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Abstract

Multiple-input multiple-output (MIMO) communication systems have emerged as
one of the most promising technologies in the field of wireless communications,
allowing to exploit the spatial dimension as well as the time and frequency dimen-
sions. Thus, higher rates can be obtained by using the same bandwidth, which is
a scarce resource, and keeping a low transmit power, which is crucial in battery-
operated devices. For these reasons, MIMO technologies have been adopted by
many standards such as Long-Term Evolution (LTE), LTE advanced (LTE-A) and
Worldwide Interoperability for Microwave Access (WiMAX).

MIMO techniques can also be used in a multiuser scenario, where several users
share the spatial dimension causing multiuser interference. By means of precoding
and the use of multiple antennas at the transmitter, the signal of the different users
can be spatially multiplexed so that multiuser interference is mitigated even for
single-antenna users. These systems, known as multiuser multiple-input singular-
output (MU-MISO) systems, have attracted much attention in recent years since
they allow the development of small and inexpensive terminals, keeping the most
expensive hardware at the transmitter.

However, these benefits come at the cost of having a more complex system. On
the one hand, spatial multiplexing requires a considerable processing load that de-
pends on the size of the system: number of transmit antennas, number of receivers
and bandwidth. On the other hand, MIMO techniques require accurate channel
state information at the transmitter (CSIT). In frequency-division duplex (FDD)
systems, channel state information (CSI) has to be estimated at the receiver and
provided to the transmitter through the feedback link, hence reducing the effi-
ciency of the system. Therefore, this thesis is primarily focused on improving the
efficiency of precoding implementations and the performance of feedback schemes
in MU-MISO systems.

First, the problem of precoding is addressed. An analysis of some of the most uti-
lized precoding techniques is conducted, paying special attention to their perfor-
mance and computational complexity. The analysis reveals that those techniques
that make use of lattice reduction (LR) achieve the best performance. However, the
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computational complexity of LR makes its implementation difficult for practical
systems. The analysis reveals that zero-forcing (ZF), Tomlinson-Harashima pre-
coding (THP) and lattice reduction Tomlinson-Harashima precoding (LR-THP)
are the most suitable techniques for covering the entire range of performance and
computational complexity. An analysis of these techniques with imperfect CSIT
has also been performed. In this analysis, LR has proven to be a key technique
also when imperfect CSIT is available.

Next, parallel implementations of the precoding techniques on a graphic processing
unit (GPU) are presented and compared to implementations that use a central
processing unit (CPU). Since the implementations of THP and LR-THP have
shown to best fit the GPU architecture and since they also share many operations,
a GPU implementation of a reconfigurable THP scheme combined with LR has
been proposed. The reconfigurable nature of GPUs allows gating the LR stage off
when the user requirements are sufficiently guaranteed by the THP scheme, trading
computational cost and performance. Although this implementation achieves a
significant speed-up compared to its CPU implementation, its parallelism is limited
by the sequential nature of LR. Therefore, several strategies for the parallelization
of the LR problem are proposed and evaluated on different platforms: multicore
CPU, GPU and a heterogeneous platform consisting of CPU+GPU. Results reveal
that a GPU architecture allows a considerable reduction of the computational time
of the LR problem, especially in the heterogeneous platform.

The second part of this thesis addresses the problem of feedback in FDD sys-
tems. In these systems, a quantized version of the channel is usually provided by
the receivers through the feedback link. In order to keep a high efficiency, the
channel must be quantized using as few bits as possible. First, the use of the fre-
quency correlation to reduce the feedback information is explored. Two different
schemes based on vector quantization (VQ) and the Karhunen-Loève (KL) trans-
form, respectively, are presented and compared with existing schemes in terms
of performance and complexity. Results show that both techniques are able to
significantly reduce the feedback overhead by taking advantage of the frequency
correlation.

Finally, the spatial correlation is leveraged to reduce the feedback information.
A spatial statistical characterization of the spatial channel model (SCM) from
the 3rd Generation Partnership Project (3GPP) for a highly correlated environ-
ment is presented. Based on this characterization, a channel quantization scheme
for highly correlated environments is proposed. In order to obtain a statistical
characterization for both high and low correlations, a simpler model such as the
Kronecker correlation model is considered. Based on this characterization, two
quantization schemes have been presented and evaluated using a realistic channel
model such as the SCM. Results show that both schemes are able to reduce the
feedback overhead in highly and moderately correlated scenarios.
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Resumen

Los sistemas de comunicaciones con múltiples antenas o sistemas MIMO (multiple-
input multiple-output) se presentan como una de las tecnologías más prometedoras
en el campo de las comunicaciones inalámbricas, ya que permiten aprovechar la di-
mensión espacial además de las dimensiones de frecuencia y tiempo. De esta forma,
se pueden obtener tasas de transmisión más elevadas usando el mismo ancho de
banda, que es un recurso escaso, y manteniendo una potencia de transmisión baja,
lo cual es crucial para dispositivos alimentados por baterías. Por estas razones, la
tecnología MIMO ha sido adoptada en muchos estándares como Long-Term Evo-
lution (LTE), LTE Advanced y Worldwide Interoperability for Microwave Access
(WiMAX).

Las técnicas MIMO también pueden se pueden emplear en un escenario multi-
usuario, donde varios usuarios comparten la dimensión espacial provocando una
interferencia multiusuario. A través de la precodificación y del uso de múltiples
antenas en el transmisor, la señal de los diferentes usuarios puede ser multiple-
xada espacialmente de forma que se mitigue la interferencia multiusuario incluso
con usuarios de una sola antena. Estos sistemas, conocidos como sistemas MU-
MISO (multiuser multiple-input single-output), han atraído mucho la atención en
los últimos años ya que permiten el desarrollo de terminales pequeños y baratos,
manteniendo así el equipamiento más caro en el transmisor.

Sin embargo, estos beneficios conllevan un sistema más complejo. Por una parte, el
multiplexado espacial requiere una carga de procesado considerable, que depende
del tamaño del sistema: número de antenas transmisoras, número de receptores
y ancho de banda. Por otra parte, las técnicas MIMO requieren un conocimiento
del canal en transmisión o CSIT (channel state information at the transmitter)
preciso. En sistemas con duplexación por división en frecuencia o FDD (frequency-
division duplex), la información de canal o CSI (channel state information) debe
ser estimada en el receptor y proporcionada al transmisor a través del enlace de
realimentación, reduciendo así la eficiencia del sistema. Por lo tanto, esta tesis se
centra en la mejora de la eficiencia de las implementaciones de precodificación y en
el rendimiento de los esquemas de realimentación de canal en sistemas MU-MISO.
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El problema de la precodificación se aborda en primer lugar. Se ha llevado a cabo
un análisis de algunas de las técnicas de precodificación más usadas, prestando
especial atención a su rendimiento y a su complejidad. Este análisis revela que
aquellas técnicas que hacen uso de lattice reduction (LR) obtienen un mejor ren-
dimiento. Sin embargo, la complejidad computacional de la técnica LR dificulta
su implementación en la práctica. El análisis también revela que las técnicas zero-
forcing (ZF), Tomlinson-Harashima precoding (THP) y LR-THP son las técnicas
más adecuadas para cubrir todo el rango de rendimiento y complejidad compu-
tacional. Asimismo, se ha llevado a cabo un análisis de estas técnicas bajo CSIT
imperfecto. Dicho análisis ha demostrado que LR es una técnica muy importante
también para el caso de CSIT imperfecto.

A continuación, se han presentado implementaciones paralelas de técnicas de pre-
codificación sobre unidades de procesamiento gráfico o GPUs (graphic processing
unit), comparándose con implementaciones en unidades de procesamiento central
o CPU (central processing unit). Dado que las implementaciones de THP y LR-
THP han demostrado ser las que mejor se adaptan a la arquitectura de la GPU y
ya que tienen muchas operaciones comunes, se ha propuesto una implementación
sobre GPU de un esquema THP reconfigurable combinado con LR. La reconfigu-
rabilidad de las GPUs permite desactivar la etapa de LR cuando los requisitos
de los usuarios están garantizados por el esquema THP, combinando complejidad
computacional con rendimiento. Aunque esta implementación consigue una mejora
significativa respecto a la implementación sobre CPU, su paralelismo viene limita-
do por la naturaleza secuencial del problema LR. Por ello, se han propuesto varias
estrategias para la paralelización del problema LR que han sido evaluadas en dis-
tintas plataformas: CPU multi-núcleo, GPU y plataforma heterogénea que consiste
en CPU+GPU. Los resultados revelan que la arquitectura GPU permite reducir
considerablemente el tiempo de computación del problema LR, especialmente en
la plataforma heterogénea.

La segunda parte de la tesis trata el problema de la realimentación de canal en
sistemas FDD. En estos sistemas, los receptores normalmente proporcionan una
versión cuantificada del canal a través del canal de realimentación. Con el objetivo
de mantener una eficiencia alta, el canal debe ser cuantificado con los mínimos
bits posibles. En primer lugar, se explora el uso de la correlación en frecuencia
para reducir el volumen de información de realimentación. Se han presentado dos
esquemas diferentes basados en cuantificación vectorial o VQ (vector quantization)
y en la transformación Karhunen-Loève, respectivamente, y se han comparado con
esquemas existentes en términos de rendimiento y complejidad computacional. Los
resultados muestran que ambas técnicas son capaces de reducir significativamen-
te el volumen de información de realimentación aprovechando la correlación en
frecuencia.

Finalmente, la correlación espacial también se aprovecha para reducir la informa-
ción de realimentación. Se ha presentado una caracterización espacial estadísti-
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ca del modelo de canal SCM (spatial channel model) del 3GPP (3rd Generation
Partnership Project) para un entorno de alta correlación. Basado en esta carac-
terización, se propone un esquema de cuantificación de canal para entornos de
alta correlación. Con el objetivo de obtener una caracterización para alta y baja
correlación, se considera un modelo de correlación más sencillo como el mode-
lo de Kronecker. Basado en esta caracterización, se proponen dos esquemas de
cuantificación y se evalúan con un modelo de canal realista como el SCM. Los
resultados muestran que ambos esquemas son capaces de reducir la información
de realimentación en ambientes con correlación alta y moderada.

Palabras clave: comunicaciones inalámbricas, comunicaciones móviles, MIMO,
precoding, lattice reduction, GPU, limited feedback, cuantificación de canal.
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Resum

Els sistemes de comunicacions amb múltiples antenes o sistemes MIMO (multiple-
input multiple-output) es presenten com una de les tecnologies més prometedores
en el camp de les comunicacions sense fils, ja que permeten aprofitar la dimensió
espacial a més de les dimensions de freqüència i temps . D’aquesta manera, es
poden obtenir taxes de transmissió més elevades utilitzant el mateix ample de
banda, que és un recurs escàs, i mantenint una potència de transmissió baixa,
la qual cosa és crucial per a dispositius alimentats per bateries. Per aquestes
raons, la tecnologia MIMO ha estat adoptada en molts estàndards com Long-
Term Evolution (LTE), LTE Advanced i Worldwide Interoperability for Microwave
Access (WiMAX).

Les tècniques MIMO també poden es poden emprar en un escenari multiusuari,
on diversos usuaris comparteixen la dimensió espacial provocant una interferència
multiusuari. Mitjançant la precodificació i l’ús de múltiples antenes al transmissor,
el senyal dels diferents usuaris pot ser multiplexat espacialment de manera que
es mitigue la interferència multiusuari fins i tot amb usuaris d’una sola antena.
Aquests sistemes, coneguts com a sistemes MU-MISO (multiuser multiple-input
single-output), han atret molt l’atenció en els últims anys ja que permeten el
desenvolupament de terminals petits i barats, mantenint així l’equipament més
car en el transmissor.

No obstant això, aquests beneficis comporten un sistema més complex. D’una
banda, el multiplexat espacial requereix una càrrega de processament considerable,
que depèn de la grandària del sistema: nombre d’antenes transmissores, nombre
de receptors i ample de banda. D’altra banda, les tècniques MIMO requereixen
un coneixement del canal en transmissió o CSIT (channel state information at
the transmitter) precís. En sistemes amb duplexació per divisió en freqüència
o FDD (frequency-division duplex), la informació de canal o CSI (channel state
information) ha de ser estimada en el receptor i proporcionada al transmissor
a través de l’enllaç de realimentació, reduint així l’eficiència del sistema. Per
tant, aquesta tesi se centra en la millora de l’eficiència de les implementacions
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de precodificació i en el rendiment dels esquemes de realimentació de canal en
sistemes MU-MISO.

El problema de la precodificació s’aborda en primer lloc. S’ha dut a terme una
anàlisi d’algunes de les tècniques de precodificació més usades, prestant especial
atenció al seu rendiment i a la seua complexitat. Aquesta anàlisi revela que aque-
lles tècniques que fan ús de lattice reduction (LR) obtenen un millor rendiment.
No obstant això, la complexitat computacional de la tècnica LR dificulta la seua
implementació en la pràctica. L’anàlisi també revela que les tècniques zero-forcing
(ZF), Tomlinson-Harashima precoding (THP) i LR-THP són les tècniques més
adequades per cobrir tot el rang de rendiment i complexitat computacional. Així
mateix, s’ha dut a terme una anàlisi d’aquestes tècniques sota CSIT imperfecte.
Aquesta anàlisi ha demostrat que LR és una tècnica molt important també per al
cas de CSIT imperfecte.

A continuació, s’han presentat implementacions paral.leles de tècniques de preco-
dificació sobre unitats de processament gràfic o GPUs (graphic processing unit),
comparant-se amb implementacions en unitats de processament central o CPU
(central processing unit). Atès que les implementacions de THP i LR-THP han
demostrat ser les que millor s’adapten a l’arquitectura de la GPU i ja que tenen
moltes operacions comunes, s’ha proposat una implementació sobre GPU d’un es-
quema THP reconfigurable combinat amb LR. La reconfigurabilitat de les GPUs
permet desactivar l’etapa de LR quan els requisits dels usuaris estan garantits
per l’esquema THP, combinant complexitat computacional amb rendiment. En-
cara que aquesta implementació aconsegueix una millora significativa respecte a
la implementació sobre CPU, el seu paral.lelisme ve limitat per la naturalesa se-
qüencial del problema LR. Per això, s’han proposat diverses estratègies per a la
paral.lelització del problema LR que han estat avaluades en diferents plataformes:
CPU multi-nucli, GPU i plataforma heterogènia que consisteix en CPU+GPU. Els
resultats revelen que l’arquitectura GPU permet reduir considerablement el temps
de computació del problema LR, especialment a la plataforma heterogènia.

La segona part de la tesi tracta el problema de la realimentació de canal en siste-
mes FDD. En aquests sistemes, els receptors normalment proporcionen una versió
quantificada del canal a través del canal de realimentació. Amb l’objectiu de
mantenir una eficiència alta, el canal ha de ser quantificat amb els mínims bits
possibles. En primer lloc, s’explora l’ús de la correlació en freqüència per reduir
el volum d’informació de realimentació. S’han presentat dos esquemes diferents
basats en quantificació vectorial o VQ (vector quantization) i en la transforma-
ció Karhunen-Loève, respectivament, i s’han comparat amb esquemes existents
en termes de rendiment i complexitat computacional. Els resultats mostren que
ambdues tècniques són capaços de reduir significativament el volum d’informació
de realimentació aprofitant la correlació en freqüència.
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Finalment, la correlació espacial també s’aprofita per reduir la informació de re-
alimentació. S’ha presentat una caracterització espacial estadística del model de
canal SCM (spatial channel model) del 3GPP (3rd Generation Partnership Pro-
ject) per a un entorn d’alta correlació. Basat en aquesta caracterització, es proposa
un esquema de quantificació de canal per a entorns d’alta correlació. Amb l’ob-
jectiu d’obtenir una caracterització per a alta i baixa correlació, es considera un
model de correlació més senzill com el model de Kronecker. Basat en aquesta
caracterització, es proposen dos esquemes de quantificació i s’avaluen amb un mo-
del de canal realista com el SCM. Els resultats mostren que els dos esquemes són
capaços de reduir la informació de realimentació en ambients amb correlació alta
i moderada.

