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ABSTRACT 

 

The PM2.5 (particulate matter with a diameter ≤ 2.5 µm), an essential component of air pollution, is closely linked to 

adverse effects on human health, including premature mortality following prolonged exposure. However, limited surface 

measurement and the lack of monitoring with adequate spatial resolution hamper studies related to air pollution and its 

impact on various societally relevant issues. More recently, the National Aeronautics and Space Administration (NASA)’s 
Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) has begun estimating the global 

distribution of PM2.5 mass concentrations at high spatio-temporal resolutions, but the limitations of the applied estimation 

methodologies must be carefully evaluated in order to understand their strengths and weaknesses. This study assesses 

MERRA-2’s PM2.5 results by comparing them with ground-based measurements conducted at 20 stations across the Indian 

region between 2015 and early 2018. Our analysis shows that MERRA-2 generally underestimates the PM2.5 in terms of 

both the mass concentration and the number of exceedance days. While the Central Pollution Control Board (CPCB) 

measured exceedances of the national ambient air quality standards (NAAQS) on 34% of the days, MERRA-2’s prediction 
was only 11%, and its estimate of the annual average PM2.5 concentration across all of the sites was also negatively biased, 

by ~27 µg m–3. Correlations of 0.96 and 0.6 were found between the estimates and the measurements for the monthly and 

the daily averaged concentrations, respectively; these numbers can be dramatically improved by applying a simple bias 

correction. Overall, our evaluation reveals that MERRA-2’s raw estimates of PM2.5 on a monthly time scale or longer are 

helpful in long-term air quality studies. 
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INTRODUCTION 

 

Air quality has emerged as one of the most critical issues 

in the recent times due to increase in vehicular population 

(Shrivastava et al., 2013), industrialization (Begum and 

Harikrishna, 2010), rising energy demand and emissions 

from coal power plants (Guttikunda and Jawahar, 2014), 

residential cooking (Massey et al., 2009, 2012) and dust 

transport from semi-arid and arid regions (Prospero et al., 

2002; Dey et al., 2004; Huang et al., 2018). On a global scale, 

4–8% of premature deaths are attributed to PM2.5 (Smith and 

Jantunen, 2002). PM2.5 can also cause a wide range of 

diseases like asthmatic attacks, lung cancer, which may lead 

to a significant reduction of human life (Kampa and Castanas, 

2008; Kim et al., 2015). Particulate pollution also poses a 

challenge to the satellite retrieval of surface properties such 

as greenness volume, skin temperature, the urban fraction 

(Frick and Tervooren, 2019; Gogoi et al., 2019). India’s Air  
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(Prevention and Control of Pollution) Act1981 imposes 

stringent air quality measures based on national ambient air 

quality standards (NAAQS). However, most of the Indian 

region, especially the Indo-Gangetic Plain (IGP), faces heavy 

air pollutions throughout the year. Sometimes pollutant 

levels reach several times larger than the national standards 

(CPCB, 2012). Of the several air pollutants, PM2.5 is a 

significant component, especially over the Indian region 

leading to significant deterioration of air quality. Studies have 

shown that this particulate pollution is linked to increased 

mortality over the Indian region (Apte et al., 2015). In the 

central part of India, the average value for PM2.5 remains as 

high as ~150 µg m–3 (Massey et al., 2009). In Delhi, PM 

values exceed NAAQS 85% of the time (Sahu and Kota, 

2017) and rank among the cities with the worst air quality in 

the world (Gupta et al., 2006). In India, life lost due to PM2.5 

is on an average of about 3.4 ± 1.1 years, where Delhi is 

showing the most significant decreases in the life expectancy 

of 6.3 ± 2.0 years. In 2011, about 570,000 premature 

mortalities were attributed to PM2.5 pollution (Ghude et al., 

2016; Balakrishnan et al., 2019). 

Despite its significant role in the overall air quality and 

health of the population, there are not many long-term 
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surface-based measurements available in the public domain 

about PM2.5 over the Indian region. Studies have explored 

the possibility of using satellite-based aerosol optical depth 

(AOD) to estimate ground-level PM2.5 to explore its variability 

at the high temporal frequency and spatial resolution. 

