.08 0.23 0 0.14 0.19 0.27 0.22 0.34 0.08 0.24 0.18 0.43 0.36
bCRM.cut 0.23 0.45 0.12 0.48 0 0.19 0.30 0.34 0.28 0.45 0.13 0.35 0.23 0.50 0.47

I2D: design I2D with parameter pj and qk specified in “Main setting” of Table 1.
I2D.pq: design I2D with parameter pj and qk specified in “Alternative setting”.
Copula: design Copula with parameter pj and qk specified in “Main setting”.
Copula.pq: design Copula with parameter pj and qk specified in “Alternative setting”.
Hierarchy: design Hierarchy with π1k and πj1 specified in “Main setting”.
Hierarchy.pi: design Hierarchy with π1k and πj1 specified in “Alternative setting”.
POCRM: design POCRM with skeleton specified in “Main setting”.
POCRM.skeleton: design POCRM with skeleton specified in “Alternative setting”.
DFCOMB: design DFCOMB with pj and qk, and escalation/de-escalation probability cutoff specified in “Main
setting”.
DFCOMB.pq: design DFCOMB with pj and qk specified in “Alternative setting”, and escalation/de-escalation
probability cutoff specified in “Main setting”.
DFCOMB.cut: design DFCOMB with pj and qk specified in “Main setting”, and escalation/de-escalation probability
cutoff specified in “Alternative setting”.
DFCOMB.sensitive: design DFCOMB with pj and qk, and escalation/de-escalation probability cutoff specified in
“Main setting”, but target toxicity interval boundaries suggested by one of our reviewers.
gCRM: design gCRM with π1k and πj1 specified in “Main setting”.
gCRM.pi: design gCRM with π1k and πj1 specified in “Alternative setting”.
bCRM: design bCRM with skeleton, and escalation/de-escalation probability cutoff specified in “Main setting”.
bCRM.skeleton: design bCRM with skeleton specified in “Alternative setting”, and escalation/de-escalation prob-
ability cutoff specified in “Main setting”.
bCRM.cut: design bCRM with skeleton specified in “Main setting”, and escalation/de-escalation probability cutoff
specified in “Alternative setting”.
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