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Abstract

In this study, a comparison in the precipitation extremes as exhibited by the seven reference datasets is made to ascertain 

whether the inferences based on these datasets agree or they differ. These seven datasets, roughly grouped in three categories 

i.e. rain-gauge based (APHRODITE, CPC-UNI), satellite-based (TRMM, GPCP1DD) and reanalysis based (ERA-Interim, 

MERRA, and JRA55), having a common data period 1998–2007 are considered. Focus is to examine precipitation extremes 

in the summer monsoon rainfall over South Asia, East Asia and Southeast Asia. Measures of extreme precipitation include 

the percentile thresholds, frequency of extreme precipitation events and other quantities. Results reveal that the differences 

in displaying extremes among the datasets are small over South Asia and East Asia but large differences among the datasets 

are displayed over the Southeast Asian region including the maritime continent. Furthermore, precipitation data appear to be 

more consistent over East Asia among the seven datasets. Decadal trends in extreme precipitation are consistent with known 

results over South and East Asia. No trends in extreme precipitation events are exhibited over Southeast Asia. Outputs of 

the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulation data are categorized as high, medium and low-

resolution models. The regions displaying maximum intensity of extreme precipitation appear to be dependent on model 

resolution. High-resolution models simulate maximum intensity of extreme precipitation over the Indian sub-continent, 

medium-resolution models over northeast India and South China and the low-resolution models over Bangladesh, Myan-

mar and Thailand. In summary, there are differences in displaying extreme precipitation statistics among the seven datasets 

considered here and among the 29 CMIP5 model data outputs.

Keywords Daily precipitation extremes · Asian summer monsoon · Observed datasets · Model simulated datasets · CMIP5

1 Introduction

Changes in precipitation can have adverse impacts on society 

more directly than changes in most of the other meteorologi-

cal variables. Of particular concerns are changes in extreme 

precipitation. Intense rainfall events can lead to flash floods, 

often resulting in infrastructure damage, considerable impact 

on natural ecosystems and even human casualties. Over the 

Asian domain, the largest socioeconomic losses are linked 

to floods attributed to these extreme rainfall events (Roxy 

et al. 2017; Vellore et al. 2014, 2016; Goswami et al. 2006; 

Krishnan et al. 2015; Pai and Sridhar 2015; Rajeevan et al. 

2008). Understanding and quantifying their magnitude for 

the present and how they may change in the future is of 

immense importance to the society.

Precipitation is difficult to represent in climate models 

owing to its high variability across nearly all temporal and 

spatial scales. Convective parameterization increasingly 

dominates events of extreme preciptation (e.g., Berg et al. 

2013). In climate models, simulated precipitation occurs 

more frequently but is less intense than observed heavy rain-

fall (Trenberth et al. 2011). One factor that greatly influences 

the accuracy of modeled precipitation is the size of model 

grid cells. In particular, horizontal resolution has a stronger 

impact on precipitation extremes than does mean precipi-

tation, especially in the tropics (Li et al. 2011). Extreme 

rainfall can arise from two different scales of rain-bearing 

systems: synoptic-scale (100–1000 km) and meso-scale 

(1–100 km); therefore, climate models with less than 100 km 

horizontal resolution could greatly improve quantification of 
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the extreme events due to meso-scale phenomenon. Despite 

this, research on the dependence of extreme daily rainfall on 

horizontal resolution is more limited than that focused on 

mean precipitation. This may reflect insufficient reference 

datasets (i.e., observational datasets) on daily precipitation 

as compared with monthly mean data with finer grid resolu-

tion over longer periods and/or it may also be due to a short-

age of long-term high-resolution climate simulations. Previ-

ous studies have restricted their investigations on extreme 

precipitation over Asia by using diverse observational and 

reanalysis datatsets (Rana et al. 2015; Ceglar et al. 2017; 

Huang et al. 2016).

To date, general circulation models (GCMs) having reso-

lution of less than 100 km have been explored by only a 

few research institutes owing to the enormous computer 

resources required. In general, computational costs limit 

GCMs to grid spacing of larger than 100 km, resulting in 

powerful representation of global scale circulation responses 

and continental rainfall, but less effective representation of 

the regional and local scales required by most decision mak-

ers (Rummukainen 2010). For this reason, Regional Climate 

Models (RCMs) have been used as an alternative. While 

high-resolution RCMs are computationally less expensive 

and have the ability to resolve finer scale orographic precipi-

tation, they require the specification of lateral boundary con-

ditions, which inhibit self-consistent interactions between 

global and regional scales of motion (Fox-Rabinovitz et al. 

2006). Recently many evaluation studies using RCMs have 

been conducted through Coordinated Regional Climate 

Downscaling Experiment (CORDEX) program (Kim et al. 

2014, 2015; Huang et al. 2015; Zhou et al. 2016; Zou et al. 

2016; Pattnayak et al. 2017). Especially, there have been 

many interests and efforts regarding added value of RCMs 

(Di Luca et al. 2015; Torma et al. 2015).

A hierarchy of phenomena with various spatial and tem-

poral scales makes up climate and better representation 

of small-scale features (e.g., Baiu rain band and tropical 

cyclones) in high-resolution models has improved seasonal 

mean climate simulations (Kitoh et al. 2008). Simulations 

using the Community Atmosphere Model (CAM3) show 

robust systematic improvements with higher horizontal 

resolution for a variety of features, most notably for those 

associated with large-scale dynamical circulation (Hack 

et al. 2006). This resolution dependence is largely due to 

the specification of better-resolved surface boundary condi-

tions (e.g., land-sea mask, soil and vegetation parameters) 

(Schiemann et al. 2014). Similarly, Li et al. (2011) also 

reported that extreme precipitation has a stronger sensi-

tivity to horizontal resolution in terms of a globally zonal 

mean when using the CAM3 simulation. High-resolution 

climate models that resolve topographical features and 

capture fine scale climate processes (e.g., surface moisture 

and snow albedo feedbacks) (Diffenbaugh et al. 2005) can 

more accurately simulate observed precipitation extremes 

(Walker et al. 2009). For example, owing to its high hori-

zontal resolution, the 20-km mesh the atmospheric general 

circulation model (AGCM) captures orographic rainfall that 

is accurate in terms of both location and amount. Through its 

influence on resolved dynamics, horizontal grid resolution 

strongly affects the distribution of the Intertropical Conver-

gence Zone (ITCZ) and the amount of tropical precipita-

tion (Abiodun et al. 2008). Sensitivity experiments with 

the Community Earth System Model (CESM) by altering 

horizontal grid resolution demonstrated reduced biases 

at the highest resolution (0.23° × 0.31°) over Europe, the 

USA, and Australia (Kopparla et al. 2013). Furthermore, 

the fraction of large-scale precipitation was seen to be larger 

at high-resolution (Bacmeister et al. 2013; Kopparla et al. 

2013). Volosciuk et al. (2015) found that the effects of aver-

aging and representation of physical processes in ECHAM5 

model at different horizontal resolutions vary with region 

and season.