Paraules clau: comunicacions sense fils, comunicacions mòbils, MIMO, preco-
ding, lattice reduction, GPU, limited feedback, quantificació de canal.
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Acronyms

3GPP 3rd Generation Partnership Project

3GPP2 3rd Generation Partnership Project 2

a.k.a. also known as

ACQ adjacent conditional quantization

AoA angle of arrival

AoD angle of departure

API application programming interface

AS angular spread

ASIC application-specific integrated circuit

BC broadcast channel

BD block diagonalization

BER bit error rate

BS base station

CDI channel distribution information

CDM code-division multiplexing

CFR channel frequency response

CIR channel impulse response

CoMP coordinated multipoint

CP cyclic prefix

CPDF conditional probability density function

CPU central processing unit

CQ conditional quantization

CRAS-LLL cost-reduced all-swap LLL

CRMB-LLL cost-reduced modified block LLL
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Acronyms

CRS cell-specific reference signal

CSI channel state information

CSIR channel state information at the receiver

CSIT channel state information at the transmitter

CUDA compute unified device architecture

DFT discrete Fourier transform

DP dynamic parallelism

DPC dirty paper coding

DQ differential quantization

DS delay spread

e.g. exempli gratia

EPA Extended Pedestrian A

ETU Extended Typical Urban

FDD frequency-division duplex

FDM frequency-division multiplexing

FFT fast Fourier transform

FLOPS floating-point operations per second

FPGA field-programmable gate array

GBA greedy bit allocation

GPGPU general-purpose graphic processing unit

GPU graphic processing unit

GQ Gaussian quantization

GSC Gram-Schmidt coefficient

GSO Gram-Schmidt orthogonalization

HDSPA high-speed downlink packet access

i.e. id est

i.i.d. independent and identically distributed

ICI intercell interference

IDFT inverse discrete Fourier transform

ISI intersymbol interference

ITU International Telecommunication Union

JP joint processing

KL Karhunen-Loève
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Acronyms

LLL Lenstra-Lenstra-Lovász

LR lattice reduction

LR-THP lattice reduction Tomlinson-Harashima precod-
ing

LRAP lattice-reduction-aided precoding

LS least squares

LTE Long-Term Evolution

LTE-A LTE advanced

MAC multiple access channel

MB-LLL modified block LLL

MIMO multiple-input multiple-output

MISO multiple-input singular-output

MS mobile station

MSE mean square error

MU-MIMO multiuser multiple-input multiple-output

MU-MISO multiuser multiple-input singular-output

OFDM orthogonal frequency-division multiplexing

PDF probability density function

PQ polar quantization

PU2RC per user unitary rate control

QAM quadrature amplitude modulation

QoS quality of service

RAM random access memory

RB resource block

RBA real-valued bit allocation

RE resource element

RMS root mean square

RS reference signal

RVQ random vector quantization

SCM spatial channel model

SCME spatial channel model extended

SD standard deviation

SE sphere encoder
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Acronyms

SER symbol error rate

SIC successive interference cancellation

SIMD single-instruction multiple-data

SIMT single-instruction multiple-thread

SINR signal-to-interference-plus-noise ratio

SISO singular-input singular-output

SM streaming multiprocessor

SNR signal-to-noise ratio

SPMD single program, multiple data

SU-MIMO single-user multiple-input multiple-output

SVD singular value decomposition

TB thread-block

TDD time-division duplex

TDM time-division multiplexing

TDP thermal design power

THP Tomlinson-Harashima precoding

UE user equipment

VB V-BLAST, vertical Bell laboratories layered
space-time

VLSI very-large-scale integration

VP vector-perturbation

VQ vector quantization

WiMAX Worldwide Interoperability for Microwave Ac-
cess

ZF zero-forcing
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Nomenclature

x, X Scalar

x Vector

X Matrix

(·)T Transpose

(·)H Hermitian transpose

(·)∗ Scalar complex conjugate

Tr(·) Trace of a square matrix

det(·) Determinant of a square matrix

(·)−1 Matrix inversion

(·)† Moore-Penrose pseudoinverse

‖ · ‖F Frobenius norm of a matrix

‖ · ‖ Euclidean norm of a vector

(·, ·) Inner product

j
√

−1

| · | Absolut value of a complex number

∠(·) Phase of a complex number

Re{·} Real part of a complex number

Im{·} Imaginary part of a complex number

Z
m×n Set of m × n integer matrices

R
m×n Set of m × n real matrices

R
m×n
≥0 Set of m × n non-negative real matrices
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Acronyms

C
m×n Set of m × n complex matrices

CN (µ, σ2) Complex normal distribution with mean µ and
variance σ2

â = Q(a) Scalar quantization of a value

⌈·⌉ Ceil function (map a real number to the small-
est following integer)

⌊·⌋ Floor function (map a real number to the
largest previous integer)

⌈·⌋ Round function (map a real number to the
nearest integer)

(·)+ max(·, 0)

E[·] Mathematical expectation

var(·) Variance of a random variable

B Set

|B| Cardinality of a set

L Lattice

IN Identity matrix of order N

diag{x} Square diagonal matrix with the elements of x

on the main diagonal

Nt Number of antennas at the transmitter or base
station

M Number of mobile stations

K Number of subcarriers
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Chapter 1

Introduction

This chapter presents a brief introduction to wireless and mobile
communications and also describes the motivation of this thesis. Next,
the objectives and contributions of the thesis are presented and, finally,
the organization of this dissertation is described.

Wireless communications and particularly, mobile communications, are currently
experiencing an exceptional growth and development. The appearance of smart-
phones and tablets, the applications and services enabled by these devices and
the possibility of having Internet access everywhere have motivated this growth.
Some interesting statements and predictions supporting this growth can be found
in [1–3]:

• The mobile data traffic in 2013 was nearly 18 times the size of the entire
global Internet in 2000, and it is expected to grow at a compound annual
growth rate of around 50% in 2014–2019 (45% and 61% according to [1] and
[2], respectively). As seen in Figs. 1.1 and 1.2, this is mainly due to mobile
traffic generated by the smartphones and new high data-consuming services
such as video.

• Global mobile devices and connections reached 7 billion in 2013 and, by
the end of 2014, it is expected that the number of mobile-connected devices
will exceed the number of people on earth. In addition, as seen in Fig. 1.3,
the number of LTE subscribers is expected to reach 2.6 billion by 2019,
representing around 30% of total mobile subscriptions.

• In average, a 4G connection generated 14.5 times more traffic than a non-4G
connection in 2013. Thus, the increase in the number of 4G users translates
into a large growth in the mobile data traffic.
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Chapter 1. Introduction

Figure 1.1: Expected evolution of global mobile traffic per month [1].

Figure 1.2: Expected evolution of mobile data traffic per application [1].
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Figure 1.3: Expected evolution of mobile subscriptions [1].

Due to the increase of the data traffic and the scarcity of other resources such
as spectrum or transmit power, two of the main requirements for modern and
future wireless communication systems are high spectral and energy efficiencies.
MIMO communication systems have emerged as one of the most promising tech-
nologies [4, 5]. In these systems, the transmitter and the receiver are equipped
with several antennas. MIMO techniques allow to leverage the spatial dimension
in addition to the time and frequency dimensions, which are fully utilized in tra-
ditional communication systems. Thus, higher rates can be obtained by using
the same bandwidth and by keeping a low transmit power, which is crucial in
battery-operated devices.

MIMO techniques can also be used in a multiuser scenario, such as in cellular
systems. This case is slightly different since several users are sharing the spatial
dimension, causing multiuser interference [6]. However, thanks to the multiple
antennas at the transmitter and the use of precoding, the multiuser interference
can be mitigated even when the users are equipped with only one antenna. Thus,
precoding allows the spatial separation of different users that share the same time
and frequency resources.

Orthogonal frequency-division multiplexing (OFDM) has also become a very at-
tractive technique in wireless communications during the last decades. OFDM is
used to mitigate the effects of intersymbol interference (ISI) in frequency selective
channels, turning a broadband frequency selective channel into a set of parallel nar-
rowband frequency flat subchannels [7]. A high spectral efficiency is also achieved
since the frequency separation between subcarriers is the minimum required to
preserve the orthogonality. MIMO techniques can enhance the performance of
OFDM by exploiting the spatial domain. OFDM simplifies the signal processing
in MIMO techniques, since it is performed over narrowband flat-fading channels
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Chapter 1. Introduction

and each channel can be processed independently. This combination, known as
MIMO-OFDM, has been adopted by many standards such as IEEE 802.11n/ac,
WiMAX, LTE, LTE-A and, presumably, 5G [8–12].

However, these benefits come at the expense of a more complex system. On the one
hand, the use of the spatial dimension entails some extra processing, which can be
considerable depending on the number of antennas and OFDM subcarriers [8]. In
addition, MIMO techniques usually require an accurate CSIT [6]. In time-division
duplex (TDD) systems, the transmitter can easily obtain this information using
the reciprocal properties of the channel. However, in FDD systems, CSI has to be
estimated at the receiver and provided to the transmitter through the feedback
channel, hence reducing the efficiency of the system [13].

1.1 Motivation

As seen in the previous section, precoding techniques in multiuser multiple-input
multiple-output (MU-MIMO) systems allow spatial multiplexing without requiring
multiple antennas at the receivers. This fact has motivated the use of MU-MIMO
techniques in many communication standards, since it allows to limit the most
expensive hardware to the transmitter and the development of small and inex-
pensive terminals [6]. For this reason, this thesis focuses on multiuser systems
with single-antenna receivers, a.k.a. MU-MISO systems. However, the addition of
the spatial dimension introduces a new signal processing stage whose complexity
depends on the system size, i.e., the number of transmit antennas, the number of
receivers and the bandwidth or number of subcarriers.

Different precoding techniques for MU-MIMO systems have been proposed that
vary in performance and computational complexity. Dirty paper coding (DPC)
is a theoretical precoding technique that allows the cancellation of the interfer-
ence without incurring a power penalty. However, its high complexity restricts its
implementation in practical systems and suboptimal techniques have to be used.
The main suboptimal techniques are ZF, THP and other non-linear techniques
that make use of LR. Given a basis, LR essentially consists in find another basis
whose vectors are more orthogonal and shorter according to the Euclidean norm.
Although LR can involve the solution of an NP problem, a polynomial-time algo-
rithm can be found by relaxing some conditions [14]. LR-based techniques have
demonstrated to achieve the best performance among the various suboptimal pre-
coding techniques [15, 16]. However, their practical implementation is not easy
because of the LR computational complexity.

Due to the growth experienced by data traffic in wireless communication systems,
the bandwidth offered by the latest standards has increased. For instance, band-
widths of up to 100 MHz can be used in LTE-A. The use of OFDM in MU-MISO
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1.1 Motivation

systems allows to turn a broadband channel into a set of parallel narrowband
channels where the MU-MISO techniques are performed independently. Hence,
the complexity of this system is lower than it would be in a broadband system.
However, the complexity of MU-MISO-OFDM systems is still considerably higher
compared to traditional singular-input singular-output (SISO) systems.

In MU-MISO-OFDM, precoding has to be performed for every OFDM subcarrier
in a limited time. In order to achieve real-time communication, the available time
to perform the precoding operations corresponds approximately to the duration of
an OFDM symbol. In LTE-A, the duration of an OFDM symbol is around 70 µs
and up to 6000 subcarriers are supported. Taking into account these values, up
to 6000 precoding processes have to be performed in 70 µs. Thus, very efficient
implementations of precoding techniques are necessary to fulfill this requirement.

Motivated by a similar problem involving detection in MIMO-OFDM systems,
many-core architectures such as GPUs have been proposed for the efficient im-
plementation of signal processing algorithms [17]. These architectures contain
hundreds of processor cores and can accelerate the computation through the par-
allelization of the different operations [18, 19]. Thus, the implementation of pre-
coding algorithm on GPUs can help fulfill the aforementioned time requirements
of MU-MISO-OFDM systems.

Apart from the extra processing, another disadvantage of MU-MIMO systems is
the requirement of an accurate CSIT [6]. This thesis is focused on FDD systems,
where a quantized version of the channel information is usually provided by the
receivers through the feedback link. In order to keep a high efficiency, the feedback
information has to be provided using as few bits as possible. Thus, designing
feedback schemes to reduce the amount of feedback information is a key aspect
for future wireless communication systems [13].

Time, frequency and spatial correlation are usually leveraged to reduce the amount
of feedback information. Feedback schemes which take advantage of the time and
frequency correlation can be considered as extensions of the feedback schemes
in SISO systems to the MIMO case. These schemes perform in a per-antenna
manner, ignoring the spatial domain that usually shows a considerable correlation.
On the other hand, feedback schemes that consider the spatial correlation can
be considered specific to MIMO systems. These schemes deal with the spatial
correlation as an additional resource along with time and frequency correlation in
order to reduce the feedback overhead.
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1.2 Objectives

The objectives of this thesis are mainly focused on improving the efficiency of pre-
coding implementations and the performance of feedback schemes in MU-MISO-
OFDM systems. Particularly, the main objectives of this thesis are:

• Evaluation of the performance and computational complexity of the existing
precoding techniques, including a fair comparison among them.

• Efficient implementation of the existing precoding techniques on different
parallel architectures.

• Development of new channel quantization schemes that contribute to the
reduction of the feedback information by taking advantage of the frequency
and spatial correlations.

1.3 Contributions

The main contributions of the thesis are:

Comparison of the performance and computational complexity of the

existing precoding techniques

A comparison of the performance and computational complexity of some
of the most used precoding techniques, such as ZF [20], THP [21], sphere
encoder (SE) [22] and LR-based precoding techniques [15, 16], has been
carried out in a unified framework. The computational complexity analysis
has separated the different operations into two types: channel-related opera-
tions and signal-related operations. This separation allows the evaluation of
the computational complexity independently of the channel characteristics.

Efficient implementation of the existing precoding techniques

A parallel GPU implementation of precoding techniques in MU-MISO-
OFDM systems has been proposed. The GPU implementation has been
compared with its CPU counterpart, achieving significant speed-ups. In
addition, the LR stage, which has shown to be the main bottleneck in the
GPU implementations, has been addressed independently. The implemen-
tation of LR on a heterogeneous platform consisting of CPU+GPU has been
proposed and compared to implementations of CPU and GPU, demonstrat-
ing that it achieves a significant improvement.
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Design of channel quantization schemes leveraging the frequency cor-

relation

Two channel quantization schemes that take advantage of the frequency
correlation to reduce the feedback overhead have been proposed. The first
scheme is based on VQ. The performance achieved by different configu-
rations of the quantizer has been evaluated. Results show an interesting
trade-off between performance and computational complexity. The second
scheme is based on scalar quantization. The scheme consists of using the
KL transform to decorrelate the channel information in the frequency do-
main before quantizing it. This scheme has been compared with a scheme
based on time-domain channel quantization, showing a better performance
in realistic scenarios.

Design of channel quantization schemes leveraging the spatial correla-

tion

Three channel quantization schemes that take advantage of the spatial corre-
lation to reduce the feedback information have been proposed. All schemes
have been evaluated in a realistic channel model such as the SCM from the
3GPP. The first scheme is based on a spatial statistical characterization of
the SCM itself. Due to the complexity of this model and the large number
of parameters involved, the statistical characterization has been obtained
only for the high correlation case. The proposed quantization scheme has
shown to successfully reduce the feedback overhead in highly correlated en-
vironments.