However, uncertainties related to aerosol retrieval errors 

over the land, vertical distribution of aerosols, aerosol growth 

due to water uptake have induced limitations in these PM2.5 

retrieval efforts (Sorek-Hamer et al., 2013). On the other 

hand, reanalysis datasets have generated PM2.5 fields at high 

spatio-temporal resolutions (e.g., MACC and MERRA). 

Since these are estimates derived from the simulation of 

PM2.5 using a complete aerosol life cycle with state-of-the-

art models, they are less prone to errors that are induced in 

the case of satellite-based retrievals. However, the accuracy 

of the models or chemical reanalysis depend primarily on 

their ability to simulate the meteorology, aerosols and their 

interaction (Zhang et al., 2016). Besides, processes that are 

less constrained in models such as rainfall could alter both 

the column (Pandey et al., 2017; Moteki et al., 2019; Yu et 

al., 2019) and ground-level aerosol mass concentration which 

partly constitutes the PM2.5 (Wu et al., 2018). In this regard, 

it may be mentioned that an earlier version of MERRA, 

MERRA-1, has been evaluated over the USA, Europe, Taiwan, 

Israel, and India (Buchard et al., 2016; Provençal et al., 2017a, 

b; Mahesh et al., 2019). However, MERRA-2, an advanced 

version of MERRA, has not been evaluated, especially over 

the highly dynamic Indian region. One of the primary reasons 

for the absence of such careful evaluation over the Indian 

region is due to lack of quality-assured/-controlled PM2.5 

surface measurements available in the public domain. With 

the recent initiative of the Central Pollution Control Board 

(CPCB) to open up the data of PM2.5 for various Indian cities, 

this has become a reality that allows us to evaluate MERRA-

2-estimated PM2.5 over the Indian region. In this paper, an 

attempt is made to evaluate PM2.5 from MERRA-2 reanalysis 

over the Indian region using surface-based measurements. 

Furthermore, MERRA-2 PM2.5 is used to evaluate the 

seasonality in terms of the air quality index (AQI), exceedance 

days, and spatial pattern. After that, a simple bias correction 

is applied to evaluate the usefulness of AQI generated using 

MERRA-2 reanalysis in comparison to the observations. 

 

DATA AND METHOD 

 

Data 

The CPCB monitors criteria air pollutants over various 

cities of India. PM2.5 mass concentration is measured by 

using the tapered element oscillating microbalance (TEOM), 

which uses a small vibrating glass tube whose frequency 

changes with the mass of PM2.5 deposited on it. Daily mean 

PM2.5 mass concentration from 20 cities was utilized for the 

evaluation. The stations/cities were selected under the criteria 

that at least one year of continuous data is available. The 

locations of the different stations used in this analysis are 

shown in Fig. 1. 

The NASA’s Global Modeling and Assimilation Office 
(GMAO) developed the Modern-Era Retrospective Analysis 

 

 

Fig. 1. The location of CPCB stations used in this study. The colors represent the annual mean PM2.5 mass concentration in 

µg m–3. 
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for Research and Applications, Version 2 (MERRA-2) 

which is an update of MERRA-1, Goddard Earth Observing 

System (GEOS) model. MERRA-1 was available between 

1979 and February 2016, but after the discontinuation of 

MERRA-1, the GMAO started MERRA-2 (https://gmao.gs 

fc.nasa.gov/reanalysis/MERRA-2) which is an advanced 

version and a replacement of its previous reanalysis. Both 

the reanalyses have the same resolution and products 

(Gelaro et al., 2017).  

The aerosol optical depth at 550 nm from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) on board 

NASA’s Aqua and Terra satellite is the primary input to the 
MERRA-2 assimilation (Randles et al., 2017) for aerosol 

products. The Goddard Global Ozone Chemistry Aerosol 

Radiation and Transport (GOCART) model is coupled with 

GEOS atmospheric model to simulate source, transport, sink, 

and concentration of five dominant aerosol species, including 

dust (DU), sea salt (SS), black carbon (BC), sulfate (SO4) 

and organic carbon (OC). 550 nm AOD is a column-species-

integrated optical quantity, which is the summation of the 

product of extinction coefficient of each species derived from 

optical properties of aerosols and clouds datasets and mass 

concentrations. MERRA-2 aerosol data assimilation is done 

globally with a resolution of 0.5° × 0.625° and 73 vertical 

levels from 1980 (Chin et al., 2002; Colarco et al., 2010; 

Randles et al., 2017).  