In contrast, other studies have found fewer benefits to 

increasing horizontal resolution in climate models (Cardoso 

et al. 2013), arguing that without improvement in physics 

representation, increased resolution alone may only provide 

limited improvement (Buizza 2010). Shallow and convec-

tive parameterizations can cause unrealistic development of 

storms that produce intense precipitation in high-resolution 

GCM simulation (Williamson 2013). For the Model of Pre-

diction Across Scales-Atmosphere (MPAS-A), increasing 

grid resolution to 30 km lead to a problem with double peaks 

and double ITCZ in both mean and extreme precipitation 

(Landu et al. 2014; Yang et al. 2014).

Recently, more projects have started to use GCM simula-

tions with a resolution of < 100 km. For example CMIP5, 

CMIP6; UK PRACE, weather-resolving Simulations of 

Climate for globAL Environmental risk (UPSCALE); High 

resolution Global Environmental Modeling (HiGEM); Kyo-

sei-project, KAKUSHIN-program. However, to date, stud-

ies have only demonstrated the effects of high-resolution on 

rainfall through single climate model, but not various mod-

els. (Chen et al. 2008; Kopparla et al. 2013; Schiemann et al. 

2014; Volosciuk et al. 2015; Wehner et al. 2010; Yang et al. 

2014). Furthermore, these studies have mainly considered 

extreme rainfall over a global or continental (e.g., the USA) 

scale, but few have focused on the Asian monsoon region. 

Evaluation of the Asian monsoon rainfall by classifying sub-

monsoon regions remains important because sub-monsoon 

systems in Asia are independent of each other but, at the 

same time, interact with each other (Kripalani and Kulkarni 

2001).

In this study, our main goal is to compare precipitation 

extremes over the Asian summer monsoon region from mul-

tiple reference datasets and from multiple high-resolution 

CMIP5 climate simulations and to ascertain whether the 
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inferences based on different datasets are in agreement or 

they differ. Multiple datasets are employed to avoid depend-

ence on results based on a particular dataset. Furthermore, 

we also examine the effects of model resolution on simulat-

ing characteristics of extreme precipitation climatology over 

the Asian monsoon region. The next section describes the 

datasets and the methodology employed.

2  Data and methods

2.1  The seven reference datasets

In this study, we used gridded daily precipitation datasets 

with a high-resolution. These datasets are roughly grouped 

into three categories: rain-gauge-based (APHRODITE, 

CPC-UNI), satellite-based (TRMM, GPCP1DD), and rea-

nalysis (ERA-Interim, MERRA, and JRA55). To ensure a 

common period among datasets, we selected data for period 

from 1998 to 2007. A brief summary of the datasets is given 

in Table 1. Detailed description of the datasets follows.

1. The APHRODITE (Asian Precipitation Highly Resolved 

Observational Data Integration Towards Evaluation) 

project has developed state-of-the-art daily precipitation 

dataset with a high-resolution (0.5° lat/lon grid) grids 

for the Asian region. APHRODITE’s Water Resources 

project has been executed by the Research Institute for 

Humanity and Nature (RIHN) and the Meteorological 

Research Institute of Japan Meteorological Agency 

(MRI/JMA) since 2006 (Yatagai et  al. 2012). This 

dataset is generated primarily with ground-based data 

obtained from an in-situ rain-gauge-observation network 

between 5000 and 12,000 stations.

2. Climate Prediction Center unified (CPC-UNI) is a 

global gauge-based daily precipitation product from 

the National Oceanic and Atmospheric Administration 

(NOAA). Gauge reports from over 30,000 stations are 

collected from multiple sources, including the Global 

Telecommunications System (GTS), the Cooperative 

Observer (COOP) network, and other national and inter-

national agencies. Quality control is performed through 

comparisons with historical records and independent 

information from measurements at nearby stations, radar 

and satellite observations, as well as model forecasts. 

CPC-UNI uses optimal interpolation (OI) technique to 

represent area-averaged values of precipitation over grid 

boxes (Chen and Knutson 2008). Finally, quality con-

trolled station reports are interpolated to create analyzed 

fields of daily precipitation with consideration of oro-

graphic effects (Xie et al. 2007). Here, we used the CPC-

UNI, version 1.0 (v1.0), global land data at a 0.5°lat/lon 

grid.

3. The seventh research version of the Tropical Rainfall 

Measuring Mission (TRMM 3B42 V7) relies primarily 

on passive microwave (PMW) precipitation estimates 

from the Special Sensor Microwave Imager (SSM/I), 

the Special Sensor Microwave Imager and Sounder 

(SSMIS), the TRMM Microwave Imager (TMI), 

the Advanced Microwave Sounding Unit (AMSU), 

the Microwave Humidity Sounder (MHS), and the 

Advanced Microwave Scanning Radiometer for the 

Earth Observing System (AMSR-E). PMW data were 

first calibrated using the combined TMI and TRMM pre-

cipitation radar product (PR) and were then used to cali-

brate geosynchronous IR inputs (Huffman et al. 2007). 

After the preprocessing, the 3-hourly multi-satellite 

fields are summed for the month and combined with the 

monthly accumulated Global Precipitation Climatology 

Centre (GPCC) rain gauge analysis using inverse-error-

variance weighting to form a monthly best-estimate 

precipitation rate, which is TRMM Product 3B43. The 

TRMM datasets range from 50°S to 50°N from 1998 

to the present and is available at a 3-hourly temporal 

resolution in a 0.25° spatial grid.

4. The Global Precipitation Climatology Project (GPCP) 

sponsored by the World Climate Research Program and 

Global Energy and Water Cycle Experiment provides 

global precipitation products based on satellite and 

rain gauge information on a daily scale (Huffman et al. 

2001). The GPCP 1-Degree Daily (GPCP1DD) version 

1.2 dataset is produced by optimally merging estimates 

computed from microwave, infrared, and sounder data 

Table 1  Brief summary of 

datasets used in this study
Data Resolution Data sources Time period References

APHRODITE 0.25° × 0.25° Rain gauge 1998–2007 Yatagai et al. (2012)

CPC-UNI 0.5° × 0.5° Rain gauge 1998–2007 Xie et al. (2007)

TRMM 0.25° × 0.25° Satellite 1998–2007 Huffman et al. (2007)

GPCP1DD 1.0° × 1.0° Satellite 1998–2007 Huffman et al. (2001)

ERA-Interim 0.5° × 0.5° Reanalysis 1998–2007 Dee et al. (2011)

MERRA 0.5° × 0.66° Reanalysis 1998–2007 Rienecker et al. (2011)

JRA55 0.563° × 0.563° Reanalysis 1998–2007 Kobayashi et al. (2015)
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observed by the international constellation of precipita-

tion-related satellites and precipitation gauge analyses.

5. The European Centre for Medium-Range Weather Fore-

casts (ECMWF) Interim reanalysis (ERA-Interim) is the 

most recent global atmospheric reanalysis produced by 

ECMWF covering the period from 1979 until the present 

(Dee et al. 2011). ERA-Interim uses four-dimensional 

variational data assimilation (4D-Var) with a 12 hourly 

cycle, a revised humidity analysis, variational bias cor-

rection for satellite data, and other improvements in data 

handling. These data are available at a daily resolution 

on a 0.5° lat/lon grid.