In order to obtain a more complete spatial statistical characterization, the
Kronecker correlation model has been considered. This simpler model allows
the characterization for high and low correlations. Based on this characteri-
zation, two channel quantization schemes have been presented and evaluated
using the SCM. Results show that the proposed schemes outperform some
existing schemes in highly and moderately correlated environments.

1.4 Organization

First, this thesis presents an introduction to MIMO systems and some other use-
ful concepts as preliminaries. Next, the dissertation is organized in two parts:
precoding and limited feedback. The chapters are organized as follows:

Chapter 2 This chapter contains an introduction to MIMO systems. Partic-
ularly, single-user and multiuser MIMO systems, coordinated systems and
massive MIMO systems are analyzed. Additionally, an introduction to MIMO-
OFDM is presented. Next, a review is given of the main concepts and
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schemes in the topic of limited feedback in wireless communication. Fi-
nally, the channel models used throughout this dissertation are described
and a brief overview of lattices is also provided.

Part I This part contains the chapters related to precoding.

Chapter 3 This chapter contains the description of different precoding tech-
niques (ZF, SE, THP, LRAP-linear, LRAP-VB and LR-THP) assuming
a perfect CSIT. Their performance in terms of bit error rate (BER) and
sum-rate, as well as their computational complexity are analyzed and
compared.

Chapter 4 In this chapter, a comparison among the performance of ZF,
THP, and LR-THP is carried out when imperfect CSIT is available.
Again, the performance is shown in terms of BER and sum-rate.

Chapter 5 This chapter presents different implementations of the precod-
ing algorithms presented in previous chapters. First, a brief introduc-
tion to GPUs as general computing devices is provided. Next, the
different precoding algorithms are implemented on a GPU for a MU-
MISO-OFDM system, and the implementations of THP and LR-THP
are optimized and joined in a reconfigurable implementation. Finally,
the problem of LR is addressed independently and several parallel im-
plementations are proposed.

Part II This part contains the chapters related to limited feedback.

Chapter 6 This chapter contains a general introduction to scalar and VQ.
Next, two different channel quantization schemes that allow leveraging
the frequency correlation to reduce the feedback overhead are presented.
The first scheme is based on VQ. The performance achieved by different
configurations of the quantizer are evaluated. The second scheme is
based on scalar quantization, and its performance is compared with
other existing techniques.

Chapter 7 This chapter contains the spatial statistical characterization of
the SCM and the Kronecker correlation model. Based on these char-
acterizations, three channel quantization schemes have been presented
and evaluated considering the SCM. The scheme based on the charac-
terization of the SCM has shown to outperform existing schemes in a
highly correlated environment, whereas the schemes based on the Kro-
necker correlation have shown to outperform existing schemes for both
low and high correlation.
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Chapter 8 Finally, the conclusions obtained throughout the thesis and some sug-
gestions for future research are presented. In addition, a list of the publica-
tions related to this thesis is also included.
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Chapter 2

Preliminaries

This chapter contains a brief overview of MIMO communication
systems, from the well-studied single-user MIMO case to the massive
MIMO system, which is the newest research field in MIMO commu-
nications. The different MIMO systems are presented throughout the
different sections of this chapter. Next, a review of different feedback
schemes and channel models for MIMO systems are presented. Finally,
the concept of lattices and the problem of lattice reduction is introduced
in the last section.

2.1 MIMO systems

MIMO systems have been the subject of extensive research in the last decades
due to the promising performance that they offer. In systems that are power
or bandwidth limited, MIMO techniques increase the system robustness or the
throughput by using multiple transmit and receive antennas [23, 24]. The main
concept in MIMO communication is to introduce the signal processing in the spa-
tial domain at both the transmitter and the receiver. Thus, the signal can be
combined to improve the reliability of the communication by adding diversity or
by increasing the data rate through spatial multiplexing. In addition, these sys-
tems benefit from a multipath environment, which traditionally has been one of
the main limitations of wireless communication systems [25]. However, MIMO
systems have a higher complexity and require more hardware resources than SISO
systems.
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2.1.1 Single-user

A single-user multiple-input multiple-output (SU-MIMO) system consists of a
transmitter equipped with Nt antennas and a receiver equipped with Nr anten-
nas, as can be seen in Fig. 2.1. In SU-MIMO systems, the channel is modeled as a
matrix that contains the propagation effects from every transmit antenna to every
receive antenna. The received signal in a narrowband SU-MIMO system can be
expressed as

y = Hx + n, (2.1)

where vector y ∈ C
Nr×1 contains the received signal at every receive antenna,

the element hij of matrix H ∈ C
Nr×Nt represents the channel gain from the

jth transmit antenna to the ith receive antenna, vector x ∈ C
Nt×1 represents

the transmitted signal and vector n ∈ C
Nr×1 is the noise vector whose elements

are independent and identically distributed (i.i.d.) circularly-symmetric complex
Gaussian variables, with zero mean and unit variance, CN (0, 1). The transmitter
is assumed to be power limited with an average power constraint across all the
antennas, E[xHx] ≤ P [26]. Since the noise power is normalized, the power of the
transmitted signal is commonly referred as the signal-to-noise ratio (SNR).

. 
. 
.#1

#Nt

. 
. 
.

#Nr

#1

Figure 2.1: SU-MIMO system model.

The performance of SU-MIMO systems considerably depends on the knowledge
of the channel matrix that the transmitter and receiver have. Different situations
according to the amount of CSI are usually analyzed. The ideal case takes place
when both transmitter and receiver have perfect CSI. For static or low mobility
channels, an accurate channel state information at the receiver (CSIR) can be
obtained through channel estimation using pilot signals. More details on channel
estimation techniques in modern communication systems can be found in [11,
Chap. 8] and references therein. In general, CSIT is harder to obtain. In TDD
systems, the transmitter can obtain a partial CSIT using the reciprocal properties
of the channel. However, in FDD systems, CSIT has to be provided by the receiver
through a feedback channel. In high mobility environments, other assumptions
including a statistical knowledge of the channel or channel distribution information
(CDI) are used. For simplicity, in this chapter we examine the capacity of a SU-
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MIMO system assuming a perfect CSI. A more detailed analysis can be found
in [26] and [27, Chap. 2].

For constant channels and assuming perfect CSIT and CSIR, the capacity of a
SU-MIMO system (expressed in bps/Hz) can be expressed as:

C = max
Q:Tr(Q)=P

log2 det
(

I + HQH†
)

, (2.2)

where Q = E[xxH ] is the covariance matrix of the transmitted signal and the
optimization is performed over it [24].

The SU-MIMO channel can be converted into min(Nt, Nr) parallel and non-in-
terfering SISO channels through the singular value decomposition (SVD) of the
channel matrix [24]. The SVD of matrix H is a factorization of the form

H = UΣVH , (2.3)

where U ∈ C
Nr×Nr and V ∈ C

Nt×Nt are unitary matrices and Σ ∈ R
Nr×Nt

≥0 is a
diagonal matrix that contains the singular values σi of H. There are RH non-zero
singular values, where RH ≤ min(Nt, Nr) is the rank of H. Pre-multiplying the
original signal by V, i.e. transmit precoding, and post-multiplying the received
signal by UH , i.e. receiver shaping, (2.1) results in

ỹ = Σx̃ + ñ, (2.4)

where ỹ = UHy, x̃ = VHx and ñ = UHn. It is important to note that n

and ñ have the same distribution since U is unitary. As Σ is a diagonal matrix
with RH positive elements, (2.4) describes RH parallel and non-interfering SISO
channels. Since the different SISO channels may have different gains, σi, the power
allocation over the different channels can be adjusted to optimize the system rate.
The optimal power allocation of the ith parallel channel can be calculated as

Pi =

(
µ − 1

σ2
i

)+

, 1 ≤ i ≤ RH, (2.5)

where µ is the solution to
∑RH

i=1 Pi = P , which can be obtained with the water-
filling algorithm [24, 28]. Thus, the capacity of the MIMO channel can be expressed
as

C =

RH∑

i=1

(
log2(µσ2

i )
)+

, (2.6)

which is equivalent to (2.2) with the optimal covariance matrix obtained as Q =
VPVH , where P is a diagonal matrix with the values Pi in its diagonal [27]. The
capacity obtained in (2.6) is a theoretical bound and can require techniques that
are difficult to implement in real systems due to their high complexity. In practice,
techniques with a lower complexity are used.
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SU-MIMO techniques can be divided in two categories: diversity techniques and
multiplexing techniques [4]. Diversity techniques consist of transmitting the signal
over independent fading paths in time, frequency or space. In MIMO communi-
cations, spatial diversity is used since it does not require additional transmission
time or bandwith. In the MIMO channel, up to NtNr links with independent
fading can be found. A carefully design of the transmitted signal and a suitable
combination of the received signal allow the reduction of the amplitude variability
of the resultant signal compared to a SISO link [5]. This technique is known as
space-time coding [29, 30].

As stated before, SU-MIMO systems can achieve an increase of up to min(Nt, Nr)
in the capacity compared with SISO systems. This improvement is achieved
through spatial multiplexing of up to min(Nt, Nr) streams. Spatial multiplex-
ing can be used even without CSIT. In this case, the transmitter sends indepen-
dent signals through each one of the transmit antennas and the receiver has to
determine the original signal despite the interference introduced by the MIMO
channel. There are many techniques to do so, which differs in performance and
complexity [31–33].

SU-MIMO techniques can increase the reliability of the communication (through
spatial diversity) and the data rate (through spatial multiplexing). Thus, the
trade-off between spatial multiplexing and diversity in each of the spatial streams
plays an important role in MIMO communication systems and it has been analyzed
in [34], [35, Chap. 9] and [36, Chap. 8].

2.1.2 Multiuser

A MU-MIMO system consists of a base station (BS) equipped with Nt antennas
that serves to M mobile stations (MSs) or user equipments (UEs), as seen in
Fig. 2.2. The mth MS is equipped with Nm antennas.

MU-MIMO differs from SU-MIMO in the fact that the different users share the
spatial dimension, causing multiuser interference. This interference is managed
through the use of multiple antennas, allowing the spatial separation of the dif-
ferent users. On the uplink or multiple access channel (MAC), the MU-MIMO
techniques appeared as a generalization of SU-MIMO for the multiuser case. How-
ever, the downlink or broadcast channel (BC) presents more challenges since it is
expected to be more rate-demanding in practical systems [6].

The advantages of MU-MIMO over SU-MIMO have motivated an extensive re-
search on this field over the last few years. The main advantages are listed be-
low [6]:
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Figure 2.2: MU-MIMO system.

• A gain proportional to the number of antennas at the BS is obtained through
multiuser multiplexing schemes.

• User scheduling techniques provide higher immunity against the main lim-
itations in SU-MIMO schemes like ill-conditioned channels. Furthermore,
unlike SU-MIMO, line-of-sight propagation does not cause degradation in
spatial multiplexing schemes.

• MU-MIMO allows spatial multiplexing without requiring multiple antennas
at the MSs, keeping most part of the hardware at the transmitter side and
allowing the use of small and inexpensive terminals.

However, all these benefits come at the cost of a higher complexity in the system.
Most of MU-MIMO techniques require CSIT, which usually has to be provided by
the MSs. Thus, the efficiency of the uplink decreases, especially in wideband or
high-mobility systems. In addition, tasks such as scheduling, precoding or feedback
in these scenarios may suffer from a prohibitive computational complexity.

Uplink

In the uplink or MAC (see Fig. 2.3), the received signal at the BS can be expressed
as

y =

M∑

m=1

HH
mxm + n, (2.7)

where y ∈ C
Nt×1 is the received signal at the BS, Hm ∈ C

Nm×Nt is the channel
matrix for the mth MS, xm ∈ C

Nm×1 is the signal transmitted by the mth MS and
n ∈ C

Nt×1 represents i.i.d. circularly-symmetric complex Gaussian noise vector,
15
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with zero mean and unit variance, CN (0, 1). The power constraint for the mth
MS is expressed as Tr(Qm) ≤ Pm, where Qm is the covariance matrix of the
transmitted signal, Qm = E[xmxH

m].
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Figure 2.3: Uplink of a MU-MIMO system.

In MU-MIMO systems, the capacity is not given by a scalar value but by a
M -dimensional region that contains the set of all rate vectors (R1, . . . , RM ) simul-
taneously achievable by all M MSs. Assuming a perfect knowledge of the different
channel matrices, Hm, and any set of power constraints P = (P1, . . . , Pm), the
capacity region of the MIMO MAC has been obtained in [26, 37] and is given by

CMAC(P, HH) =

=
⋃

Qm≥0,

Tr(Qm)≤Pm,∀m

{
(R1, . . . , RM ) :
∑M

m=1 Rm ≤ log2 det
(

I +
∑M

m=1 HH
mQmHm

)
}

. (2.8)

Considering the transmitted signals as zero-mean Gaussian random variables with
spatial covariance matrix Qm, the set of covariances matrices (Q1, . . . , Qm) cor-
responds to a M -dimensional polyhedron of achievable rates

{
(R1, . . . , RM ) :

M∑

m=1

Rm ≤ log2 det

(
I +

M∑

m=1

HH
mQmHm

)}
, (2.9)

and the capacity region is equal to the union over all covariance matrices satisfying
the trace constraints of all such polyhedrons. The corner points of each polyhedron
can be achieved by successive decoding, in which users’ signals are successively
decoded and subtracted out of the received signal. For the two-user case, each set
of covariance matrices corresponds to a pentagon, as shown in Fig. 2.4 [26].
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R2 ≤ log2 det(I+H2P2H2)
H

R1 ≤ log2 det(I+H1P1H1)
H

R1+R2 ≤ log2 det(I+H1P1H1+H2P2H2)
H H

R1

R2

Figure 2.4: Capacity region of the MIMO MAC for M = 2 and N1 = N2 = 1.

Downlink

In the downlink or BC (see Fig. 2.5), the received signal at the mth MS can be
expressed as

ym = Hmx + nm, (2.10)

where ym ∈ C
Nm×1 contains the received symbols, Hm ∈ C

Nm×Nt is the downlink
channel matrix and nm is the i.i.d. circularly-symmetric complex Gaussian noise,
CN (0, 1), at the mth MS. Vector x ∈ C

Nt×1 represents the transmitted signal,
which contains information for all the MSs, and its covariance matrix is given
by Q = E[xxH ]. An example of transmitted signal is x =

∑M
m=1 xm, where xm

contains the information for the mth MS. The power allocated to the mth MS
is determined by Tr(Qm), where Qm is the spatial covariance matrix given by

Qm = E[xmxH
m], and the sum-power constraint is expressed as

∑M
m=1 Tr(Qm) =

Tr(Q) ≤ P [26]. Per antenna power constraints have been considered in [38].

A general review of MU-MIMO systems has been presented in [39]. From an in-
formation theoretic point of view, the multiuser interference can be pre-cancelled
with no extra power cost in transmission using the concept of DPC. If the interfer-
ence is perfectly known at the transmitter, DPC states that the channel capacity
is the same as if the interference was not present [40]. It has been proven that
DPC is optimal in the sense that it achieves the sum-capacity of the Gaussian

17



Chapter 2. Preliminaries

. 
 .
  

.

#1

#Nt

. 
. 
.

#Nr,1

#1

. 
. 
.

#Nr,M

#1

. 
 .
  
.

BS

MS

#1

MS

#M

Figure 2.5: Downlink of a MU-MIMO system.