 

Reconstruction of PM2.5 Mass Concentration 

The major aerosol species considered in MERRA-2 

reanalysis are SO4, BC, DU2.5, SS2.5, and OC. It is possible 

to reconstruct the total mass of PM2.5 using these subspecies. 

The general form of the equation to arrive at the total PM 

mass for any size is given as follows: 

 

Total PM = Inorganic ions + Organic matter + Black carbon 

+ Dust + Sea salt 

 

The mass of organic matter is calculated with the help of 

organic carbon by multiplying it with the coefficient derived 

from various experiments, which are 1.6 ± 0.2 for urban 

particles, 2.1 ± 0.2 for aged (non-urban) particles. The 

coefficient is sometimes as high as 2.6 for biomass burning 

particles (Turpin and Lim, 2001; Chow et al., 2015). SO4, 

NO3, and NH4 are the major parts of inorganic ions. NO3 and 

NH4 were sometimes omitted in case if these measurements 

were lacking or unreliable. In such cases, SO4 is multiplied 

by 1.375 as (NH4)2SO4 being composed of 73% of SO4 by 

mass (Malm et al., 1994; Chow et al., 2015). To account for 

dust and sea salt, MERRA-2 differentiates size for these two 

species within 2.5 µm diameter range. 

For this study, the following equation has been used to 

reconstruct the PM2.5 (Hand et al., 2011) mass concentration: 

 

[PM2.5] = 1.375 × [SO4] + 1.8 × [OC] + [BC] + [DU2.5] + 

[SS2.5] (1) 

 

The mass of PM2.5 is reconstructed using the above 

equation and compared with the mass of PM2.5 given by the 

ground-based monitoring of CPCB over 20 cities for a time 

period of January 2015–March 2018 (Fig. 1). It may be 

mentioned that this expression is widely used for PM2.5 

estimates over Asia and Europe (Provençal et al., 2017a, b). 
 

Statistical Metrics Used for Evaluation 

Various statistical evaluators were applied on the daily, 

weekly, and monthly mean PM2.5 concentrations for 

evaluating MERRA-2 data. These are correlation coefficient 

(CC), root mean square error (RMSE), mean absolute error 

(MAE), absolute error in percentage (abs. error), mean bias 

( s oB C C  ), and mean fraction ( /s oF C C ), where Cs 

and Co indicate the simulated and observed concentration, 

respectively. The values for statistical metrics like RMSE, 

MAE, absolute error and bias should be as low as possible, 

whereas the value of mean fraction should be nearer to one 

for accurate PM2.5 concentrations. To relate simulated data 

directly with the observed data, Chang and Hanna (2004) 

proposed one index Factor of Two (FAC2) to evaluate air 

quality models, the proportion of data which falls under the 

range of 0.5 ≤ Co/Cs ≤ 2.0 should be equal to or more than 

0.5 to be considered a good model performance. 
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RESULTS AND DISCUSSIONS 

 

Comparison of MERRA-2 PM2.5 Mass Concentration to 

CPCB 

Statistical evaluation of reconstructed PM2.5 mass 

concentration was performed against ground-based monitoring 

stations. A set of performance statistics was calculated for daily, 

weekly, and monthly mean PM2.5 mass concentration (Table 1). 

We chose different temporal scales to understand the 

effect of averaging on the evaluation statistics. The obtained 

statistics on the bias, RMSE (Eq. (2)), and MAE (Eq. (4)) 

remain almost similar except the correlation coefficient, 

which improves with longer averaging periods. For example, 

the correlation of PM mass concentrations between CPCB 

stations and MERRA-2 for daily means was ~0.6, whereas 

it was ~0.96 for monthly means. The observed fluctuations 

in the values are decreased in the case of monthly (FAC2daily 

< FAC2monthly) and thereby an overall increase in correlation 

and a slight decrease in mean fraction. However, the overall 

bias remains unchanged. The absolute error reduces by ~5% 

as the averaging period is increased from daily to monthly 

scales. In the analysis performed by Mahesh et al. (2019) on 

MERRAero (MERRA-1) over five cities of India, the values 

of correlation coefficient and FAC2 are less compared to the 
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Table 1. Performance statistics of MERRA-2 PM2.5 concentration with regard to CPCB PM2.5. 