6. Modern Era Retrospective-analysis for Research and 

Applications (MERRA) uses a three-dimensional vari-

ational (3D-Var) analysis algorithm based on the Grid-

point Statistical Interpolation (GSI) scheme with a 6-h 

cycle. The GSI was originally developed at NCEP and 

is now jointly developed by NCEP and the Global Mod-

eling and Assimilation Office (GMAO). MERRA is pro-

duced by GEOS-5 (Goddard Earth Observing System) 

atmospheric general circulation model based on finite 

volume dynamics. It includes a number of advancements 

over the 3D-Var algorithms based on the GSI (Rienecker 

et al. 2011). GMAO at the National Aeronautics Space 

Administration Goddard Space Flight Center produce a 

satellite era analysis (NASA MERRA), which is avail-

able from 1979 to present. MERRA has data on a 2/3° 

longitude and 1/2° latitude native grid.

7. JMA performed the second reanalysis project (known as 

the Japanese 55-year Reanalysis) using TL319 version of 

JMA’s operational data assimilation system with 4D-Var 

scheme as of December 2009, and newly prepared data-

set of past observations. The datasets cover the 55 years 

from 1958, when regular radiosonde observation began 

on a global basis. Many of the deficiencies of JRA25 are 

alleviated in JRA55 because the DA system used for the 

project featured a variety of improvements introduced 

after JRA25. As a result, the JRA55 project produced a 

high-quality homogeneous climate dataset covering the 

last half century. JRA55 has a reduced Gaussian grid and 

TL319 resolution (0.563° lognitude and 0.563° latitude 

grid).

2.2  CMIP5 model data

We used the Atmospheric Model Intercomparison Project 

(AMIP) simulations from 29 CMIP5 AGCMs for the 28-year 

period from January 1980 to December 2007 (Table 2). The 

models are grouped according to their spatial resolution: 

high-resolution (grid spacing of < 1°), medium-resolution 

(grid spacing between 1° and 2°), and low-resolution (grid 

spacing of > 2°). Each model uses different physics schemes. 

All the above described datasets are produced by different 

numerical models or assimilation systems, thus can be con-

sidered independent of each other.

2.3  Analysis region

Our region of interest is the Asian summer monsoon region 

(15°S–45°N, 70–150°E: Fig. 1a). This region consists of 

South Asia (the Indian sub-continent), East Asia (China, 

Korea and Japan) and Southeast Asia (Myanmar, Thailand 

through to the Indonesian islands and the maritime conti-

nent). Considering the spatial features associated with Asian 

summer monsoon and the number of stations, for some anal-

ysis we separated the entire domain into three sub-regions: 

East Asian region (20–40°N, 110–150°E), South Asian 

region (5–25°N, 70–90°E), and Southeast Asian region 

(10–20°N, 100–110°E). Maritime continent also belongs to 

one of the Asian summer monsoon sub-domains, but are 

excluded when averaging over the Southeast Asian region.

2.4  Methodology

According to Yang et al. (2014), upscaling of fine resolution 

data into a coarse grid through averaging reduces signals/

variances. Consequently, the mismatch between process and 

analysis scales often leads to difficulties in producing reli-

able statistics for the aggregated data. In this study, we apply 

to interpolate the datasets from coarse to fine resolution to 

compare the characteristics among the multiple datatsets.

Rainfall is a point process with large spatial and tempo-

ral discontinuities ranging from very weak to strong events 

within small temporal and spatial scales (Malik et al. 2012; 

Wulf et al. 2012). To define daily precipitation extremes, 

we used the percentile approach (Diffenbaugh et al. 2005; 

Malik et al. 2012; Kopparla et al. 2013; Singh et al. 2013). In 

particular, for a percentile threshold of p, we find the pth per-

centile of the distribution of daily rainfall over all the grids 

over the Asian domain. We then examine the spatio-temporal 

characteristics of rainfall exceeding this percentile, the abso-

lute value of which will differ between different datasets. 

The advantage of this approach is that it removes the effects 

of bias in precipitation amounts between the different data-

sets, while retaining reliable information about precipitation 

pattern and behavior (Kendon et al. 2012). Here we calcu-

late the 75th, 95th and 99th percentile of daily precipitation 

probability distribution function (PDF) at each grid point 

for June–August (JJA) of each year. The frequency of heavy 

rainfall is defined to be more than 30 mm/day (Bhowmik 

et al. 2007; Kusumoki et al. 2012; Agnihotri et al. 2015). In 

addition, we analyze the distribution of the right tail of the 

precipitation distribution, defined as the range between the 

99th and 90th percentile (Scoccimarro et al. 2013, 2014), 

similar to Interquartile range (IQR), which is calculated 

as the 75–25th percentile. Furthermore, we evaluate the 
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extreme precipitation fraction as a ratio of the 95th percen-

tile precipitation to the precipitation climatology.

Next, we estimate the uncertainty in the seven reference 

datasets and in the CMIP5 models using the signal-to-noise 

ratio (SNR), which is calculated as:

where X is an ensemble mean of the datasets and � is varia-

bility (i.e., standard deviation among the datasets). The SNR 

here is used to measure the uncertainty. This uncertainty 

could come from various sources such as internal, model, 

(1)SNR =

X

�

and scenario based modes (Hawkins and Sutton 2011; Kim 

et al. 2016). Before we present the results on extreme pre-

cipitation analysis, a brief climatology during the boreal 

summer monsoon period is described next.

3  Observation analysis

3.1  Climatological features over the asian domain

Changes in precipitation extremes are primarily influ-

enced by changes in large-scale circulation over the tropics 

Table 2  Summary of CMIP5 models

Resolution group Model Institute Resolution (° lat./long.)

High (< 100 km) 1 MRI-AGCM3.2S Meteorological Research Institute (MRI) 0.1875 × 0.1875

2 GFDL-HIRAM-C360 Geophysical Fluid Dynamics Laboratory (GFDL) 0.3125 × 0.25

3 MRI-AGCM3.2H Meteorological Research Institute (MRI) 0.5625 × 0.5625

4 CAM5 National Center for Atmospheric Research (NCAR) 0.624 × 0.478

5 GFDL-HIRAM-C180 GFDL 0.625 × 0.5

6 CMCC-CM CMCC 0.75 × 0.75

Medium (< 200 km) 1 EC-EARTH EC-EARTH consortium 1.125 × 1.125

2 MRI-CGCM3 MRI 1.125 × 1.125

3 CCSM4 NCAR 1.25 × 0.9

4 CNRM-CM5 Centre National de Recherches Météorologiques (CNRM); Centre 

Européen de Recherches et de Formation Avancéeen Calcul 

Scientifique

1.40625 × 1.40625

5 MIROC5 Atmosphere and Ocean Research Institute (AORI), National Insti-

tute for Environmental Studies (NIES); Japan Agency for Marine-

Earth Science and Technology (JAMSTEC)