MIMO BC [41–44]. The components of the achievable rate vector are given by

Rπ(m) = log2

det
(

I + Hπ(m)

(∑
j≥m Qπ(j)

)
HH

π(m)

)

det
(

I + Hπ(m)

(∑
j>m Qπ(j)

)
HH

π(m)

) , (2.11)

where π(m) represents the encoding ordering of the mth MS. The dirty paper
region is defined as the convex hull of the union of all the rate vectors over all the
covariance matrices that fulfill the power constraint Tr(Q1 + . . . + QM ) ≤ P and
over all permutations (π(1), . . . , π(M)) [26, 27]:

CDPC(P, H) =
⋃

π,Qm

r(π, Qm), (2.12)

where r(π, Qm) is the rate vector obtained from (2.11). Figure 2.6 shows the DPC
region for a system where a BS equipped with Nt = 2 antennas serves to M = 2
single-antenna MSs [26].

The dirty paper region may be difficult to compute since functions in (2.11) are not
either concave or convex and an exhaustive search over all the covariance matrices
that meet the power constraint is required. In [42, 45, 46], the capacity region is
obtained making use of the duality relationship between MIMO MAC and MIMO
BC. Through this duality, the dirty paper region of the BC with power constraint
P is obtained from the union of regions of the dual MAC that meet the sum power
constraint P . Although the DPC technique requires an extremely high complexity,
it has given rise to numerous suboptimal techniques involving linear and nonlinear
precoding [15, 20–22, 47].
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Figure 2.6: Dirty paper region for Nt = 2, M = 2, N1 = N2 = 1, H1 = [1 0.5],
H2 = [0.5 1] and P = 10 [26].

2.2 Coordinated systems

Interference is one of the main limitations of traditional wireless communication
systems [48]. In mobile communications systems, the intercell interference (ICI)
forces to reduce the reuse of the channels (time, frequency or codes) along the
network, which entails a reduction in the overall spectral efficiency expressed in
bps/Hz/BS [49]. Alternatively, a full reuse can be kept at the cost of a high
interference at the cell edge. In this area, the data rate strongly decays as a
consequence of the ICI, causing an inhomogeneous distribution of the data rate
along the network. The primary results about the effect of the interference in
wireless communication systems are collected in [50–54].

Network coordination emerges as a technique capable of reducing the ICI and
increasing the data rate at the cell edge, thus improving the spectral efficiency of
the system. This technique is also known as cooperative MIMO [55] and network
MIMO [56] in the literature. The main idea of network coordination resides in the
use of the backhaul links that interconnect the different BSs in order to allow a
coordinated transmission and/or reception.

As a first approach, a system where a set B of BSs (equipped with Nt antennas each
one) are connected to a central unit through backhaul links of infinite capacity,
was considered [57–59]. Ignoring the individual power constraints of the BSs or
antennas, this system can be viewed as a large MU-MIMO with a ‘super’ BS
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with distributed antennas. Assuming a synchronous reception from all the BSs
and neglecting the interference from outside the coordinated cluster, the received
signal at the mth MS can be expressed as (see Fig. 2.7):

ym =

|B|∑

b=1

Hm,bxb + nm, (2.13)

where Hm,b ∈ C
Nm×Nt is the downlink channel matrix between the bth BS and

the mth MS, vector xb ∈ C
Nt×1 represents the transmitted signal by the bth BS

and nm is noise vector at the mth MS. Aggregating the channel matrices and the
transmitted signals of the different BSs, (2.13) can be expressed as

ym = Hmx + nm, (2.14)

where Hm =
[
Hm,1, . . . , Hm,|B|

]
∈ C

Nm×|B|Nt is the aggregated channel matrix

and x = [xH
1 , . . . , xH

|B|]
H ∈ C

|B|Nt×1 is the aggregated transmitted signal. Thus,

up to |B|Nt MSs can be spatially multiplexed using MU-MIMO techniques.

b=3
b=1

b=2

BS1

BS2

BS3

Figure 2.7: Example of a coordinated cluster of |B| = 3 cooperating sectors and Nt = 4
transmit antennas per sector.

However, the practical implementation of this system entails more realistic assump-
tions such as per-BS or per-antenna power constraints [60, 61], finite capacity of the
backhaul [62–64], some latency in the communications between the BSs [64] and
asynchronous reception at the MSs [65]. In addition, the computational complex-
ity of some algorithms increases rapidly as the dimensions of the system become
larger [49].

Within the standard LTE-Advanced, the network coordination techniques are
known as coordinated multipoint (CoMP) transmission and reception [66]. A
general description of this technique can be found in [11, 49, 67–69]. The per-
formance evaluation of CoMP in practical implementations has been presented in
[70, 71].
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2.3 Massive MIMO systems

Massive MIMO systems, a.k.a. very large MIMO systems, appear to avoid the
limitations related to the backhaul communication due to the coordination of
different BSs. Massive MIMO systems consist of a very large array of antennas
serving a smaller number of MSs. Whereas LTE-Advanced allows for BSs with
up to 8 antennas, massive MIMO entails the use of hundreds of antennas. In this
case, the number of MSs is not limited by the number of antennas but by the
difficulty of obtaining CSIT from a large number of MSs [72]. Different antenna
configurations and deployments are shown in Fig. 2.8.

Figure 2.8: Some possible antenna configurations and deployment scenarios for a mas-
sive MIMO base station [73].

The main advantage of massive MIMO in cellular systems is the ability to consid-
erably reduce the ICI with low-complexity techniques [74]. In addition, massive
MIMO enhances even more the advantages of MIMO [72, 73]:

• Massive MIMO can increase the capacity around 10 times through spatial
multiplexing, improving the radiated energy-efficiency in the order of 100
times.

• Keeping the total transmitted power constant and increasing the number of
antennas results in a lower power per antenna. Thus, low-power components
can be used in massive MIMO systems, resulting in less expensive equipment.
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• Due to its additional degrees of freedom, massive MIMO systems have a
higher robustness against interference. Additionally, they are also more ro-
bust against the failure of the antenna units.

With very large antenna arrays, some random properties become deterministic,
such as the distribution of the singular values of the channel matrix. In addition,
the channel vectors for the different users become more orthogonal as the number
of antennas increases [72]. These effects allow the simplification of the MAC
techniques and reduce the effects of fading dips [73].

One of the main problems of these systems lies in obtaining CSIT. First, the
channel estimation process suffers from pilot contamination due to the reuse of
non-orthogonal pilot sequences in contiguous cells [74]. This problem has been
analyzed and some solutions are proposed in [75–79]. Second, the amount of CSI
sent by the MSs in the uplink is larger since it is proportional to the number of
antennas at the BS. Generally, this problem is solved using TDD systems, which
allow the use of the reciprocal properties of the channel [74]. Other problem
which complicates the practical implementation of this system involves the physical
installation of large arrays in space-limited BSs [80, 81].

The capacity and achievable rates of these systems under different assumptions
has been analyzed in [74, 79, 82–88]. Results presented in [89, 90] involve some co-
operation between BSs, but they can be useful since they present the performance
for the large system limit. Some downlink techniques such as resource allocation,
modulation and precoding are studied in [91–93]. Finally, [80] covers the practi-
cal implementation of these systems, showing system-level simulations, and [94]
presents a prototype with Nt = 64 antennas serving to M = 15 MSs

2.4 MIMO-OFDM

OFDM has become a very attractive technique in wireless communications during
the last decades. OFDM was first proposed in [95, 96], but its high implementation
complexity limited its use. However, since an efficient implementation using the
discrete Fourier transform (DFT) was proposed in [97], it has been used in many
systems and adopted in different standards, such as IEEE 802.11a, IEEE 802.11g,
IEEE 802.11n, 802.16 WiMAX (see [98, Chap. 2], [8] and references therein) and
LTE/LTE-Advanced (see [11, Chap. 5], [99, Chap. 3]).

OFDM is used to mitigate the effects of ISI in frequency selective channels, turn-
ing a broadband frequency selective channel into a set of parallel narrowband fre-
quency flat subchannels. A high spectral efficiency is achieved since the frequency
separation between subcarriers is the minimum required to preserve the orthogo-
nality. In addition, different signal constellations and different power loadings can

22



2.4 MIMO-OFDM

be used along the different subcarriers in order to optimize the throughput or to
assure a certain quality of service (QoS).

In OFDM systems, K information symbols are transmitted in parallel on K OFDM
subcarriers. Thus, the time duration of an OFDM symbol is K times larger than
the symbol in a single-carrier system. The OFDM modulation can be efficiently
implemented through the inverse discrete Fourier transform (IDFT) and a digital-
to-analog converter. The ISI caused by the channel spread is eliminated by the
cyclic prefix (CP), which acts as a guard interval and whose length must be at
least equal to the length of the multipath channel. In addition, it allows using
the circular convolution as the linear convolution between the channel and the
transmitted signal, allowing the use of efficient algorithms such as the fast Fourier
transform (FFT) [7].

MIMO techniques can enhance the performance of OFDM by leveraging the spa-
tial domain. OFDM simplifies the signal processing in MIMO techniques, since
they are performed over narrowband flat-fading channels and each channel can
be processed independently [100]. A general description of these systems can be
found in [7, 8, 101], [102, Chap. 9], and some field results are presented in [100].

For each pair of transmit and receive antennas, the time-domain channel impulse
response (CIR) is given by

hCIR = [hCIR[0], . . . , hCIR[L − 1]]
T

, (2.15)

where L denotes the number of samples in the CIR. The channel frequency re-
sponse (CFR) for K ≥ L OFDM subcarriers is obtained as

hCFR =
√

KFLhCIR, (2.16)

where hCFR = [hCFR[0], . . . , hCFR[K − 1]]
T

and FL is an K × L matrix obtained
by taking the first L columns of a unitary K × K DFT matrix, whose elements
are given by [FL]k,l = (1/

√
K)e−j2πkl/K .

Assuming a cyclic prefix whose length is longer than the maximum delay of any
channel path, the received signal on the kth subcarrier in a MIMO system can be
expressed similarly to 2.1 as

y[k] = H[k]x[k] + n[k], (2.17)

where H[k] represents the CFR matrix, vector x[k] includes the transmitted sym-
bols and n[k] is the noise vector on the kth subcarrier [5]. Thus, (2.17) can be
seen as K multiple narrowband MIMO systems in parallel.
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2.5 Limited Feedback

As seen in sections 2.1-2.3, the performance of MIMO communications systems
can be extremely strengthened if CSI is available at the transmitter. Channel
adaptive signaling allows the continuous adaptation of the transmitted signal to
the propagation conditions of the channels.

In FDD systems, a reasonably accurate CSIR can be easily obtained through
techniques such as training. However, CSIT cannot be obtained directly from the
reverse link since the uplink and downlink channels are separated in frequency
and are usually uncorrelated. In these systems, CSIT must be provided by the
receivers preferably through a low-rate feedback channel, commonly referred to as
limited feedback schemes. The amount of feedback information depends on the
system scenario and, generally speaking, is larger when the channel introduces
some form of disturbance, such as spatial or multiuser interference [13]. Thus,
designing limited feedback schemes to reduce the amount of feedback information
plays an important role in the design of multiuser communication systems.

Limited feedback schemes for SU-MIMO and MU-MIMO systems have been ex-
tensively studied in the literature (see [13] and references therein, and the special
issues [103, 104]). This section presents a review of some of the most relevant
limited feedback schemes for MIMO systems proposed in the existing literature.

2.5.1 Single-user

Although CSIT is not required to achieve the diversity gain (e.g., space-time
codes), it is necessary in SU-MIMO techniques such as beamforming or inter-
ference mitigation at the transmitter side.

Covariance adaptation

From an information-theoretic point of view, the covariance adaptation technique
allows the characterization of the performance of the system in terms of the maxi-
mum achievable rate [24]. In [105], the receiver provides some unquantized statis-
tical CSI and the optimal covariance matrix of the transmitted signal is obtained
from this information at the transmitter. A general review of feedback schemes
based on statistical information has been carried out in [106].

In quantization-based feedback systems, both the transmitter and the receiver are
assumed to have an identical codebook of possible covariance matrices. Making
use of the CSIR, the receiver can select the optimal covariance matrix from the
codebook and send its binary index to the transmitter. Lloyd’s algorithm is used
in [107] to efficiently design the codebook while random codebooks are analyzed
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in [108] showing that the capacity loss of MIMO systems decreases exponentially as
a function of the number of feedback bits. If temporal correlation between channel
realizations is considered, a better performance can be obtained through feedback
schemes based on gradient methods for channel tracking [109] or codebooks which
are dynamically adapted to leverage the correlation [110].

Beamforming

The importance of accurate CSIT in beamforming techniques can be extracted
from the analysis in [111, 112]. The simplest feedback scheme in beamforming
systems is antenna selection, where the receiver sends back the index of the trans-
mit antenna which maximizes the SNR and the data is transmitted only from this
antenna [113], [114, Chap. 9]. The work in [115] assumes a similar envelope of the
channel fading from all the antennas and only quantizes their phases using a uni-
form quantization. A more complex feedback scheme based on VQ is considered
in [116], where the space of the channel vectors is divided into regions and the
index of the region with a lower distortion is selected and sent to the transmitter.
The performance of beamforming is analyzed as a function of the level of CSIT.
A review of other different VQ approaches is presented in [117].

An alternative approach based on beamforming quantization instead of channel
quantization has also been used in limited feedback systems. Since the receiver has
a more accurate CSI than the transmitter, the receiver selects the beamforming
vector from a codebook and send its index back to the transmitter. This approach
has been widely employed in works such as [113, 118, 119]. The problem of the
optimal codebook design for spatially uncorrelated Rayleigh fading channel has
been addressed in [120], showing that it is equivalent to the Grassmannian line
packing problem. Basically, this problem consists of maximizing the sine of the
minimum angular separation between any two vectors of the codebook. A system-
atic codebook construction based on rotations and scalings of the Grassmannian
line packing for correlated channels has been proposed in [121].

The Grassmannian line packing problem is still far from trivial and requires a
high computational complexity. An alternative approach to generate the beam-
forming codebooks is using VQ techniques. A Lloyd-like algorithm that itera-
tively constructs the codebook is proposed in [122]. A rate-distortion analysis
and high resolution analysis of VQ have been carried out in [123] and [124], re-
spectively. Codebook designs for correlated Rayleigh fading channels have been
performed making use of the rate-distortion analysis [123] and the high resolution
analysis [125]. A much more simple technique such as random generation of the
codebooks has been proposed in [126] and thoroughly analyzed in [127].
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Spatial multiplexing

Similarly to the beamforming case, the first limited feedback schemes focused on
channel quantization [128]. The performance of the subsequent feedback schemes
was improved by allowing the receiver to directly design the precoder. The simplest
feedback schemes for precoding is the antenna subset selection technique [129,
130]. In these systems, the receiver selects the optimum subset among all possible
transmit and receive antennas according to some performance (maximum rate,
minimum error, etc.). Codebooks for linear precoding based on Grassmannian
line packing [131] and random vector quantization (RVQ) [132, 133] have also
been proposed.

Broadband systems

Latest wireless communications standards, such as LTE/LTE-A or WiMAX, have
adopted the MIMO-OFDM technology in the physical layer. As seen in section
2.4, characterizing the full CSI may require much information for a large number
of OFDM subcarriers or a long CIR. Since the signal processing is performed on a
per-subcarrier basis, this information is required at the transmitter and receiver.
CSIR at the pilot subcarriers can be obtained through training, but it can be
difficult to obtain in the rest of subcarriers. The work in [134, 135] proposes to
quantize the beamforming vectors and the precoding matrices of a set of subcarriers
(i.e., pilot subcarriers) and send them back to the transmitter. Taking advantage
of the frequency correlation, the beamforming vectors at the rest of subcarriers
are obtained by spherical interpolation. Other interpolation methods based on
the Grassmannian line packing problem have been proposed, such as the weighted
least squares approach presented in [136] or the geodesic interpolation in [137].