STATISTICAL METRICS DAILY WEEKLY WEEKLY MOVING AVERAGE MONTHLY 

MEAN BIAS –27.27 –28.46 –27.81 –27.17 

MEAN FRACTION 0.66 0.64 0.64 0.65 

CORRELATION COEFFICIENT 0.6 0.7 0.73 0.96 

FAC2 0.79 0.79 0.90 0.91 

RMSE 36.9 36.7 36.1 34.6 

MAE 28.6 29.3 28.7 27.7 

ABSOLUTE ERROR (%) 38.9 38.3 38.5 33.2 

 

values shown by this study implying that MERRA-2 

reanalysis may have improved the temporal variability. 

The average observed concentration of PM2.5 (over 20 cities) 

is ~80 µg m–3 due to the clustering of most observational 

sites in the highly polluted IGP region, interestingly double 

that of the NAAQS limit. The average simulated annual 

mass concentration by MERRA-2 is ~35 µg m–3 indicating 

a considerable underestimation pointing to PM2.5 mass well 

below the annual standard. The mean bias is –27.27 µg m–3 

and values are underestimated by 34%. Fig. 2 shows the scatter 

between the MERRA-2 and CPCB for monthly PM2.5 mass 

concentrations. The scatter becomes wider for higher loading 

conditions. It is also observed that for extremely low (high) 

loading conditions, MERRA-2 overestimates (underestimates) 

the mass concentrations. 

These are based on surface PM2.5 mass concentration 

measured by CPCB at 20 different stations (locations are 

shown in Fig. 1). It is found that there is a clear seasonality 

in the particulate matter mass concentration with the highest 

values (> 100 µg m–3) observed during winter and lowest 

(~30 µg m–3) during the monsoon period. The grey shaded 

region represents the mean inter-station variability, which is 

also influenced by the large spatial variability in mass 

concentrations. MERRA-2 simulations systematically show 

lower concentrations on average in comparison to the 

observations. The blue shaded area represents the variability 

in PM2.5 mass concentrations simulated by MERRA-2. 

There is a low bias both in terms of the mean as well as the 

variability. The monthly mean values from observations 

show PM2.5 mass concentrations mostly above ~60 µg m–3, 

indicating high loading conditions beyond the annual 

NAAQS standard for PM2.5. It may be noted that the CPCB 

and MERRA-2 exceed NAAQS daily standard values ~37.5% 

and ~11.6% times on annual scale, respectively. Except for 

summer, CPCB monthly averaged value always crossed 

60 µg m–3 threshold, whereas MERRA-2 monthly averaged 

value always remained below 60 µg m–3 value and it almost 

matches with CPCB in the summer season. However, as 

mentioned earlier, MERRA-2 is unable to capture these high 

loading conditions during most of the months. It may be 

mentioned that though simulated PM2.5 mass and variability 

were biased low, the temporal variability (involving multiple 

years of monthly means) is well captured by MERRA-2 as 

indicated by the high correlation (~0.96) on monthly time 

scales. On an annual basis, it is found that MERRA-2 

concentrations were biased low by ~30%. 

 

The Spatial Pattern of PM2.5 Using MERRA-2 

Fig. 3 shows the seasonal loading of total PM2.5 mass using 

MERRA-2. A clear seasonality was observed in the spatial 

pattern of PM2.5 mass concentration over India. Throughout 

the year, particulate loading is higher over Indo-Gangetic 

Plain compared to the rest of the country. The pre-monsoon 

(post-monsoon) seasons are observed to have the lowest 

(highest) PM2.5 concentration. The monsoon and winter season 

have a moderate level of PM2.5 mass loading. The highest PM2.5 

concentration during the post-monsoon season is attributed to 

the stubble burning over the western IGP (Mittal et al., 2009; 

 

 

Fig. 2. Comparison of PM2.5 concentrations (µg m–3) from CPCB and MERRA-2: (a) scatter plot of monthly mean values 

and seasonality of the PM2.5 concentration, (b) uncorrected, (c) bias-corrected MERRA-2 data for CPCB. Grey (blue) shaded 

region shows the inter-station variability in the CPCB (MERRA-2) data.  
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Fig. 3. The spatial pattern of PM2.5 concentration (µg m–3) during (a) winter, (b) pre-monsoon, (c) monsoon, and (d) post-

monsoon seasons (overlaid circles shows the measurements from the CPCB).  