1.40625 × 1.40625

6 HadGEM2-A Met Office Hadley Centre 1.875 × 1.241379

7 ACCESS1.0 Commonwealth Scientific and Industrial Research Organization 

(CSIRO), and Bureau of Meteorology (BoM)

1.875 × 1.25

8 ACCESS1.3 CSIRO and BoM 1.875 × 1.25

9 MPI-ESM-LR Max Planck Institute for Meteorology (MPI-M) 1.875 × 1.875

10 MPI-ESM-MR MPI-M 1.875 × 1.875

11 CSIRO-Mk3.6.0 CSIRO Marine and Atmospheric Research (Melbourne) in collabo-

ration with the Queensland Climate Change Centre of Excellence 

(QCCCE) (Brisbane)

1.875 × 1.875

Low (> 200 km) 1 INM-CM4 Institute for Numerical Mathematics 2.0 × 1.5

2 IPSL-CM5A-MR Institute Pierre-Simon Laplace (IPSL) 2.5 × 1.25

3 GFDL-CM3 Geophysical Fluid Dynamics Laboratory (GFDL) 2.5 × 2.0

4 GISS-E2-R NASA/Goddard Institute for Space Studies (USA) 2.5 × 2.0

5 NorESM1-M Norwegian Climate Centre 2.5 × 1.875

6 FGOALS-s2 Institute of Atmospheric Physics, Chinese Academy of Sciences 

(IAP), and Tsinghua University (THU)

2.8125 × 1.666667

7 BCC-CSM1.1 Beijing Climate Center (BCC) and China Meteorological Adminis-

tration (CMA)

2.8125 × 2.8125

8 CanAM4 Canadian Centre for Climate Modeling and Analysis (CCCma) 2.8125 × 2.8125

9 BNU-ESM Beijing Normal University (BNU)-Earth System Model 2.8125 × 2.8125

10 FGOALS-g2 IAP and THU 2.8125 × 3.0

11 IPSL-CM5B-LR IPSL 3.75 × 1.875

12 IPSL-CM5A-LR IPSL 3.75 × 1.875
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(Maredith et al. 2015). Most of the reanalysis datasets rea-

sonably reproduce the climatological circulation features. 

Hence, Fig. 1b displays the vector winds at the lower trop-

ospheric level (850 hPa) derived from the ERA-Interim 

dataset. This figure clearly illustrates the summer monsoon 

circulation flow pattern. Over the South Asian region, the 

strong southwesterly flow over the Arabian Sea (0–20°N, 

40–70°E) transports large amounts of moisture from the 

Indian Ocean towards the Indian sub-continent. This flow 

further gathers moisture from the Bay of Bengal and trans-

ports towards northeastern parts of India and towards the 

Myanmar–Thailand region. The most dominant feature 

over East Asia is the North Pacific Subtropical High. The 

southeasterly/southerly/southwesterly flow along the west-

ern edge of this high (Figs. 1b, 10°S–30°N, 110–130°E) 

transports moisture from the West Pacific Ocean towards 

China, Korea and Japan. Moisture from the South China 

Sea is also transported towards South China and the 

neighboring regions of Southeast Asia in particular Phil-

ippines and Vietnam. Maritime continent over the Indo-

nesian region gets moisture from the South Pacific Ocean 

brought by the southeasterly winds. Thus the main mois-

ture sources for the precipitation can be inferred from 

Fig. 1  a Asian Monsoon 

domain covering South Asia 

(India), East Asia and Southeast 

Asia. b 850 hPa Wind vectors 

for JJA based on ERA-Interim 

reanalysis dataset
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Fig. 1b. Next, we present the seasonal summer monsoon 

rainfall patterns as depicted by the seven datasets (Fig. 2).

Over South Asia, large amounts of rainfall are located 

over the west coast of India (orographic effects), central 

and northeast India. Over South-east Asia, the Arakan and 

Myanmar coast (orographic effects) are regions of large 

amounts of rainfall. Over East Asia, regions of southeast 

China extended until the Korea–Japan peninsula display 

large amounts of rainfall. However, CPC-UNI does not 

capture rain over the Myanmar and the Arakan coast. 

Interestingly, ERA-Interim correctly reproduces very less 

precipitation over the southeast Indian peninsula (Fig. 2f). 

This region gets major proportion of annual rainfall during 

the October–December period (Kripalani and Kumar 

2004). This same dataset also reasonably reproduces the 

climatology and Global Monsoon precipitation with high-

est skill (Lin et al. 2014). MERRA and JRA55 tend to 

overestimate rainfall over southeast Asia for boreal sum-

mer. More details on South and East Asian Monsoons are 

available in a recent paper (Preethi et al. 2017) and over 

Southeast Asia in earlier papers (Kripalani and Kulkarni 

1997, 1998). Perfect reference datasets do not exist and 

there are large uncertainties in extreme rainfall among var-

ious datasets (e.g., Sunyer et al. 2013; Turco et al. 2013). 

Many previous studies have suggested use of rain-gauge 

datasets for reference, but they too have shortcomings, as 

Fig. 2  Maps of summer monsoon precipitation climatology for the period 1998–2007 for the seven datasets: a ensemble mean based on the 

seven datasets, b GPCP1DD, c TRMM, d APHRODITE, e CPC-UNI, f ERA-Interim reanalysis, g MERRA reanalysis, and h JRA55 reanalysis
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the sites do not cover the required domain. On this basis, it 

is necessary to investigate the differences in extreme pre-

cipitation, if any, across the seven datasets before assess-

ing the climate models.

3.2  Extremes based on percentiles

Figure 3 shows extreme rainfall for boreal summer in 

individual datasets and their ensemble mean in terms of 

the 95th percentile values in the daily precipitation PDF. 

Although the ensemble of our seven datasets is affected 

by smoothing, it still captures well precipitation in moun-

tainous regions compared to each dataset. Over individual 

datasets, the distributions of extreme values are similar 

to the daily mean precipitation in terms of spatial char-

acteristics, but show larger differences in magnitude. In 

particular, GPCP and TRMM (i.e., datasets based on sat-

ellite) display higher extreme precipitation intensity over 

the Asian monsoon region compared with the remaining 

five datasets. CPC-UNI exhibites lowest precipitation over 

Myanmar and the neighboring regions. This is similar to 

the findings of Rana et al. (2015), who showed that CPC-

UNI poorly simulates seasonal mean precipitation over 

the same region. ERA-Interim also tends to show lower 

values over India and the maritime continent. As noted 

earlier ERA-Interim is the only dataset which displays 

subdued monsoon activity (Fig. 3f) over the southeast 

Indian peninsula. As pointed out in the preceding section, 

Fig. 3  Same as Fig. 2, but for the 95th percentile of precipitation
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most of the annual rain over this region occurs during the 

October–December period (Kripalani and Kumar 2004). 

JRA55 is similar to the ensemble mean among the rea-

nalysis datasets, but relatively shows higher rainfall val-

ues over Southeast Asia and Southeastern Asia. MERRA 

reproduces less rainfall over Korea and Japan.