An alternative approach with a lower complexity than interpolation is clustering.
This technique consists of dividing all the subcarriers into different sets or clusters,
and the subcarriers within the same set use the same beamforming vector or
precoding matrix [134, 135, 138].

2.5.2 Multiuser

Multiuser communication systems introduce an additional degree of freedom and
can provide a large improvement in the system rate when the spatial resources are
spread among multiple users [13]. However, the amount of CSIT required increases
with the number of users and it is essential for multiuser interference mitigation.
Since this thesis is focused on MU-MIMO systems with single-antenna MSs, the
review of literature pays special attention to single-antenna receivers.

The main difference between feedback schemes for single-user systems and mul-
tiuser systems is the amount of CSI at the receiver side. While in single-user
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systems the receiver can easily estimate the full channel matrix, MSs usually can-
not cooperate in multiuser systems and do not have any information about the
rest of MSs. Thus, each MS is unable to obtain the optimal precoder or beam-
former [139].

Narrowband systems

Limited feedback schemes for multiuser FDD systems can be mostly classified into
two categories. In the first category, the MSs quantize the channel vector/matrix
(or a function of it) and send the quantized information to the BS. One of the first
schemes was proposed in [140], where the feedback information consists of pilot
symbols or reference signals (RSs) received at the MSs. Due to the quantization
error, multiuser interference cannot be fully cancelled and the system becomes
interference limited, leading to a system rate ceiling for high SNR [141–143]. The
advantages of quantized (digital) feedback over unquantized (analog) feedback in
terms of achievable rates have been analyzed in [144]. In the analysis, the effects
of imperfect channel estimation and delayed feedback have been considered.

Regarding the quantized information that is fed back, two different feedback ap-
proaches are compared in [145]. The first approach is based on channel quanti-
zation and the second is based on linear precoder quantization. In the scenario
under evaluation, the approach based on channel quantization has shown a higher
sum-rate. Feedback based on channel quantization is also used in [146] to deter-
mine the number of scheduled MSs that maximizes the throughput per antenna.
Another advantage of this approach is that it does not restrict the precoding tech-
nique, allowing the use of non-linear precoding [139, 147]. However, the approach
based on precoder quantization often leads to a higher performance when linear
precoding is used [148, 149].

The limited feedback schemes in the second category are based on opportunistic
beamforming [13]. The work in [150] uses multiple spatial beams chosen randomly
according to a known distribution. The different MSs provide the received signal-
to-interference-plus-noise ratio (SINR) through the feedback link and the MSs with
the highest SINRs are scheduled. The asymptotic analysis shows that the system
throughput achieves the same scaling law of the sum-rate capacity when perfect
CSI is available, as also shown in [151]. The special case of 1-bit of quantized
SINR is analyzed in [152], showing that multiuser diversity is achievable even
with a minimum feedback overhead. Using ranking-based CSIT can improve the
temporal fairness between MSs, as shown in [153]. Interesting trade-offs between
the number of feedback bits, the number of MSs and the SINR are presented
in [154].

Although, opportunistic beamforming techniques show a good performance when
the number of MSs in the system is large, its performance quickly degrades for
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practical values of MSs. This problem is addressed in [155]. Authors in this
work propose a framework where the problems of scheduling and beamforming
are decoupled. The main idea is that, once the scheduling has been performed,
additional CSIT can be requested in order to improve the performance of the
beamforming (compared to random beamforming). Per user unitary rate control
(PU2RC) is another technique that appears as a generalization of opportunistic
beamforming, where the codebook is constructed from multiple orthonormal basis.
The performance of PU2RC for an asymptotically large number of MSs is analyzed
in [156].

Broadband systems

Limited techniques for multiuser broadband systems appear as a generalization of
the single-user case, where subcarrier clustering (the total number of subcarriers
are divided into sets) is often used in order to leverage frequency correlation [134].
A feedback scheme based on clustering and only providing the information about
the strongest clusters is proposed in [157]. Similarly, [158] proposes three different
feedback schemes for opportunistic beamforming in MIMO-OFDMA systems. In
these schemes, each user only feeds back the indices of those subcarriers where
their rate is maximized according to different expressions. The scheme in [159]
incorporates antenna combining and subcarrier clustering to further reduce the
quantization distortion.

The scheme proposed in [160] is also based on subcarrier clustering, where the
spectral width of the clusters is chosen according to the coherence bandwidth.
In addition, the bit allocation regarding the quantization of the different clusters
is analyzed. A comparison between analog feedback, direction quantized feed-
back [141] and time-domain channel quantized feedback is carried out in [161].
Similarly to the single-user case, subcarrier clustering has been used in the first
two schemes in order to exploit frequency correlation [134]. Results show that time
domain quantization is simpler to implement and achieves the best performance.

Coordinated systems

In coordinated systems, MSs have to estimate and provide the CSI related to
multiple BSs. In addition, BSs need to share CSI and MS data via backhaul links
of finite capacity. Thus, limited feedback schemes are also crucial in order to
decrease the high amount of CSI necessary in coordinated systems [49, 162].

Different degrees of cooperation have been proposed in the literature, offering a
trade-off between performance and the amount of overhead on the backhaul and
on the feedback link. In order to limit the base station cooperation, dynamic
clustering is proposed in [163, 164]. Only a subset of MSs is selected to work with
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coordinated techniques in [163], whereas a greedy technique for the clustering
formation is used in [164].

Static clustering is considered in [165], where it is shown that most of the sum rate
benefits from coordinated systems can be achieved with small-sized clusters (about
7 cells), leading to an important decrease in the signaling overhead compared to the
global coordination case. The use of overlapping clusters in [166] performs very
close to the full coordinated system. Practical aspects of the trade-off between
achievable rate and backhaul usage are discussed in [167].

Additional research is mainly focused on reducing the feedback overhead, which
also brings a reduction to the amount of information on the backhaul. A subspace-
based channel quantization method and a hierarchical codebook design that lever-
ages the temporal correlation are proposed in [168]. A limited feedback technique
based on selective feedback is proposed in [169], where the MSs only have to pro-
vide those channel coefficients that are above a threshold. In addition, scheduling
and precoding schemes are also proposed in order to reduce the backhaul overhead.

The development of signal processing techniques involving local CSI and MS data
has also become important in coordinated systems. The objective is to achieve a
performance close to the ideal cooperative case with a reduced overhead mainly on
the backhaul, but also on the feedback link [49]. Distributed precoding techniques
where each BS only has local CSI have been analyzed in [63, 170]

2.6 Channel models

The statistical properties of the propagation channel determines the performance
of MIMO systems. In fact, most of the techniques used in these systems are
strongly related to the propagation conditions. Thus, characterizing the MIMO
channel is of key importance in the design and simulation of MIMO communication
systems. Detailed overviews of the existing channel models have been presented
in [171, 172]. This section collects the channel models that are used throughout
this thesis. As in the previous section, MU-MIMO systems with single-antenna
MSs are considered.
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2.6.1 Gaussian i.i.d. model

From a theoretical point of view, it can be useful to consider the elements of the
narrowband MIMO channel matrix as i.i.d. circularly-symmetric complex Gaus-
sian random variables, with zero mean and unit variance, CN (0, 1) (e.g., [23]).
This model corresponds to a rich scattering propagation environment and a large
spacing between elements in the transmit antenna array. Although the analysis of
this model can be useful (see [173]), it does not reflect the effects of limited scat-
tering environments and small antenna separations present in practical systems.

2.6.2 Kronecker model

The Kronecker model introduces the effect of the correlation in the channel model.
This model assumes that the spatial covariance matrix can be written as the
Kronecker product of the transmit and receive covariance [174, 175]. Focusing on
a multiuser system with single-antenna MSs, the channel vector for the mth MS
is expressed as

hm = C1/2
m gm, (2.18)

where Cm = E
[
hmhH

m

]
∈ C

Nt×Nt is the spatial covariance1 matrix at the trans-
mitter experienced by the mth MS and gm ∈ C

Nt×1 is a vector whose ele-
ments are i.i.d. circularly-symmetric complex Gaussian variables, with zero mean

and unit variance, CN (0, 1). The matrix C
1/2
m denotes any matrix that meets

C
1/2
m (C

1/2
m )H = Cm. Previous research [177, 178] has shown that the Kronecker

model results in poor estimates for capacity.

2.6.3 Extended ITU model

In order to evaluate the 20 MHz LTE channel, the International Telecommu-
nication Union (ITU) extended the pedestrian and urban models presented in
[179, 180]. The main parameter that describes these channel models is the power
delay profile of the multipath fading. The Extended Pedestrian A (EPA) and the
Extended Typical Urban (ETU) have a root mean square (RMS) delay spread of
43 and 991 ns, respectively. The power delay profile of these models are presented
in [181] and collected in Table 2.1.

1In this case, the covariance matrix matches the correlation matrix because the elements of
hm have zero mean and unit variance [176]. Thus, this matrix will be referred to by using both
terms.
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Table 2.1: Power delay profiles of extended ITU models.

EPA model ETU model

Tap number Relative
delay (ns)

Relative mean
power (dB)

Relative
delay (ns)

Relative mean
power (dB)

1 0 0.0 0 -1.0

2 30 -1.0 50 -1.0

3 70 -2.0 120 -1.0

4 80 -3.0 200 0.0

5 110 -8.0 230 0.0

6 190 -17.2 500 0.0

7 410 -20.8 1600 -3.0

8 2300 -5.0

9 5000 -7.0

2.6.4 Spatial channel model

The SCM was developed by the 3GPP and 3GPP2 in order to evaluate differ-
ent MIMO techniques for high-speed downlink packet access (HDSPA) in a more
realistic channel [182]. The SCM is a parametric stochastic channel model that
characterizes the MIMO channels through geometrical parameters such as angle
of arrival (AoA) and angle of departure (AoD). The received signal is modeled as
a superposition of waves that describe the changes in the CIR between each pair
of antennas.

In the SCM, system simulations consist of multiple BSs deployed in a multicell
network with multiple MSs. Three different propagation environments are avail-
able: suburban macrocell, urban macrocell and urban microcell. The number of
scatterer cluster determine the number of resolvable paths, which is fixed to S = 6.
The delay spread (DS) and the angular spread (AS) of the different paths are ran-
dom variables. The number of subpaths within a path is R = 20, and their angular
offsets are also fixed and depend on the different propagation environments. Fig-
ure 2.9 shows the angular parameters of the SCM for the case of single-antenna
MSs and Table 2.2 shows the parameters used in each of the environments.
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Figure 2.9: Angular parameters in SCM specifications (see [182] for more details)

Following [182], the coefficients of the S-multipath channel between each single-
antenna MS and the nth antenna of the sector array are given by:

hns =

√
PsσPLσSF

R

R∑

r=1

( √
GBS(θs,r,AoD) exp (j [kdn sin(θs,r,AoD) + Φs,r]) ×

exp (jk‖v‖ cos (θv) t)

)
,

(2.19)
where

Ps is the normalized power of the sth path (the total power

for the S paths is equal to one,
∑S

s=1 Ps = 1).
σPL is the path loss. As seen in Table 2.2, the model of path

loss depends on the environment.
σSF is the lognormal shadow fading.
R is the number of subpaths per path.
θs,r,AoD is the AoD for the rth subpath of the sth path.
GBS(θs,r,AoD) is the BS antenna gain of each array element.
k is the wave number 2π/λ, where λ is the carrier wavelength.
dn is the distance from the nth antenna element to the refer-

ence antenna element (n = 1) at the BS.
Φs,r is the phase of the rth subpath of the sth path.
‖v‖ is the magnitude of the MS velocity vector.
θv is the angle of the MS velocity vector.

One of the characteristics of the SCM channel is that the channel is generated with-
out explicitly setting any spatial correlation parameter. A more detailed analysis
of the spatial correlation in the SCM channel can be found in [183]. A back-
ward compatible extension to the SCM, known as SCME (SCM-Extended), was
presented in [184]. The main contribution of this extension is an increase of the
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Table 2.2: Environment parameters in SCM specifications (see [182] for more details).

Parameter Suburban

macrocell

Urban

macrocell

Urban microcell

Mean AS at BS 5° 8°, 15° 19°

Per-path AS at BS
(fixed)

2° 2° 5°

Mean AS at MS 68° 68° 68°

Per-path AS at MS
(fixed)

35° 35° 35°

Mean total RMS DS 0.17 µs 0.65 µs 0.251 µs

Log-normal shadow-
ing SD

8 dB 8 dB NLOS: 10 dB
LOS: 4 dB

Path loss model 31.5+

35 log10(d)

34.5+

35 log10(d)

NLOS: 34.53 + 38 log10(d)

LOS: 30.18 + 26 log10(d)

channel model bandwidth from 5 MHz to 100 MHz. A comparison between these
two channel models and the WINNER channel model is carried out in [185].

2.7 Lattices

The concept of lattices has been used in many different fields of mathematics, such
as geometry, algebra, number theory or group theory, and many fields of engineer-
ing, such as in signal processing for wireless communications, image processing or
cryptography. In this section, a brief overview of lattices and the problem of LR
is presented. A more detailed review of LR can be found in [186–188].

2.7.1 Introduction

A real-valued lattice L is a discrete additive subgroup of the real Euclidean space
R

n. Any lattice can be characterized by a set of m linearly independent vectors
b1, . . . , bm ∈ L as

L(B) = {Bz, z ∈ Z
m} =

{
m∑

i=1

zibi, zi ∈ Z

}
, (2.20)

where B = [b1, . . . , bm] is the basis matrix of the lattice. The integers n and
m ≤ n are called the dimension and the rank of the lattice, respectively. If m = n,
the lattice is called a "full-rank" lattice [188].
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Two important features of a lattice are the fundamental parallelotope and the
Voronoi region. The fundamental parallelotope of the lattice (a.k.a. fundamental
region) consist of the set of points that can be written as

P(B) =

m∑

i=1

aibi, 0 ≤ ai < 1. (2.21)

Since the lattice basis is not unique, the fundamental parallelotope is not unique
either. However, the volume of the different fundamental parallelotopes is the
same for all the basis of a given lattice, and is given by

|L| =
√

det (BT B). (2.22)

The Voronoi region is defined as the set of points that are closer to the origin than
to any other lattice point. This region can be expressed as

V(L) = {x | ‖x‖ ≤ ‖x − y‖ ∀y ∈ L} . (2.23)

Unlike the fundamental parallelotope, the Voronoi region is independent of the
lattice basis. Figures 2.10 and 2.11 show the fundamental parallelotope and the
Voronoi regions of some two-dimensional real-valued lattices.

The "quality" of a lattice basis can be obtained in terms of the orthogonality defect,
defined as [186]

ξ(B) =
1

|L|
m∏

i=1

‖bi‖. (2.24)

The orthogonality defect fulfills ξ(B) ≥ 1, with equality if and only if B is orthog-
onal. The condition number is also used to measure the "quality" of a lattice basis
and can be calculated as

κ(B) = ‖B‖‖B−1‖ =
σmax

σmin
, (2.25)

where σmax and σmin are the maximum and the minimum singular value of B,
respectively.

The previous definition of lattice can be straightforwardly generalized to the com-
plex case as

L(B) =
{

Bz, z ∈ Z
m
j

}
=

{
m∑

i=1

zibi, zi ∈ Zj

}
, (2.26)

where bi ∈ C
n, Z

m
j = Z

m + jZm and Zj = Z + jZ denoting sets of Gaussian
integers. Since the matrix product x = Bz can be expressed through its equivalent
real-valued form,

[
Re{x}
Im{x}

]
=

[
Re{B} −Im{B}
Im{B} Re{B}

] [
Re{z}
Im{z}

]
, (2.27)
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Figure 2.10: Illustration of two-dimensional example lattices showing their fundamental
parallelotope.
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Figure 2.11: Illustration of two-dimensional example lattices showing their Voronoi
region.

any m-dimensional complex-valued lattice in C
n can be expressed using a 2m-

dimensional real-valued lattice in R
2n [186].