 

Mukherjee et al., 2018; Jethva et al., 2019), which may 

spread all over India (Cusworth et al., 2018; Sarkar et al., 

2018). In addition, over the eastern and peninsular India, 

coal burning in thermal power plants and industry are also 

essential contributors (Venkataraman et al., 2018). The 

southern part was observed to be relatively clean compared 

to northern India. An apparent mismatch between the 

observed (from CPCB) and simulated (from MERRA-2) 

concentration is evident in almost all the seasons (Fig. 3). 

This mismatch is more prominent during the pre-monsoon 

season and especially over IGP. The observed and simulated 

PM2.5 concentrations in southern India were relatively in 

agreement. This agreement is even more during monsoon 

season when the observed concentration is 20–30 µg m–3. It 

may be noted that the post-monsoon season, when almost all 

of the Indian region has the highest fine particulate loading, 

MERRA-2 can capture the spatial pattern. The observed 

mismatch in the pre-monsoon season may be attributed to 

MERRA-2’s inability to simulate the size-resolved dust 

concentration, as the pre-monsoon season over IGP is 

characterized by high dust loading (Tiwari et al., 2015; Pandey 

et al., 2016, 2017). A past study by Kramer et al. (2018) 

reported an underestimation of dust particle concentration of 

size less than 2 µm in MERRA-2 reanalysis. Having evaluated 

MERRA-2’s ability to simulate the PM2.5 concentration, its 

applicability for air quality purposes was tested.  

 

Air Quality Index Using MERRA-2 
The national air quality index (AQI) of India is defined 

based on 8 major pollutants, including PM2.5, where AQI for 

PM2.5 is divided into 6 major classes, Good (0–30 µg m–3), 

Satisfactory (31–60 µg m–3), Moderate (61–90 µg m–3), 

Poor (91–120 µg m–3), Very poor (121–250 µg m–3) and 

Severe (250+ µg m–3) (CPCB, 2015). The PM2.5 data from 

MERRA-2 was categorized into these classes as shown along 

with the observed values (Fig. 4), color-coded according to 

CPCB for the city of Delhi.  

In order to study the ability of MERRA-2 to quantify AQI, 

bias correction was performed by adding monthly bias value 

to the respective month. From Fig. 5, it is found that 

MERRA-2 PM2.5 estimates are improved and is capturing 

spatial pattern as well as seasonal variability of AQI. Earlier, 

MERRA-2 was unable to capture AQI classes beyond 

Moderate. However, after the bias correction, MERRA-2 

can capture Very Poor AQI near Indo-Gangetic Plain. It can 

be observed that MERRA-2 is not capturing a higher AQI 

condition, which mainly occurs in the winter season. 

However, after applying the bias correction, MERRA-2 is 

showing a good match during the winter season (though 

biased low in terms of mass concentrations). Earlier 

MERRA-2 was showing 53% satisfactory AQI which is a 

high underestimation of actual AQI where only 22% is a 

satisfactory condition were present. After the bias correction, 

MERRA-2 shows ~24% satisfactory condition, which is 

much closer to the 22% reported by CPCB.  

The same bias correction is applied over all the 20 cities, 

as shown in Fig. 5. It can be observed that cities over IGP 

are showing the least number of good air quality days. Cities 

in the southern part of India and Maharashtra shows the 

highest percentage (~30+%) of good air quality days. PM2.5 

from MERRA-2 is negatively biased as compared to CPCB 

observations, where most of the data lie within satisfactory 

AQI and is unable to capture Moderate and Poor AQI 

classes. Whereas north Indian cities like Gaya, Kanpur, Patna, 
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Fig. 4. Daily PM2.5 concentration (µg m–3) over Delhi using (a) CPCB, (b) MERRA-2, and (c) bias-corrected MERRA-2. 

The pie chart shows the percentage of the occurrence of different air quality days.  

 

and Varanasi, where the percentage of good air quality days 

were zero, MERRA-2 shows the significant occurrence of 

good air quality days (higher than 20%). This indicates 

MERRA-2’s inability to capture highly polluted episodes. 
The application of bias correction results in a reasonable 

representation of Poor AQI conditions and also improved 

the spatial pattern of AQI (Fig. 6) throughout the country. 