In summary, the main inferences drawn from Fig. 3 are 

interesting. The highest resolution dataset (TRMM 0.25°) 

clearly depicts the heavy orographic rainfall zones over 

South Asia, in particular the west coast of India and hilly 

region of northeast India and adjoining Bangladesh and 

the Arakan/Myanmar coast. This may be due to the low-

pressure systems that form over the Bay of Bengal and 

transport moisture over these regions. This high-resolution 

dataset also brings out zones of heavy rain events over South 

China and the adjoining Thailand region over Southeast 

Asia. These heavy rain events may be due to the tropical 

storms over the South China Sea striking the south China 

and the adjoining coasts. A recent study (Zhan et al. 2017) 

reported that western China including the Tibetan Plateau 

has experienced a significant change in the extreme events 

over the past decades. The GPCP data at 1° resolutions also 

displays these regions of heavy rain events, to a certain 

extent. The remaining five datasets depict heavy rain events 

in the 20–30 mm/day range. In general, regions of heavy 

rain events are better displayed by high-resolution datasets. 

Thus the spatial patterns for the same variable (here the 95th 

percentile precipitation) show some differences among the 

various datasets considered here. However, the spatial dis-

tributions of the 95th percentile scores resemble the patterns 

obtained for the mean seasonal rainfall pattern (Compare 

Figs. 2, 3). Such inferences have been documented earlier 

(Boers et al. 2016).

Another distinctive feature of extreme event is the shapes 

of right tails in the precipitation PDF for JJA in the seven 

datasets. This is illustrated by the differences between the 

99th and the 90th percentile values (Fig. 4), GPCP and 

JRA55 are similar to ensemble of all the datasets. TRMM 

shows a particularly intense distribution of the right tail 

between the 90th and 99th percentiles, while APHRODITE, 

ERA and MERRA show a relatively even smaller value of 

the right tail than the others (Fig. 4).

Over South Asia, western parts of India through cen-

tral India up to northeast India; over East Asia major parts 

of China and Korea–Japan and over Southeast Asia Viet-

nam, northern parts of Philippines heavy rain events with 

differences exceeding 35 mm/day are clearly depicted by 

the TRMM dataset. Similar patterns are displayed by the 

GPCP, CPC, and JRA55 datasets but with differences in the 

25–35 mm/day range. MERRA shows less variation over 

the entire domain. In fact ERA and MERRA hardly show 

any differences over the maritime continent. The differences 

between the 99th and 90th percentile displayed by ERA and 

MERRA are considerably less compared to other reference 

datasets. It means that the range of extreme value is narrow.

3.3  Frequency of heavy precipitation days

In terms of the frequency of heavy rainfall (Fig. 5), GPCP 

and TRMM display high frequent events of heavy rainfall 

(≥ 30 mm/day) over South, East as well as Southeast Asia. 

The frequency of heavy rain case displayed by ERA-Interim 

is near zero over the Indian subcontinent. Although, both 

CPC-UNI and APHRODITE are rain gauge based datasets, 

they appear to have large differences over maritime conti-

nents and India (Fig. 5). Furthermore, frequency of occur-

rence of heavy rain displayed by APHRODITE, ERA and 

MERRA over southeast Asia appear to be considerably less 

compared with the other four datasets. In addition, frequency 

of heavy rain events appear to be well captured by the 

TRMM dataset over west coast of India and northeast India 

compared to GPCP, CPC-UNI, and ERA-Interim. Regions 

surrounding the South China Sea i.e. South China, Vietnam, 

Borneo, Philippines and the Indonesian islands also are well 

captured. Even regions receiving moisture from the West 

Pacific i.e. southeast China and the Korea-Japan peninsula 

show regions of heavy rain events. While the APHRODITE 

dataset captures the heavy rain events over South Asia, ERA 

dataset does not display any heavy rain events. CPC cap-

tures these events over Southeast Asia. Hence, there are dif-

ferences among the datasets in displaying these heavy rain 

events, in particular over Southeast Asia and the maritime 

continent.

3.4  Ratio of extremes to climatology

To alleviate the possible uncertainties in rainfall character-

istics among the various datasets, since each dataset have 

some difference in capturing the spatial distribution of mean 

and extreme rainfall, we presume higher similarities may be 

exhibited by the ratio of extreme precipitation to climatol-

ogy. As shown in Fig. 6, over most of the region the ratios 

are greater than six. However, over the maritime continent 

the ratios are below four. In fact the ratios are below two as 

depicted by the ERA and MERRA datasets. Maximum ratios 

exceeding 12 are displayed over central and western parts 

of India by most of the datasets. Satellite and rain-gauge 

based sources tend to show increased agreement, as com-

pared with the ensemble data; however, ERA and MERRA 

show systematic biases compared with distribution of the 

ensemble. Even though CPC-UNI is a rain-gauge dataset, 

the scaled value was relatively higher in areas between lati-

tude 30°N and 40°N. The patterns for the ratios between the 

95th percentile and the climatological mean rainfall intensity 

are similar between APHORODITE and JRA55 and also 
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similar between ERA and MERRA. In addition, GPCP and 

TRMM resemble the ratio of extremes with higher values. 

Extremely high ratios north of 30°N are displayed by all the 

data sets, in particular for the CPC data due to considerably 

less seasonal rain intensity over these regions.

Tables 3 and 4 show quantitative assessments of high 

percentile precipitation across the seven datasets for sub 

domains defined in Sect. 2.3. The consistency of high per-

centile of rainfall over the East Asia region is greater than 

that for India and Southeast Asia (Indochina). Over the 

East Asia GPCP, TRMM, and APHRODITE are in much 

better agreement with the ensemble as per the results of 

pattern correlation, standard deviation, RMSE, and skill 

score. For CPC-UNI, ERA-Interim, and MERRA, there is 

lower similarity of spatial distribution as compared with the 

ensemble. In particular, CPC-UNI has the largest inconsist-

ency of high percentile precipitation and skill score (95th 

percentile: 0.215, 0.128), (99th percentile: 0.350, 0.161) 

over East Asia and Southeast Asia. Despite CPC-UNI (0.5° 

× 0.5°) having double the horizontal resolution of GPCP 

(1.0° × 1.0°), GPCP is more similar to APRODITE. This 

could reflect the discrepancy in number of stations, with 

APHRODITE using a more extensive gauge network than 

CPC-UNI (Gebregiorgis and Hossain 2015; Rana et  al. 

2015).

In the scaled values of higher percentile precipitation, 

the consistency among all datasets improves over East 

Asia, India, and Southeast (Indochina) according to pattern 

Fig. 4  Same as Fig. 3 but for right tail distributions of the precipitation calculated for the difference between the 99th and 90th percentiles
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correlation, standard deviation, RMSE, and skill score. 

Notably, CPC-UNI has a low skill score while in scaled 

value the skill score increased (95th percentile: 0.849, 0.415) 

(99th percentile: 0.843, 0.443). Moreover, over Southeast 

Asia, all datasets have lower coherency on extreme values 

than over East Asia, and India, especially CPC-UNI, JRA55. 