2.7.2 Lattice reduction

The problem of LR has become very important in many fields of engineering, such
as in signal processing for communications or cryptography.

Given a basis, LR consists of finding another basis whose vectors are more or-
thogonal and shorter, according to the Euclidean norm, than the original ones.
The Minkowski or Hermite-Korkine-Zolotareff reductions are the techniques that
obtain the best performance in terms of reduction, but also the ones with a higher
computational cost [189]. Both techniques require the calculation of the shortest
lattice vector, which has been proven to be a NP-hard problem (see [186], [187,
Chap. 14], [190, Chap. 5] and references therein).
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In order to reduce the complexity of LR techniques, a polynomial computing time
algorithm was proposed by Lenstra, Lenstra and Lovász, known as the LLL al-
gorithm [14]. This algorithm, which can be seen as an extension of Gauss reduc-
tion [186] or a relaxation of Hermite-Korkine-Zolotareff conditions [188], obtains
the reduced basis by applying two different operations over the original basis:
size-reduction (or linear combination between columns) and column swap. Al-
though some other reduction techniques have been proposed afterwards, the LLL
algorithm is used the most due to the good trade-off between performance and
computational complexity.

LLL algorithm

Let B∗ = (b∗
1, . . . , b∗

m) ∈ R
n×m denote the associated orthogonal basis of B,

calculated by the Gram-Schmidt orthogonalization (GSO) process as

b∗
1 = b1, (2.28)

b∗
i = bi −

i−1∑

j=1

µi,jb∗
j for 2 ≤ i ≤ m, (2.29)

where

µi,j =
(bi, b∗

j )

‖b∗
j ‖2

for 1 ≤ j < i ≤ n (2.30)

are known as the Gram-Schmidt coefficient (GSC). Thus, matrix B can be ex-
pressed as

B = B∗ · UT , (2.31)

where matrix U = [µi,j ] ∈ R
m×m is lower triangular with unit diagonal.

Definition 1 Given a lattice L with basis B ∈ R
n×m, associated orthogonal basis

B∗ ∈ R
n×n and Gram-Schmidt coefficients µi,j, B is called LLL-reduced if the

following conditions are satisfied [14]:

|µi,j | ≤ 1

2
for 1 ≤ j < i ≤ n (2.32)

‖b∗
i + µi,i−1b∗

i−1‖2 ≥ δ‖b∗
i−1‖2 for 1 < i ≤ n,

1

4
< δ < 1 (2.33)

Condition (2.33) can be equivalently expressed as:

‖b∗
i ‖2 ≥

(
δ − µ2

i,i−1

)
‖b∗

i−1‖2 for 1 < i ≤ n,
1

4
< δ < 1 (2.34)

The value of the constant δ in (2.33) and (2.34) may affect to the "quality" of
the reduced basis and the computational complexity of the LLL algorithm. The
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typical value is δ = 3/4, which was the value used in [14]. Although δ = 1 is the
value that obtains the lattice with the best orthogonal properties, it is not often
utilized because the algorithm might not run in polynomial time [191, Chap. 2].

The original LLL algorithm is shown in Algorithm 1. The input of the algorithm
consists of the matrix containing the basis vectors, B = [b1, . . . , bm], and the
reduction parameter δ. In this "in-place" version of the LLL algorithm, the original
basis B is overwritten by the reduced basis B̃. The transformations performed on
matrix B are registered in the transformation matrix T, so that

B̃ = BT, (2.35)

where T is an unimodular matrix, | det(T)| = 1, with integer elements.

Two different procedures are used in the LLL algorithm: SizeReduction(k,l)
and Swap(k). Procedure SizeReduction(k,l) checks for the condition (2.32). If
the condition is fulfilled, the procedure does nothing. Otherwise, the procedure
reduces bk by subtracting integer µ times bl. The reason of rounding µk,l to the
closest integer µ is to assure that the new bk remains in the lattice. Then, the GSC
are updated. Procedure Swap(k) swaps the vectors bk and bk−1 and updates the
orthogonal basis and the GSC.

In the main loop of the algorithm, size reductions are applied over contiguous vec-
tors. Then, if condition (2.34) is fulfilled, size reductions are applied between the
current vector and the previous ones and the index k is increased. If the condition
is not met, a vector swap is carried out and k is decreased. The termination of
the algorithm is not straightforward, but it has been proven that the LLL runs in
a polynomial time. More details about the algorithm ant its implementation can
be found in [14, 187, 188, 191].
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Algorithm 1 The LLL algorithm [14]

1: Input: B, δ
2: Output: LLL reduced basis, T

3: Compute B∗ and U with the Gram-Schmidt algorithm
4: T = Im, k = 2
5: while k ≤ m do

6: SizeReduction(k,k − 1)
7: if ‖b∗

k
‖2 < (δ − µ2

k,k−1)‖b∗
k−1‖

2 then

8: Swap(k)
9: k = max(2, k − 1)

10: else

11: for l = k − 2→ 1 do

12: SizeReduction(k,l)
13: end for

14: k = k + 1
15: end if

16: end while

17: procedure SizeReduction(k,l)
18: if |µk,l| >

1
2

then

19: µ = ⌈µk,l⌋, bk = bk − µ · bl, tk = tk − µtl, µk,l = µk,l − µ
20: for j = 1→ l − 1 do

21: µk,j = µk,j − µ · µl,j

22: end for

23: end if

24: end procedure

25: procedure Swap(k)
26: Swap bk with bk−1

27: Swap tk with tk−1

28: for j = 1→ k − 2 do

29: Swap µk,j with µk−1,j

30: end for

31: b
∗p
k−1

= b∗
k

+ µk,k−1b∗
k−1

32: µp

k,k−1
= (b∗

k−1, b
∗p
k−1

)/‖b∗p
k−1
‖2

33: b
∗p
k

= b∗
k−1 − µp

k,k−1
b

∗p
k−1

34: for i = k + 1→ m do

35: µp

i,k−1
= µi,k−1 · µ

p

k,k−1
+ µi,k · ‖b

∗
k
‖2/‖b∗p

k−1
‖2

36: µp

i,k
= µi,k−1 − µi,k · µk,k−1

37: µi,k = µp

i,k
, µi,k−1 = µp

i,k−1

38: end for

39: b∗
k−1 = b

∗p
k−1

,b∗
k

= b
∗p
k

,µk,k−1 = µp

k,k−1

40: end procedure
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Chapter 3

Precoding with Perfect CSIT

This chapter contains the description of several sub-optimal mul-
tiuser precoding techniques to allow multiuser spatial multiplexing. The
techniques analyzed include SE, ZF, THP and techniques based on LR.
The performance and the computational cost of the different techniques
presented in [192] are shown.

In the last decades, different precoding techniques allowing spatial multiplexing of
several users have been proposed to improve the spectral efficiency of multiuser
multiple-input multiple-output (MU-MIMO) communication systems. DPC is a
theoretical scheme that allows the precancellation of the non-casually known inter-
ference at the transmitter without incurring a power penalty [40]. For a given user
ordering, DPC is serially applied over the users allowing to pre-subtract the inter-
ference caused by users with lower indices [26]. Although it has been proven that
DPC achieves the whole capacity region of the MIMO broadcast channel [41–44],
it suffers from a high level of complexity. In practical systems, precoding schemes
requiring lower complexity are usually utilized.

This thesis focuses on the downlink of MU-MIMO systems with single-antenna
MSs, a.k.a. MU-MISO. The received signal at the mth MS has been expressed
in (2.10). However, this equation can be expressed in a more compact way by
aggregating the received signal of the different users in a vector as

y = Hx + n, (3.1)

where y ∈ C
M×1 contains the received signal for the M MSs, H = [h1 . . . hM ]

T ∈
C

M×Nt is the aggregated downlink channel matrix, x ∈ C
Nt×1 represents the

transmitted signal and n ∈ C
M×1 is the noise vector whose elements are i.i.d.

circularly-symmetric complex Gaussian random variables, with zero mean and
41



Chapter 3. Precoding with Perfect CSIT

unit variance, CN (0, 1). It is important to note that this notation can also be
extended to a coordinated system as the one shown in (2.14).

Similarly to (2.27), the received signal in (3.1) can be expressed through its real-
valued form as

[
Re{y}
Im{y}

]
=

[
Re{H} −Im{H}
Im{H} Re{H}

] [
Re{x}
Im{x}

]
+

[
Re{n}
Im{n}

]
, (3.2)

obtaining a (2M × 2Nt)-dimensional real representation. This model, which can
be more convenient for practical implementations or when working with lattices,
will be denoted as

yr = Hrxr + nr. (3.3)

An interesting sub-optimal technique is vector-perturbation (VP), which can be
considered as a general form of precoding. This technique consists of perturbing
the data in order to reduce the power of the transmitted signal [22] or to maximize
the SNR in case the transmit power is fixed. The precoded signal can be expressed
as

x =
√

γH†(s + p), (3.4)

where s ∈ C
M×1 is the vector which contains the original data symbols of the M

users, p ∈ C
M×1 denotes de perturbation vector and

√
γ limits the sum-power of

all the transmit antennas, ‖x‖2. Since the actual transmit power depends on the
data s,

√
γ is usually chosen to assure a certain average sum-power E

[
‖x‖2

]
= P .

Using the real-valued equivalent model, the precoded signal is given by

xr =
√

γH†
r(sr + pr). (3.5)

The perturbation vector cannot be an arbitrary vector since this perturbation is
unknown at the MSs and will cause decoding errors. In order to allow the MSs to
remove the perturbation, the perturbation is set to

p = Al, (3.6)

where A is a positive real number and l is an M -dimensional complex vector
lR + jlI, where lR, lI ∈ Z

M . Equivalently,

pr = Alr, (3.7)

where lr ∈ Z
2M . The value of A is chosen such that the points from the signal

constellation can be uniquely recovered. Assuming an M-QAM modulation whose
components take odd integer values and its average power is given by

σ2
s =

2(M − 1)

3
, (3.8)
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Figure 3.1: Illustration of the effect of the perturbation in square M-QAM modulated
signals with A = 2

√
M.

a possible value of A is given by A = 2
√

M. Larger values of A reduce the effect
of the perturbation, leading to l = 0 as A increases. A more detailed discussion
about the value of A can be found in [22]. The MSs remove the perturbation
applying the modulo operation:

ym MOD A := ym − A

⌊
y + A/2

A

⌋
. (3.9)

In the complex-valued model, the modulo operation is applied to both the real
and imaginary parts separately. Figure 3.1 shows the effect of the perturbation in
square M-QAM modulated signals. It can be seen that the original constellation
is extended periodically and the modulo operation allows to bring any symbol back
to its equivalent symbol in the original constellation.

There are different techniques to obtain the perturbation vector which differ in
performance and computational complexity: sphere encoder (SE) [22], zero-forcing
(ZF) [20], Tomlinson-Harashima precoding (THP) [21] or LR-based techniques [15,
16]. These techniques can also be used for multiple-antenna receivers, making the
detection easier since the interference is cancelled at each antenna. However, a
higher throughput can be achieved by block diagonalization (BD). This technique
consists of only cancelling the multiuser interference, allowing the interference be-
tween the different spatial streams of each user, which in turn can be cancelled
through detection techniques thanks to the use of multiple antennas at the re-
ceiver [47].
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3.1 Zero-Forcing

Channel inversion is known as ZF precoding when it is performed at the trans-
mitter. This linear technique was proposed for single-antenna MSs and suffers
from a power enhancement when the channel matrix is ill-conditioned [20]. It can
be considered as a specific case of VP where p = 0, so the modulo operation is
not required at the receiver. The beamforming matrix is directly obtained from
the Moore-Penrose pseudoinverse and the precoded signal can be expressed as
(Fig. 3.2)

x =
√

γZFH†s, (3.10)

where
√

γZF limits the average sum-power E
[
‖x‖2

]
= P and can be obtained from

γZF =
P/σ2

s

Tr((HHH)−1)
=

P/σ2
s∑M

m=1(1/λ2
m)

, (3.11)

where λm is the mth singular value of H. Other possible values of γZF are ana-
lyzed in [193]. In addition, more realistic power constraints such as per-antenna
power constraints or per-BS power constraints in coordinated networks have been
analyzed in [194] and [61], respectively. The received signal by the MSs can be
expressed as

y = Hx + n =
√

γZFHH†s + n =
√

γZFs + n. (3.12)

s
H

x

.  .  .

√γZF
n1

1

y1 s1̂

nM

yM sM̂

1

√γZF

√γZF

H
†

Figure 3.2: ZF precoding scheme.

It can be seen that all the MSs receive the original signal scaled by the same
value and contaminated with additive noise. Thus, all the MSs experience the
same SNR, γZFσ2

s , and hence achieve the same rate. The system sum-rate can be
expressed as

RZF = M log2(1 + γZFσ2
s) = M log2

(
1 +

P
∑M

m=1(1/λ2
m)

)
. (3.13)
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3.2 Sphere encoder

This scheme assures the same rate for the different MSs and guarantees the mini-
mization of the maximum BER [195]. However, different power allocation among
the MSs have been proposed in order to maximize the sum-rate or minimize the
sum-BER [194–196].

3.2 Sphere encoder

The optimal choice of the perturbation vector pr is such that it minimizes the
power of the transmitted signal [22]:

pr = arg min
p′

r
∈AZ2M

‖H†
r(sr + p′

r)‖2. (3.14)

Restricting the possible perturbation to a limited range, the optimal perturbation
can be found by exhaustive search over all the equivalent symbols in the extended
constellation (Fig. 3.1). However, note that (3.14) can be seen as a search for
the point H†

rp′
r that is closest to −H†

rsr, which is a search for a 2M -dimensional
lattice point. The solution to this problem can be obtained more efficiently us-
ing the Fincke and Pohst algorithm [197–199]. Since this algorithm is known as
sphere decoder when it is used for space-time demodulation in [200], it is often
referred to as sphere encoder when applied in precoding. This search can also be
computationally expensive and therefore, other alternative approaches are usually
employed.

The precoded signal for the SE scheme is expressed as1

x =
√

γSEH†(s + p), (3.15)

and the received signal as

y = Hx + n =
√

γSEHH†(s + p) + n =

=
√

γSE(s + p) + n. (3.16)

Since the perturbation p is removed with the modulo operation (see Fig. 3.3), the
SNR experienced by the MSs is γSEσ2

s and the system sum-rate is given by

RSE = M log2(1 + γSEσ2
s). (3.17)

1Note that the real-valued equivalent model has been used to obtain the optimal perturbation
in (3.14) and once the perturbation is obtained, the complex-valued model is used for the sake
of comparison between the different algorithms.
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Figure 3.3: SE scheme.

3.3 Tomlinson-Harashima precoding

The main drawback of ZF is that it requires a high transmit power to ensure
a certain QoS when the channel matrix is ill-conditioned. THP makes use of
the modulo operator to reduce the power of the transmitted signal compared to
a linear precoding scheme [21]. A detailed analysis of THP for the SU-MIMO
case is carried out in [201–203]. In [201], it is shown that THP is equivalent to
VP where the perturbation vector p is obtained sequentially but very efficiently
through the feedback filter and the modulo operation. The perturbation of the
transmitted signal reduces its power and allows cancelation of the interference
when the modulo operator is applied at the receiver. Figure 3.4 shows the THP
scheme for decentralized receivers [204].