The percentage of days in AQI by CPCB over Delhi as 

shown in this study are in concurrence with the past studies 

(Sahu and Kota, 2017). 

Fig. 6 shows the improvement in the spatial pattern in 

MERRA-2 due to bias correction. MERRA-2 had failed to 

capture moderate and very poor air quality conditions over 

IGP in the winter and post-monsoon season. However, the 

bias correction provides some ability to capture spatial 

patterns. MERRA-2 well captures the AQI in southern India 

during pre-monsoon and monsoon seasons without any bias, 

but over the cities like Kanpur, Varanasi, and Gaya, it fails 

even during the monsoon season when the AQI is the least. 

The use of bias correction not only improves the ability in 

the least polluted seasons, but it also captures average AQI 

over the extremely polluted cities in the high AQI seasons. 

The study by Rajput et al. (2018) suggests that the AQI over 

Lucknow ranges in Very Poor especially in post-monsoon 

and winter seasons, which is well matching with the CPCB 

and MERRA-2 with bias correction. 

Fig. 7 shows the exceedance of different air quality 

classes over the IGP on a seasonal basis with and without 

bias correction. The CPCB observations show 0% and < 5% 

of good days over IGP and whole India in the winter season 

respectively, but in the case of MERRA-2 shows more than 

10% and 20% of good days as already discussed earlier. 

MERRA-2 bias correction leads to 0% good days in IGP and 

India during winter. Similarly, more than 50% and 20% of  
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Fig. 5. Percentage of occurrence of different air quality days annually over major Indian cities. Cities are arranged from left 

to right in an increasing percentage of good air quality days in CPCB observations. 

 

the days can be observed in Very Poor AQI over IGP and 

India, respectively which is absent in the case of MERRA-2 

but bias correction helps it to capture the same results over 

both locations. 

It may be mentioned that the bias correction implemented 

in this work is based on biases observed based on monthly 

observations and simulations, which were then applied to a 

daily scale. Though, it must be acknowledged that this is quite 

a simple method to carry out bias correction, nevertheless 

has helped to improve MERRA-2’s ability to both provide 

spatial and temporal patterns of air quality at daily scales. 

This implies that more advanced bias correction methods 

will vastly improve the usability of MERRA-2 chemical 

reanalysis datasets for impact studies over a complex region 

such as South Asia. Such studies are urgently required over 

the Indian region that is impacted by repeated poor air 

quality over large swathes of the country in recent times due 

to various reasons. 

 

CONCLUSIONS 

 

1. MERRA-2 underestimates the actual PM2.5 concentration 

by 34%, although 79% of the simulated values fall 

within FAC2 of the observed value. 

2. The daily mean concentrations measured by CPCB and 

predicted by MERRA-2 exceed the NAAQS limit by 

37.5% and 11.65%, respectively, on an annual time scale. 

3. The simulations diverge when predicting higher mass 

concentrations, highlighting MERRA-2’s inability to 

estimate the PM2.5 level during pollution episodes. 

4. The temporal and spatial pattern of the daily air quality 

is accurately predicted by MERRA-2 after a simple bias 

correction, which is based on the bias observed in the 

monthly means, is applied. 

5. The bias-corrected MERRA-2 results capture the number 

of exceedance days reasonably well. 
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Fig. 6. AQI using MERRA-2 without and with bias correction for (a) winter, (b) pre-monsoon, (c) monsoon, (d) post-monsoon. 

Capital letters indicate the same season but with bias-corrected values. Overlaid circles show PM2.5 from CPCB datasets. 

 

 

Fig. 7. Seasonal variation of AQI over Indo-Gangetic Plain (9 cities) and India (20 cities) listed in Table 2. 
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Table 2. Percentage of days in each AQI class, where A is CPCB data, B is MERRA-2 simulated data, and C is MERRA-2 

with bias correction. Cities are listed in the order of least good days as per CPCB data. IGP cities are in bold letters. 