However, when scaled, the performance of each dataset 

suggests improvement. Although each dataset may contain 

numerous systematic biases regarding the amount of higher 

percentile precipitation, our analyses show that they can be 

better for capturing the characteristics in terms of the ratio 

with respect to climatology. Exceptionally, scaled values 

over Southeast Asia for JRA55 bring worse outcomes in 

pattern correlations (95th percentile: 0.726, 99th percentile: 

0.755) than original values (95th percentile: 0.191, 99th per-

centile: 0.532) .

3.5  Signal‑to‑noise (SNR) ratio

Figure 7 shows uncertainty ranges of climatology, daily 

mean for boreal summer, 95th percentile precipitation, the 

right tail of precipitation (99–90th percentile precipitation), 

and scaled precipitation across the datasets through the 

SNR distributions. The SNR spatial pattern for climatology 

Fig. 5  Number of heavy rainy days (≥ 30 mm/day) for the period 1998–2007, a GPCP, b TRMM, c APHRODITE, d CPC-UNI, e ERA-Interim 

reanalysis, f MERRA reanalysis, and g JRA55 reanalysis
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distribution appears similar to that for the mean precipita-

tion in JJA (Fig. 7a, b), while the SNR for the extreme value 

(95th percentile value) appears similar to the 99th–90th 

percentile pattern (Fig. 7 c, d). The SNR for the differences 

between the 90th and 99th percentile precipitation appear 

smaller than the  95th percentile precipitation (compare 

Fig. 7c, d). In other words, the width of the right tail of the 

precipitation PDF may have larger uncertainties. The SNR 

values for the 95th percentile appear relatively higher than 

those of the 95th percentile precipitation over South and 

East Asia (compare Fig. 7c, e). Consequently, using a scaled 

value, systematic biases for regions with large uncertainties 

over heavy precipitation regions appear largely reduced. In 

summary the signal to noise spatial patterns, show higher 

ratios over East Asia compared to South and Southeast Asia. 

This may imply that precipitation data over East Asia are 

consistent among the datasets.

3.6  Interannual variability

To examine uncertainty in the interannual variability of 

extreme precipitation across the datasets, the standard devia-

tion of the 95th percentile precipitation for JJA have been 

calculated (Fig. 8). Higher uncertainties in their interannual 

Fig. 6  Maps of the 95th percentile of precipitation as fraction of the 

climatology during the period 1998–2007 for the datasets: a ensem-

ble mean based on the seven datasets, b GPCP, c TRMM, d APHRO-

DITE, e CPC-UNI, f ERA-Interim reanalysis, g MERRA reanalysis, 

and h JRA55 reanalysis
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variability of extreme value exist among the datasets, and 

especially strong for heavy rain regions. TRMM shows rel-

atively strong interannual variability, while ERA-Interim, 

MERRA show relatively weak variability. GPCP, TRMM, 

APHRODITE, CPC-UNI, and JRA55 reproduced larger 

interannual variability over complex topography. But, ERA 

shows higher variability over northeast India and neighbor-

hood. In summary, TRMM clearly shows the largest interan-

nual variability over South Asia as well as East Asia. The 

spatial pattern for GPCP is similar, however with reduced 

variability compared with TRMM. Similar patterns are 

seen for CPC and JRA55 except for maritime continents 

and Myanmar.

3.7  Decadal trends

Kim and Park (2016) suggested that the linear trend in pre-

cipitation may have larger uncertainty than in the mean and 

in the interannual variability among the reference datasets. 

Figure 9 shows the decadal trends of extreme rainfall (i.e., 

95th percentile precipitation for JJA) in the datasets over 

the period 1998–2007 calculated through a linear regres-

sion coefficient. Except for APHRODITE, ERA-Interim, 

and JRA55, the rest shows a remarkable increasing trend 

over central India, which is consistent with the finding of 

Rana et al. (2015) and Prakash et al. (2014). Singh et al. 

(2013) found that APHRODITE has opposite trend signs 

for extreme precipitation intensity from the 2000s onwards 

when compared with the IMD dataset (2140 rain-gauge 

station).

Decadal trends in the 95th percentile values indicate 

interesting results (Fig. 9). Increasing trends are observed 

over the central Indian region from the west to east; on 

the other hand, decreasing trends are observed just north 

over the foothills of the Himalaya. This is consistent with 

results shown by Preethi et al. (2017). Four of the datasets 

(GPCP, TRMM, APHRODITE and MERRA) are able to 

capture these features over the Indian subcontinent. While 

CPC data could capture only the increasing trend over the 

Indian region, ERA does not capture any of these trends. 

A threefold rise in extreme precipitation events over cen-

tral India has been recently reported (Roxy et al. 2017; 

Goswami et al. 2006), Over East Asia, a wave-like pat-

tern with increasing, decreasing, and increasing trends 

from north to south China are observed. Except the ERA 

dataset the remaining five datasets display this feature. 

This feature is also consistent with earlier studies (e.g. 

Preethi et al. 2017). Over Southeast Asia no trends are 

exhibited by any of these datasets. Distinctively, JRA55 

Table 3  Statistical analysis of reference dataset on 95th and 99th percentile precipitation over East Asia, India and Southeast Asia

Domain Data sources 95th percentile 99th percentile

Pattern cor-

relation

Standard 

deviation

RMSE Skill score Pattern cor-

relation

Standard 

deviation

RMSE Skill score

East Asia GPCP1DD 0.903 1.215 5.136 0.880 0.892 1.068 5.528 0.959

TRMM 0.921 1.463 4.107 0.834 0.926 1.701 18.799 0.735

APHRODITE 0.887 1.304 4.107 0.880 0.882 1.567 9.166 0.774

CPC-UNI 0.460 3.388 20.065 0.215 0.475 2.502 24.180 0.350

ERA-Interim 0.683 0.598 7.137 0.653 0.643 0.658 11.888 0.693

MERRA 0.720 0.798 6.251 0.818 0.673 0.671 13.273 0.716

JRA55 0.806 1.127 4.430 0.890 0.856 1.144 6.467 0.911

India GPCP1DD 0.826 0.885 10.009 0.956 0.790 0.875 14.095 0.942

TRMM 0.942 1.498 10.973 0.828 0.917 1.697 25.984 0.734

APHRODITE 0.907 1.220 7.440 0.917 0.884 1.265 12.996 0.892

CPC-UNI 0.797 1.580 10.156 0.734 0.815 1.551 14.302 0.753

ERA-Interim 0.841 0.575 11.963 0.687 0.749 0.760 18.999 0.812

MERRA 0.837 0.927 5.673 0.913 0.822 0.835 10.224 0.882

JRA55 0.848 1.452 8.223 0.806 0.838 1.333 11.926 0.847

Southeast Asia GPCP1DD 0.458 0.820 9.480 0.828 0.818 1.139 12.654 0.846

TRMM 0.723 2.060 12.004 0.532 0.721 2.101 21.742 0.518

APHRODITE 0.755 1.465 6.231 0.761 0.514 1.547 9.380 0.756

CPC-UNI 0.453 4.551 20.942 0.128 0.263 3.692 25.464 0.161

ERA-Interim 0.452 0.857 10.454 0.709 0.388 1.285 17.145 0.652

MERRA 0.548 0.904 4.654 0.766 0.498 0.788 9.389 0.708

JRA55 0.726 2.035 7.178 0.541 0.755 1.997 9.882 0.563
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has negative trends over Asian summer monsoon domain 

unlike the other datasets. Next we examine the outputs 

from the CMIP5 datasets.