+
s

-

x~

MOD

L - I

Q H
x .  .  .

n1

y1 s1̂

nM

yM sM̂

MOD

MOD

√γTHP

1

√γTHP

1

√γTHP

x̂ †

Figure 3.4: THP scheme for decentralized receivers.

The matrices that take part in the precoding process are obtained from an LQ
decomposition of the channel matrix,

H = LQ, (3.18)
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where L ∈ C
M×M is a lower triangular matrix with ones in its diagonal and

Q ∈ C
M×Nt contains orthogonal rows. Matrices L and Q can be expressed as

L = L0G−1 (3.19)

Q = GQ0, (3.20)

where L0 and Q0 are obtained from a conventional LQ decomposition, H = L0Q0,
and G is a diagonal matrix containing the diagonal of L0.

It can be noted that, if the modulo operation were omitted, this scheme would be
equivalent to ZF. However, using modulo operation at the transmitter allows the
reduction of the transmit power by reducing the symbols in x̃ into the boundary
region of the M-QAM constellation. The precoded symbols x̂ can be initially
expressed as

x̂m = sm −
m−1∑

l=1

lm,lx̃m. (3.21)

Next, the modulo operation restricts the symbols to the original constellation,

x̃m = x̂m MOD A, (3.22)

and thus the transmit power of this method is lower than the linear precoding.
The modulo operation can be modeled by adding integer multiples of A to the real
and imaginary parts of the original signal before the linear filtering,

x̃ = L−1(s + p), (3.23)

Finally, x =
√

γTHPQ†x̃ is transmitted over the channel. The transmitted signal
can be expressed as

x =
√

γTHPQ†L−1(s + p). (3.24)

This expression is equivalent to (3.4), with the difference that p has not been
explicitly calculated, but it has been obtained through the feedback filter and the
modulo operation. Constant

√
γTHP is now determined by

γTHP =
M − 1

M
P/σ2

s∑M
m=1(1/l2

0,mm)
, (3.25)

where l0,mm represents the mth element in the diagonal of L0 in (3.19). The
first factor compensates the slight power increase of x̃ with regard to s. Signal
x̃ is uniformly distributed over the boundary region of a M-QAM modulated
signal [205, Chap. 3]. However, this power increase is not very significant for high
order modulation. The signal received by the users can be expressed as:

y = Hx + n =
√

γTHPHQ†L−1(s + p) + n =

=
√

γTHP(s + p) + n. (3.26)
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Disregarding the perturbation vector p since it is removed at the receiver with
the modulo operation, it can be easily seen that all the MSs experience the same
SNR, γTHPσ2

s . Thus, all the MSs achieve the same rate and the system sum-rate
is expressed as

RTHP = M log2

(
1 + γTHPσ2

s

)

= M log2

(
1 +

M − 1

M
P

∑M
m=1(1/l2

0,mm)

)
. (3.27)

A more detailed analysis of the achievable rates and some other practical aspects
such as the MSs ordering are presented in [206].

3.4 Lattice-Reduction-aided precoding

LR techniques have demonstrated to improve the detection stage of SU-MIMO
communications [207, 208]. In addition, LR is known to be a very useful method
for precoding in multiuser downlink communications, as various research on this
topic shows [15, 16].

Although the complexity of (3.14) can be alleviated with the use of the Fincke
and Pohst algorithm, its computational complexity is still high compared with
ZF or THP. LRAP techniques make use of LR to obtain efficient approximations
of (3.14). Two different LRAP techniques are presented in [15]: LRAP-linear and
LRAP-VB. In addition, a scheme where THP is applied after performing a LR
over the channel matrix is presented in [16].

3.4.1 LRAP-linear

This technique uses the rounding off approximation to solve (3.14) [209]. The
approximated perturbation vector is obtained as [15]

pr = −AR−1

⌈
Rsr

A

⌋
, (3.28)

where R is the transformation matrix obtained from an LR applied to the columns
of H†

r such that | det(R)| = 1 and

H†
r = H̃

†
rR. (3.29)

Here, H̃
†
r is the reduced basis with better orthogonality properties.

The precoded signal can be directly obtained from (3.5). Figure 3.5 shows the
LRAP-linear scheme. Similarly to the SE case, the system sum-rate can be ex-
pressed as

RLRAP−lin = M log2(1 + γ
LRAP−lin

σ2
s). (3.30)
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Figure 3.5: LRAP-linear scheme.

3.4.2 LRAP-VB

A variant of the nearest-plane algorithm is also considered for the solution of (3.14)
in [15]. This algorithm is similar to successive interference cancellation (SIC) and
consists of successive rounding operations considering the previous rounded values.
Here the matrices Q and L can also be straightforwardly calculated from a QR-like

decomposition of H̃
†
r such that:

QH̃
†
r = L, (3.31)

where Q contains orthogonal rows and L is a lower triangular matrix. It can be
observed in Fig. 3.6 that the first step of the algorithm builds the vector

q = −QH†
rsr. (3.32)

Next, the components of q̃ are calculated as

q̃m = A

⌈
qm −∑m−1

l=1 Lm,lq̃l

A

⌋
. (3.33)

Finally, the vector perturbation is calculated as

pr = R−1q̃. (3.34)

Likewise, the precoded signal can be directly obtained from (3.5) and the system
sum-rate can be expressed as

RLRAP−VB = M log2(1 + γ
LRAP−VB

σ2
s). (3.35)
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Figure 3.6: LRAP-VB scheme.

3.4.3 LR-THP

The THP strategy can also be performed after an LR of the channel matrix [16].
As shown in Fig. 3.7, the components of the original signal vector s in (3.21) are
replaced by the components of a new vector

s̃ = R−1s, (3.36)

where R is the transformation matrix obtained from an LR applied to the rows of
H such that | det(R)| = 1 and

H = RH̃. (3.37)

It is important to note that this LR process is slightly different from the one
in (3.29).

In this scheme, the THP is performed over the lattice-reduced channel matrix,
which shows better orthogonality properties. Thus, matrices L and Q are obtained
from the LQ decomposition of H̃,

H̃ = LQ =
(
L0G−1

)
(GQ0) , (3.38)

and constant
√

γLR−THP can be calculated as

γLR−THP =
M − 1

M
P/σ2

s∑M
m=1(1/l2

0,mm)
, (3.39)

where l0,mm represents the mth element in the diagonal of L0 in (3.38), whose
calculation is identical to (3.19). It has been observed that the product R−1s does
not change the average power of x̃, which is given in [205, Chap. 3]. However, it
is important to realize that the number of terms in the summation in (3.39) is M .
Therefore, in order to obtain the constant γLR−THP it is necessary to perform a
complex LR in (3.37) such as the proposed in [210, 211].
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The precoded signal can be expressed as

x =
√

γLR−THPQ†L−1(s̃ + p), (3.40)

and the received signal as

y = Hx + n =
√

γLR−THPRH̃Q†L−1(s̃ + p) + n =

=
√

γLR−THPR(s̃ + p) + n. (3.41)

Since the elements of R are integers and the operations of multiplication and
addition on integer sets are closed, the term Rp can be expressed as Rp = Al

where A is a positive real number and l is an M -dimensional complex vector lR+jlI

with lR, lI ∈ Z
M . Hence, the term Rp can be removed at the receiver with the

modulo operation.

Finally, the system sum-rate can be expressed as

RLR−THP = M log2(1 + γ
LR−THP

σ2
s)

= M log2

(
1 +

M − 1

M
P

∑M
m=1(1/l2

0,mm)

)
. (3.42)

+
s

-

x~

MOD

L - I

Q H
x .  .  .

n1

y1 s1̂

nM

yM sM̂

MOD

MOD

R
-1 s~ x̂ †

√γLR-THP

1

√γLR-THP

1

√γLR-THP

Figure 3.7: LR-THP scheme.

3.5 Performance

In this section, a performance comparison among the precoding algorithms under
study is presented for the sake of completeness. The comparison has been carried
out in terms of BER and sum-rate. A system such as the one presented in (3.1) is
considered. A 4-QAM modulation has been used in all the simulations, while two
different configurations regarding the number of transmit antennas and number of
users have been considered: Nt = M = 4 and Nt = M = 8. The results are shown
for a transmit power P ranging from 0 to 30 dB.
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Figure 3.8: BER for the different precoding techniques for Nt = M = 4 and 4-QAM.

It is important to note that, as highlighted in Sec. 4.1, the power allocation among
the MSs assure the same SNR at each MS. However, other power allocations can
maximize the sum-rate by allocating a higher power to those MSs that experience
better channel conditions [194–196, 212], at the cost of reducing the rate and
increasing the BER of those MSs with a worse channel. Likewise, the user-ordering
can be optimized to further improve the sum-rate or BER [21, 206, 213, 214].

Figure 3.8 shows the BER for Nt = M = 4. The diversity order is defined as the
negative of the asymptotic slope of the average symbol error rate (SER) versus
SNR in a log-log plot, i.e., the orders of magnitude gained by an increase of 10
dB [102, Chap. 1], [215, Chap. 7]. Since a 4-QAM modulation with Gray mapping
is used, the SER for high P can be approximated by SER ≈ 2BER. Thus, the slope
in a log-log plot does not change and the diversity order can be obtained from the
BER curve. On the one hand, results show that THP slightly outperforms ZF
due to the integration of the modulo operation. However, both schemes show a
diversity order equal to 1. On the other hand, results show that SE and LR-based
techniques show the full diversity order 4. LR-based techniques have shown a
performance considerably close to SE, particularly LRAP-VB and LR-THP. The
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Figure 3.9: BER for the different precoding techniques for Nt = M = 8 and 4-QAM.

different diversity orders achieved by the techniques cause a large difference in the
performance for the high SNR regime.

The BER for Nt = M = 8 is shown in Fig. 3.9. Results show that the differences
between the algorithms have slightly increased: the improvement of THP com-
pared to ZF is more noticeable and the performance of LRAP-VB and LR-THP
is slightly further from SE. However, the performance of the LR-based techniques
is still close to SE.

Figure 3.10 shows the system sum-rate for the different techniques, which have
been expressed throughout this chapter. Again, it can be seen that LRAP-VB
and LR-THP achieve almost the same sum-rate as SE. It can also be noted that
the power efficiency of ZF is far from THP, whose sum-rate is only slightly lower
than the LRAP-lin one.

Similar results have been obtained for Nt = M = 8 in Fig. 3.11. As for the BER
case, the difference between the sum-rate of the LR-based techniques and the SE
increases with the system dimension. In addition, the sum-rate achieved by THP
and LRAP-lin is almost identical in this case.
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Figure 3.10: Sum-rate for the different precoding techniques for Nt = M = 4.

3.6 Complexity analysis

In practical applications, the computational complexity restrictions can help select
the most suitable algorithm to be used in practice. Thus, it is important to analyze
the different precoding schemes from a computational perspective.

The main problem with SE is its high and variable complexity [200]. Its expected
complexity is generally exponential and, although tractable, it is significantly more
computationally demanding than the rest of algorithms presented in this chapter.
In addition, its variable complexity makes it difficult to implement for real time
applications. Although a fixed complexity version of this algorithm has been pro-
posed, it suffers from a small performance degradation compared to the original
algorithm [216]. A brief comparison between the SE and other LR-based tech-
niques has been carried out in [15], concluding that the complexity of the SE
considerably exceeds the computational complexity of the other algorithms. For
this reason, the SE is excluded from this analysis.

An interesting fact is that the overall computational cost of the precoding algo-
rithms described above stems from two different points that must be analyzed
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Figure 3.11: Sum-rate for the different precoding techniques for Nt = M = 8.

independently. On the one hand, the preprocessing stages (matrix inversion, QR
decomposition, LR, etc.) together with some matrix-matrix products that do not
depend on the symbol-vector to transmit are only carried out when the channel
changes and therefore, they can be performed off-line. On the other hand, the
remaining calculations are carried out every time that a new symbol vector is
transmitted, which happens several times for a given realization of a block-fading
channel.

3.6.1 Preprocessing computational cost

The preprocessing stage is responsible for the calculations related to the channel,
not to the signal vector. The typical operations in this stage are QR decom-
positions, LRs and matrix inversions. Table 3.1 shows which of the precoding
algorithms under study carry out these operations:

It is important to note that the THP scheme has been considered for the ZF imple-
mentation by suppressing the modulo operation. This is due to the lower compu-
tational complexity of the QR decomposition compared to the pseudoinverse. The
number of arithmetic operations of the LQ decomposition is 2(2M)2(2M −2Nt/3)
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Chapter 3. Precoding with Perfect CSIT

Table 3.1: Main preprocessing stages of precoding algorithms.

QR LLL R−1 H†

ZF Yes No No No
THP Yes No No No

LRAP-lin No Yes Yes Yes
LRAP-VB Yes Yes Yes Yes
LR-THP Yes Yes Yes No

for a 2M × 2Nt matrix, assuming that it has been computed through House-
holder reflections [217]. On the other hand, the inversion of a 2M × 2M ma-
trix through Gaussian elimination requires an amount of M(2M + 1) divisions,
(2(2M)3 + 3(2M)2 − 10M)/6 products and (2(2M)3 + 3(2M)2 − 10M)/6 sums.

It can also be noted that the pseudoinverse operation Q† in THP and LR-THP
schemes has not been considered in Table 3.1 because it can be performed effi-
ciently. Since the rows of Q0 in (3.20) are orthogonal unit vectors, i.e. QQH = I,
the pseudoinverse of Q can be calculated as

Q† = (GQ0)† = QH
0 G−1, (3.43)

requiring only the inversion of a diagonal matrix and the product between a matrix
and a diagonal matrix.

Obtaining the total number of arithmetic operations required by the LLL algo-
rithm is difficult due to the lack of a bounded worst-case complexity. For this
reason, the fixed complexity LLL algorithm presented in [218] has been consid-
ered. In addition, the extension of the LLL algorithm to obtain the inverse of the
transformation matrix, R−1, has also been considered. This extension saves some
computational cost when this matrix is required. Inside each LLL loop, there are
at most (2M − 1) size-reductions, with (4Nt − 1) sums and (4Nt − 1) products
each. Also, a maximum number of 8Nt + 8M products and 4Nt + 4M sums are
needed for the QR update of a matrix with a maximum size of 2M × 2Nt [192].
Note that the cost of the column swap has been disregarded, as there is no im-
plicit arithmetic operation in it. However, the actual cost of the method can be
far from the worst-case, since the LLL conditions are not always fulfilled. Thus,
the average number of arithmetic operations obtained through simulations will be
used instead of the worst-case.

Finally, the number of sums and products of any other preprocessing calculations
apart from the ones discussed in Table 3.1 are included in Table 3.2. Basically,
these calculations are needed to perform Q† as seen in (3.43) (ZF, THP, LR-THP),
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matrix products related to the pseudoinverse of the channel matrix (LRAP-lin,
LRAP-VB) and some other matrix products.

Table 3.2: Additional preprocessing cost of precoding algorithms.

Sums Products

ZF - 4MNt + 2M
THP - 4MNt + 2M

LRAP-lin 16M2Nt − 4M2 − 4MNt 16M2Nt

LRAP-VB 24M2Nt − 8M2 − 4MNt 24M2Nt

LR-THP - 4MNt + 2M

3.6.2 Per-symbol-vector computational cost

Table 3.3 collects the number of sums and products in the per-symbol-vector stage
for the five precoding algorithms under study. This stage is responsible for calcu-
lating the precoded signal vector x from the original signal vector s.