  

Good 

(0–30 µg m–3) 

Satisfactory 

(31–60 µg m–3) 

Moderate 

(61–90 µg m–3) 

Poor 

(91–120 µg m–3) 

Very poor 

(121–250 µg m–3) 

Severe 

(> 250 µg m–3) 

Rank City name A B C A B C A B C A B C A B C A B C 

1. Gaya 0.0 66.5 35.1 10.3 29.9 18.8 34.7 3.5 36.7 26.9 0.0 7.7 26.0 0.0 1.6 2.1 0.0 0.0 

2. Kanpur 0.0 22.9 13.5 2.0 52.3 23.5 9.1 16.9 35.0 14.1 7.6 13.7 59.6 0.3 14.3 15.2 0.0 0.0 

3. Patna 0.0 26.0 15.9 11.8 41.5 19.9 12.9 22.8 33.6 12.9 7.6 14.7 42.4 2.1 15.9 20.0 0.0 0.0 

4. Varanasi 0.0 27.7 15.3 5.4 48.7 24.2 10.2 17.8 34.5 13.4 5.8 13.5 55.4 0.0 12.5 15.6 0.0 0.0 

5. Ludhiana 7.4 20.8 6.2 56.4 48.8 27.7 20.2 23.8 36.8 10.1 6.1 18.1 5.9 0.5 11.2 0.0 0.0 0.0 

6. Lucknow 8.4 22.6 14.0 28.6 46.2 19.8 14.1 21.2 35.7 10.9 7.8 13.6 32.8 2.1 16.9 5.2 0.0 0.0 

7. Muzaffarpur 8.5 26.6 16.0 13.4 41.8 20.4 9.8 23.0 32.1 9.8 8.4 16.5 36.6 0.1 14.9 22.0 0.0 0.0 

8. Delhi 16.1 16.6 7.8 21.8 52.6 24.0 16.2 22.6 36.2 10.0 8.2 18.5 24.4 0.0 13.4 11.6 0.0 0.0 

9. Manali 16.6 82.4 26.5 41.0 17.6 42.2 18.7 0.0 25.9 19.9 0.0 5.2 3.9 0.0 0.2 0.0 0.0 0.0 

10. Amritsar 18.1 19.5 3.5 51.8 48.7 27.6 8.3 22.6 38.8 6.9 8.5 19.4 14.9 0.8 10.7 0.0 0.0 0.0 

11. Vishakhapatnam 22.2 50.1 21.2 50.9 49.4 33.9 25.3 0.5 28.7 1.6 0.0 15.3 0.0 0.0 0.8 0.0 0.0 0.0 

12. Hyderabad 30.8 70.8 24.6 36.0 29.2 40.2 32.9 0.0 25.0 0.3 0.0 9.8 0.0 0.0 0.3 0.0 0.0 0.0 

13. Chennai 32.6 83.2 27.7 49.9 16.8 41.5 14.8 0.0 26.1 2.2 0.0 4.5 0.4 0.0 0.2 0.0 0.0 0.0 

14. Mumbai 35.2 45.5 17.8 50.0 54.4 34.8 12.8 0.1 31.1 1.9 0.0 15.9 0.0 0.0 0.4 0.0 0.0 0.0 

15. Nashik 39.1 58.7 20.8 33.7 41.3 37.5 25.0 0.0 29.3 2.2 0.0 12.1 0.0 0.0 0.4 0.0 0.0 0.0 

16. Nagpur 43.0 59.8 20.0 27.8 40.2 43.4 19.8 0.0 25.1 8.2 0.0 11.2 1.0 0.0 0.3 0.0 0.0 0.0 

17. Solapur 46.3 75.8 27.7 37.7 24.2 39.0 16.0 0.0 24.9 0.0 0.0 8.1 0.0 0.0 0.3 0.0 0.0 0.0 

18. Chandrapur 49.0 59.8 21.3 31.5 40.2 39.3 17.8 0.0 27.8 1.7 0.0 11.2 0.0 0.0 0.4 0.0 0.0 0.0 

19. Bangalore 50.2 92.1 33.6 32.0 7.9 38.5 14.5 0.0 25.5 1.3 0.0 2.1 2.1 0.0 0.3 0.0 0.0 0.0 

20. Tirupati 55.3 85.4 30.9 36.6 14.6 38.8 8.1 0.0 24.9 0.0 0.0 5.1 0.0 0.0 0.3 0.0 0.0 0.0 
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