4  CMIP5 analysis

Kharin et al. (2007) showed that IPCC AR5 models can 

well simulate extreme precipitation in the extra-tropics, but 

uncertainties in extreme precipitation for the tropics are very 

large. Scoccimarro et al. (2013) found that 99th percentile 

precipitation are consistently simulated over mid and high 

latitudes in the northern summer season, but underestimated 

in the tropics in terms of zonal average, as shown by CMIP5 

models with a spatial resolution of ~ 100 km.

To analyze the spatial distribution of the 95th percentile 

of boreal summer (JJA) precipitation in the 29 AMIP-type 

simulations, APHRODITE was utilized as the reference 

data because it includes the longest record and high spatial 

resolution and information of station data. Results based on 

high-resolution models are presented in Fig. 10, for medium-

resolution models in Fig. 11 and for low-resolution models 

in Fig. 12.

The fine-resolution models (< 1°) reasonably well cap-

tured the spatial variations in extreme rainfall and rainfall 

amounts over East Asia, India, and Southeast Asia (Fig. 10). 

However, both the GFDL models and the CMCC model 

exhibit maximum intensity of the 95th percentile over the 

Indian subcontinent. For the medium-resolution group 

(Fig. 11) most of the models display maximum intensity 

over northeast India and South China, Finally two models 

of the low-resolution group (BCC and FGOALS, Fig. 12h, 

k) display maximum intensity over Bangladesh, Myanmar 

and Thailand. All three groups, in general showed com-

mon features of the 95th percentile. However the regions 

of maximum intensity of the 95th percentile appear to be 

model dependent.

4.1  Precipitation biases

The composite precipitation biases are illustrated in Fig. 13, 

the upper panels for the 95th percentile, the central panels 

for the 99th–90th percentile and the lower panels for the 

frequency of heavy rain events. The negative biases over 

northern and central parts of India amplify as we examine 

the high-resolution models through to the low-resolution 

models for the 95th percentile (Compare Fig. 13b–d). For 

Table 4  Statistical analysis of reference dataset on scaled value of 95th and 99th percentile precipitation over East Asia, India and Southeast 

Asia

Domain Data sources 95th percentile 99th percentile

Pattern cor-

relation

Standard 

deviation

RMSE Skill score Pattern cor-

relation

Standard 

deviation

RMSE Skill score

East Asia GPCP1DD 0.925 0.962 0.838 0.961 0.898 0.913 1.632 0.941

TRMM 0.949 1.106 1.406 0.965 0.944 1.325 4.539 0.899

APHRODITE 0.952 0.970 0.630 0.975 0.925 0.955 1.710 0.960

CPC-UNI 0.875 1.374 1.630 0.849 0.849 1.358 3.784 0.843

ERA-Interim 0.961 1.148 1.162 0.962 0.941 1.216 2.265 0.934

MERRA 0.958 0.842 1.767 0.951 0.945 0.844 4.048 0.945

JRA55 0.950 1.040 0.668 0.973 0.949 0.959 1.465 0.973

India GPCP1DD 0.928 1.178 2.236 0.938 0.938 1.123 2.695 0.956

TRMM 0.967 1.210 2.363 0.949 0.959 1.438 6.914 0.861

APHRODITE 0.980 0.988 0.640 0.990 0.971 0.928 1.697 0.980

CPC-UNI 0.970 1.201 1.402 0.953 0.948 1.258 4.092 0.925

ERA-Interim 0.956 0.943 1.828 0.975 0.941 1.148 3.219 0.952

MERRA 0.965 0.679 3.025 0.849 0.938 0.525 7.554 0.656

JRA55 0.963 1.008 0.943 0.982 0.930 0.910 2.687 0.956

Southeast Asia GPCP1DD 0.566 1.395 1.489 0.702 1.870 1.369 1.870 0.704

TRMM 0.888 1.626 1.923 0.752 0.759 1.565 3.728 0.724

APHRODITE 0.897 1.395 0.573 0.851 0.843 1.512 1.101 0.780

CPC-UNI 0.747 2.501 1.613 0.415 0.513 2.307 3.388 0.403

ERA-Interim 0.655 0.808 1.834 0.791 0.734 1.397 2.996 0.777

MERRA 0.786 0.846 1.677 0.868 0.778 0.827 3.335 0.858

JRA55 0.191 1.163 1.287 0.582 0.532 1.517 2.189 0.647
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the same statistic, similar inferences can be drawn over 

China. For the 99th–90th percentile the positive biases 

depicted by the high-resolution models change to negative 

biases as depicted by the low-resolution models (Compare 

Fig. 13f–h). Similar inferences can be drawn for the heavy 

rain events (Fig. 13j–l).

A known source of error in the simulation of precipita-

tion in current models is the convective parameterization 

schemes. Also the increase of model resolution influences 

simulating mean and extreme precipitation. This is due to 

improved representation of complex topography and land 

surface processes (Kendon et al. 2012). A comparison of 

the results for the three resolutions in Fig. 13 confirms the 

results shown in Kendon et al. (2012).

4.2  Comparison of low and high percentile

Figure 14 illustrates the performances of individual models 

using Taylor diagrams of the 75th, 95th, and 99th percentile 

values against the reference. Over East Asia, most models in 

the high-resolution group perform better in terms of 75th, 

95th, and 99th percentile precipitation than the low-reso-

lution group, and especially for the 99th percentile. These 

results are consistent with those of Jiang et al. (2015), who 

shows that models with higher resolution produce relatively 

smaller errors in extreme precipitation. The low-resolution 

group reasonably well reproduces low percentile (i.e., 

75th percentile) precipitation, as shown by the correlation, 

standard deviation, and RMSE. The spatial correlation in all 

models over Southeast Asia (Indochina) is relatively high 

(0.5–0.9) despite having larger ratios of variance and RMSE. 

Over India, there exists a relatively large spread and a lower 

skill of spatial correlation for all models, and especially for 

variability of 99th percentile precipitation for models in the 

low- and high-resolution groups. In contrast, the medium-

resolution group shows a relatively better performance for 

the 99th percentile precipitation. Over Southeast Asia (Indo-

china) there exists outliers in 75th, 95th, and 99th percentile 

precipitation belonging to the low-resolution group. Among 

all of the models considered, the best skill scores are for 

CMCC-CM, MRI-AGCM3.2H, and CAM5 (all in the high-

resolution group), and the worst were for FGOALS-g2 and 

IPSL-CM5B-LR (all in the low-resolution group).

To confirm whether similar characteristics exist for dif-

ferent GCMs, the distribution of mean and extreme value 

is evaluated statistically through pattern correlation, the 

spatial standardized deviation ratio, RSME, and Taylor 

Fig. 7  Signal to noise ratio (SNR) for a climatology, b mean precipitation, c 95th percentile precipitation, d 99th–90th percentile precipitation 

and e 95th percentile of precipitation as fraction of climatology



1332 I.-W. Kim et al.

1 3

skill score calculates on the daily mean and the 95th per-

centile precipitation. Extreme precipitation simulated by 

CMIP5 models shows higher pattern correlation than does 

the mean over East Asia, India, and South East Asia, but 

shows lower skill according to the spatial standardized 

deviation ratio, RSME, and Taylor skill score. Over India 

and South East Asia, the skill score of extreme values 

for the low-resolution group is noticeably lower, indicat-

ing that extreme values have a higher model resolution 

dependency compared with mean values, which is consist-

ent with the findings of Volosciuk et al. (2015). Scaling 

the precipitation, the skill over India and Southeast Asia 

for the low-resolution group is remarkably improved as 

compared with the original value, which could imply that 

models with low-resolution fail to reproduce extreme rain-

fall owing to limitations of resolution or parameterization, 

but are able to moderately well capture the ratio of heavy 

rainfall with respect to climatology.

4.3  SNR distribution

The SNR distribution associated with mean and extreme value 

across the inter-models (Fig. 15) roughly appears similar to the 

datasets examined earlier. For daily mean and extreme rainfall 

over monsoon rainfall regions (i.e. Central India, East Asia, 

Fig. 8  Interannual variability of the 95th percentile precipitation during summer for a GPCP, b TRMM, c APHRODITE, d CPC-UNI, e ERA-

Interim reanalysis, f MERRA reanalysis, and g JRA55 reanalysis
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and Indochina), the SNR value for the high-resolution group 

is relatively higher than for the other groups, implying smaller 

inter-model spread. The relatively lower SNR for the medium- 

and low-resolution groups suggests that such models include 

large uncertainties. We find larger uncertainties in the right tail 

distribution of precipitation than we do for the daily mean and 

the 95th percentile precipitation over Central India, Southeast-

ern China, Indochina, and the maritime continents. In scaled 

extreme precipitation, the uncertainties for all three groups 

are noticeably reduced over East Asia, India, and Southeast 

Asia as compared with the original 95th percentile precipita-

tion. Most notably, the high-resolution group shows the largest 

consistency across inter-models.

5  Summary and conclusions

We analyzed daily extreme precipitation related to the Asian 

summer monsoon in fine-resolution observed datasets and 

CMIP5 simulations. Seven reference datasets from differ-

ent sources were examined to compare the precipitation 

extremes displayed by each of the datasets. The datasets con-

sidered were APHRODITE, CPC-UNI, TRMM, GPCP1DD, 

ERA-Interim, MERRA, and JRA55. Thus, the datasets con-

tain all the information available through rain gauges, satel-

lites and reanalysis. These datasets are based on different 

assimilation systems and have different horizontal resolu-

tions, thus could be considered independent of each other. 

Fig. 9  Decadal trends of the 95th percentile precipitation during summer for the period 1998–2007 in the datasets: a GPCP, b TRMM, c APH-

RODITE, d CPC-UNI, e ERA-Interim reanalysis, f MERRA reanalysis, and g JRA55 reanalysis
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Spatial patterns generated by these datasets on several statis-

tics related to extreme precipitation were compared. Results 

showed that there are robust differences among the datasets 

exhibiting extreme precipitation statistics. Maximum differ-

ences are observed over Southeast Asia compared to South 

and East Asia. From SNR analysis, mean and extreme rain-

fall over large topographic variations include more uncer-

tainties, however they appear relatively more consistent 

over the East Asia. Hence, whether an ensemble mean is an 

appropriate choice could be still debatable.

Through the simulation data outputs of 29 CMIP5 

models, we investigated whether GCM performance can 

realistically represent extreme precipitation and whether 

uncertainty in GCMs is affected by horizontal resolution. We 

divided the models in three categories, high, medium and 

low resolutions. In the high-resolution group, the bias distri-

butions of 95th percentile precipitation and the frequency of 

extreme precipitation showed generally smaller magnitudes 

than for the other two model groups. In particular, India 

(latitude 20–30°N) and Southeastern China were found to 

be the most dependent on horizontal resolution. As shown 

in Taylor diagram analysis, the performance of the high-

resolution group was relatively higher over East Asia, but 

lower over India. Several models in the low-resolution group 

produced outliers in high percentile precipitation. Among 

the sub-domains, East Asia had the best performance. SNR 

Fig. 10  Horizontal distributions of the 95th percentile of precipitation for summer during the period 1980–2007 in APHRODITE (reference 

dataset) and individual CMIP5 high-resolution models
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analysis provided better agreement across the models in the 

high-resolution group in terms of mean, 95th percentile pre-

cipitation, and the right tail of precipitation than it did for 

the medium- and low-resolution groups over Central India 

and East Asia. Just like the seven datasets, the scaled 95th 

percentile precipitation for JJA was more consistent than 

the distribution of the original 95th percentile value among 

the model results. In summary, there are robust differences 

Fig. 11  Same as Fig. 10 but for the medium-resolution models
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Fig. 12  Same as Fig. 10 but for the low-resolution models
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among the model outputs with respect to the simulation 

of extreme precipitation. In model results, this is expected 

and not surprising. Hence defining a multi-model ensemble 

mean could also be debatable.

Our studies have focused on the impacts of horizontal 

resolution with regard to extreme precipitation over Asia 

monsoon region, but the contribution of model resolution 

still remains debatable. Especially previous studies have 

demonstrated physical parameterization scheme of cli-

mate models also influences simulating precipitation (Im 

et al. 2008; Endo et al. 2012; Ali et al. 2015). Several 

studies have argued increasing horizontal resolution dra-

matically does not improve a climatology of large-scale 

(Bacheister et al. 2013; Wehner et al. 2014). Nevertheless, 

Fig. 13  Biases of 95th percentile precipitation (a–d); 99th–90th percentile precipitation (e–h); and the number of heavy rain days (≥ 30 mm/day) 

(i–l) in CMIP5 model composites of all the models, high-resolution, medium-resolution, and low-resolution models
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Fig. 14  Taylor diagrams of 75th (a–c), 95th (d–f), and 99th (g–i) per-

centile precipitation between APHRODITE and individual CMIP5 

models over East Asia, South Asia (India), and the Southeast Asia 

(Indochina) for High-resolution (red), Medium-resolution (blue), 

Low-resolution (green)
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Fig. 15  SNR for mean (a–c); 95th percentile of precipitation (d–f); 99th–90th percentile of precipitation (g–i), and scaled 95th percentile pre-

cipitation (j–l) for June–August (JJA) in CMIP5 model composites: high-resolution, medium-resolution, and low-resolution models
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our results showed high resolution simulations reproduce 

more reasonable daily extreme rainfall over Asian summer 

monsoon.
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