The per-symbol-vector arithmetic operations of the ZF and THP schemes come
from equations (3.21)-(3.24)2. The results consider the modulo operation as 2 sums
and 2 products according to (3.9), and take into account the power normalization
by the factor

√
γ but not its calculation. Thus, the results may be slightly different

from those presented in [192], although the terms in M2 and MNt match. The
increased cost of the LR-THP with respect to the conventional THP is due to
the product in (3.36). The operations of LRAP-lin and LRAP-VB come from the
calculation of the perturbation vector p in (3.28) and (3.32)-(3.34), respectively,
and the calculation of the precoded signal in (3.5).

Table 3.3: Per-symbol-vector cost of precoding algorithms.

Sums Products

ZF 2M2 + 4MNt − M − 2Nt 2M2 + 4MNt − M + 2Nt

THP 2M2 + 4MNt + 3M − 2Nt 2M2 + 4MNt + 3M + 2Nt

LRAP-lin 8M2 + 4MNt + 2M − 2Nt 8M2 + 4MNt + 4M + 2Nt

LRAP-VB 10M2 + 4MNt + M − 2Nt 10M2 + 4MNt + 3M + 2Nt

LR-THP 6M2 + 4MNt + M − 2Nt 6M2 + 4MNt + 3M + 2Nt

2Note that ZF does not use the modulo operation.
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3.6.3 Overall computational cost

The overall computational cost depends on how often the preprocessing stage has
to be performed, which in turn depends on the number of symbol vectors that can
be transmitted through the same channel in a block fading channel or, at least,
the time that CSIT remains unchanged. Hence, the overall cost of the precoding
of a symbol vector is

Ctot = Cpsv +
Cpre

Lch
, (3.44)

where it has been considered that the preprocessing cost (Cpre) is shared among
Lch transmitted symbol vectors.

For the computational cost comparison, it is useful to know from which value of Lch

the per-symbol-vector cost (Cpsv) exceeds Cpre/Lch and thus, the preprocessing
cost decrease is not as important. Table 3.4 shows that value for the five precoding
algorithms under study in a system with Nt = M = 4. Note that for values of
Lch ≤ 5, the per-symbol-vector costs of all the algorithms are lower than their
respective preprocessing costs, whereas for Lch > 14 the opposite happens. It is
also interesting to observe that LR-based techniques need a higher Lch value to
compensate for their more demanding preprocessing.

Table 3.4: Minimum value of Lch for Cpsv > (Cpre/Lch).

ZF THP LRAP-lin LRAP-VB LR-THP
Lch 5 5 9 14 10

Taking into account the results above, the total number of arithmetic operations
of the precoding algorithms under study for Nt = 4 and different values of M
are shown in Fig. 3.12. For the LRAP-lin, LRAP-VB and LR-THP schemes, the
computational cost with the conventional calculation of R−1 is displayed as a
continuous line and the one with the extended fixed complexity LLL algorithm
[219] that directly obtains R−1 is displayed as a dashed line. Figures 3.12a and
3.12b show the cost for Lch = 5 and Lch = 20, respectively. Note that in the
first case, the extended LLL algorithm slightly decreases the overall cost of the
methods, whereas in the second case, the cost decrease is hardly noticeable. The
reason is that for all the precoding algorithms (Cpre/Lch) > Cpsv when Lch = 5
and therefore a decrease in the preprocessing cost is worthwhile in those cases.
On the other hand, for Lch = 20 the per-symbol-vector cost is predominant and
masks the preprocessing cost reduction.
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Figure 3.12: Total number of arithmetic operations of the five precoding algorithms
under study for a system with Nt = 4.

3.7 Conclusion

This chapter has described different precoding algorithms and has presented a com-
parison among them in terms of BER, sum-rate and computational complexity. In
Figs. 3.8-3.11 it was observed that the LR-THP and LRAP-VB methods achieved
the best performance. Regarding the computational complexity, Fig. 3.12 showed
that the cost of the LR-THP is significantly lower than the one of the LRAP-VB.
The reason is that the LR-THP scheme is equivalent to a VP scheme where the
perturbation vector has been obtained very efficiently through the modulo oper-
ation, whereas the LRAP-VB method explicitly obtains the perturbation vector
and then the precoded vector. Therefore, the LR-THP method seems to be a
better choice over LRAP-VB. However, in the case of tighter computational re-
quirements, either ZF or THP should be employed instead. Whereas THP offers a
better performance, ZF can be useful in some systems where linearity is important.
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Chapter 4

Precoding with Imperfect CSIT

The analysis in terms of performance and computational complex-
ity carried out in the previous chapter has shown that ZF, THP and
LR-THP are the best techniques for the various requirements. This
chapter contains the analysis of the performance of these techniques
when imperfect CSI is available at the transmitter [220]. Again, the
performance is shown in terms of BER and sum-rate.

Chapter 3 has shown that multiuser interference can be completely suppressed
through precoding at the transmitter if perfect CSIT is available. However, per-
fect CSIT is not possible in practical systems. Multiple errors, such as channel
estimation errors, channel quantization errors, feedback errors and errors due to
the channel time variation, may affect the CSIT. Thus, it is important to analyze
the different precoding techniques working with imperfect CSI. Since ZF, THP and
LR-THP have demonstrated to be the best precoding techniques for different per-
formance and computational requirements, the analysis of the effect of imperfect
CSIT is focused on these techniques.

Similarly to [221], the imperfect channel matrix can be modeled as

He = H + E, (4.1)

where H represents the actual channel matrix and E is an additive error matrix
whose entries are i.i.d., follow a CN (0, σ2

e) distribution and are independent of H.
Hence, the design of the precoding at the BS is obtained from He instead of H.
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4.1 Zero-Forcing

In the ZF scheme, the precoded signal can be expressed as

x =
√

γZFH†
es, (4.2)

where
√

γZF limits the average sum-power E
[
‖x‖2

]
= P and has been given

in (3.11) for the case of perfect CSIT. In this case, it is specified as

γZF =
P/σ2

s

Tr((He HH
e )−1)

=
P/σ2

s∑M
m=1(1/λ2

m)
, (4.3)

where λm is the mth singular value of He.

Now, the received signal by the MSs is expressed as

y = Hx + n =
√

γZFHH†
es + n =

√
γZF(He − E)H†

es + n =

=
√

γZFs − √
γZFEH†

es + n, (4.4)

where the term
√

γZFEH†
es represents the interference, which is not completely

cancelled. The autocorrelation matrix of the interference-plus-noise term is given
by [220]

Ri+n = E
[
(−√

γZFEH†
es + n)(−√

γZFEH†
es + n)H

]

= γZFσ2
sE
[
EH†

e(H†
e)HEH

]
+ I =

= γZFσ2
sσ2

eTr
(
Σ−2

)
I + I = (Pσ2

e + 1)I, (4.5)

where the SVD He = UΣVH and the property that the statistics of matrix E

do not change when multiplied by a unitary matrix such as V have been applied.
Thus, the SINR of each user and the system sum-rate can be expressed respectively
as

SINRZF =
γZFσ2

s

Pσ2
e + 1

=
1

(σ2
e + 1/P )

∑M
m=1(1/λ2

m)
, (4.6)

RZF = M log2

(
1 +

1

(σ2
e + 1/P )

∑M
m=1(1/λ2

m)

)
. (4.7)

It is important to point out that the term σ2
e in (4.7) limits the sum-rate, i.e., the

system sum-rate presents an asymptote for P → ∞ in

RZF = M log2

(
1 +

1

σ2
e

∑M
m=1(1/λ2

m)

)
. (4.8)

To mitigate this problem, robust versions of linear precoders have been proposed
in [222, 223].
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4.2 Tomlinson-Harashima precoding

When imperfect CSIT is available in the THP scheme, the signal before the linear
filtering, x̃, and the precoded signal, x, can be expressed as

x̃ = L−1(s + p), (4.9)

x =
√

γTHPQ†L−1(s + p). (4.10)

where matrix L is lower triangular with ones in its diagonal, Q contains orthogonal
rows and both matrices have been obtained through an LQ decomposition of the
imperfect channel matrix, He = LQ. This decomposition has been detailed in
(3.19)-(3.20) for the perfect CSIT case. Factor

√
γTHP limits the average sum-

power E
[
‖x‖2

]
= P and is given by

γTHP =
M − 1

M
P/σ2

s∑M
m=1(1/l2

0,mm)
. (4.11)

The received signal can be expressed as

y = Hx + n = (He − E)x + n =

=
√

γTHP(s + p) − √
γTHPEQ†x̃ + n (4.12)

Here, the interference is represented by the term
√

γTHPEQ†x̃. Similarly, the
autocorrelation matrix of the interference-plus-noise term is given by [220]

Ri+n = E
[
(−√

γTHPEQ†x̃ + n)(−√
γTHPEQ†x̃ + n)H

]

= γTHPσ2
x̃E
[
EQ†(Q†)HEH

]
+ I =

= γTHPσ2
x̃σ2

eTr
(
G−2

)
I + I =

= (Pσ2
e + 1)I, (4.13)

where matrix G is obtained in the LQ decomposition, as seen in (3.20). Therefore,
the SINR of each user and the system sum-rate can be expressed respectively as

SINRTHP =
γTHPσ2

s

Pσ2
e + 1

=
M − 1

M
1

(σ2
e + 1/P )

∑M
m=1(1/l2

0,mm)
, (4.14)

RTHP = M log2

(
1 +

M − 1

M
1

(σ2
e + 1/P )

∑M
m=1(1/l2

0,mm)

)
. (4.15)
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Likewise, the term σ2
e in (4.7) limits the sum-rate, i.e., the system sum-rate

presents an asymptote for P → ∞ in

RTHP = M log2

(
1 +

M − 1

M
1

σ2
e

∑M
m=1(1/l2

0,mm)

)
. (4.16)

Robust versions of THP that improve the performance of a system with imperfect
CSIT have been proposed in [224–227]

4.3 Lattice-Reduction-aided Tomlinson-Harashima

precoding

As seen in section 3.4.3, the THP scheme can be performed over the lattice-reduced
channel if the original signal is transformed according to (3.36). In this case, the
LR is performed on the imperfect channel matrix such that:

He = ReH̃e. (4.17)

Equation (4.17) can be expressed as

H̃e = R−1
e He = R−1

e (H + E) = H̃ + Ẽ, (4.18)

where H̃ = R−1
e H, Ẽ = R−1

e E and R−1
e is an unimodular matrix with integer

elements. Since the elements of E are i.i.d., the elements of Ẽ will have an equal
or higher variance than the elements of Ẽ, with equality only when there are no
combinations of elements from E, i.e., only one non-zero element in each row of
R−1

e that must be 1 or -1. However, this larger channel uncertainty can be better

tolerated due to the higher orthogonality of H̃ compared to H [186].

As in the THP case, the SINR of each user and the system sum-rate can be
expressed respectively as

SINRLR−THP =
γTHPσ2

s

Pσ2
e + 1

=
M − 1

M
1

(σ2
e + 1/P )

∑M
m=1(1/l2

0,mm)
, (4.19)

RLR−THP = M log2

(
1 +

M − 1

M
1

(σ2
e + 1/P )

∑M
m=1(1/l2

0,mm)

)
, (4.20)

where the difference lies in the fact that l0,mm comes from the LQ decomposition

of the lattice-reduced channel H̃e.
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Figure 4.1: BER for ZF, THP and LR-THP, Nt = M = 4, 4-QAM and σ2
e =

0, 10−2, 10−3.

4.4 Performance

In this section, the performance of these precoding algorithms in the case of im-
perfect CSIT is evaluated. Again, the performance is obtained in terms of the
BER and the system sum-rate.

Figure 4.1 shows the BER for the precoding algorithms under evaluation with
Nt = M = 4 and different variances of the channel error, σ2

e . In the figure, two
different regions can be distinguished: a noise-limited region and an interference-
limited region. Considering the term σ2

e + 1/P which appears in the previous
SINR expressions, the value of P that produces the same noise and interference
perturbation can be calculated as P = 1/σ2

e . These values correspond to P = 30
dB and P = 20 dB for σ2

e = 10−3 and σ2
e = 10−2, respectively. Hence, the region

to the left of these values represents the noise-limited region and the region to the
right represents the interference-limited region.

In the noise-limited region, it can be observed that there is almost no difference
between the perfect and the imperfect CSIT cases. However, in the interference-
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Figure 4.2: BER for ZF, THP and LR-THP, Nt = M = 8, 4-QAM and σ2
e =

0, 10−2, 10−3.

limited region, the difference between the systems with different channel error
increases. In this region, it can be noted that the BER does not decrease at the
same rate than in the noise-limited region. In addition, the BER presents an
error floor for high values of P . This fact can easily be appreciated in the trace
corresponding to σ2

e = 10−2.

Regarding the different precoding schemes, Fig. 4.1 shows that THP provides a
gain of around 3 dB over ZF for a given BER. However, both schemes perform
far from LR-THP for perfect and imperfect CSIT. Although the LR process can
increase the channel uncertainty in the reduced channel as seen in (4.18), LR-THP
has demonstrated to provide a better performance in the case of imperfect CSIT
as well.

Figure 4.2 shows the same behavior than Fig. 4.1. These results show that the
difference between ZF and THP has slightly increased. In addition, the difference
between these algorithms and LR-THP have also increased for a high P due to
the higher diversity order of the LR-based techniques.
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Figure 4.3: Sum-rate for ZF, THP and LR-THP, Nt = M = 4 and σ2
e = 0, 10−2, 10−3.

The average sum-rate for a system with Nt = M = 4 and different variances of the
channel error, σ2

e , is shown in Fig. 4.3. In this figure, the difference between the
noise-limited and the interference-limited regions can also be appreciated. Whereas
the difference among the systems with different σ2

e is insignificant in the noise-
limited region, this difference is considerable in the interference-limited region.
In addition, the sum-rate asymptotes due to the interference can also be noted,
especially for σ2

e = 10−2.

Finally, Fig. 4.4 shows the average sum-rate for a system with Nt = M = 8.
These results are in line with the ones in Fig. 4.3. However, it is important to
highlight that channel imperfections are more noticeable in larger systems, since
the aggregated interference is higher. For instance, in this case, the sum-rate
achieved by ZF and σ2

e = 10−2 is less than half of the one achieved with perfect
CSIT.
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Figure 4.4: Sum-rate for ZF, THP and LR-THP, Nt = M = 8 and σ2
e = 0, 10−2, 10−3.

4.5 Conclusion

This chapter has presented the performance of the most interesting precoding tech-
niques seen in chapter 3 when imperfect CSIT is available. The analysis showed
that, regarding the transmit power, two different regions can be distinguished: a
noise-limited region and an interference-limited region. In the noise-limited region,
the channel errors are almost negligible and the results are similar to the perfect
CSIT case. However, in the interference-limited region the channel errors entail
a strong interference that limits the performance of the precoding algorithms. In
both regions, LR-THP was the best technique in terms of performance, showing
that LR is also a key technique when imperfect CSIT is available.
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Chapter 5

Hardware Implementation

In this chapter, some implementations of the precoding algorithms
analyzed in Chapter 3 are presented. First, a brief introduction to
GPUs as general-purpose computing devices is provided. Next, all the
precoding algorithms are implemented on a GPU for a MU-MISO-
OFDM system [228]. Subsequently, the implementations of the THP
and LR-THP algorithms are optimized and a reconfigurable THP scheme
is presented [229]. Finally, the problem of LR is itself optimized since
it has shown to be the main bottleneck for GPU implementations and
real time applications [230–232].

In Chapter 3 an analysis of the computational complexity of the different precoding
algorithms has been carried out. Although that was an interesting result, evalu-
ating their implementations is more useful for practical systems. In this chapter,
GPU implementations of the precoding algorithms are proposed and compared to
their CPU counterpart.

The implementations of the precoding algorithms are evaluated in a MU-MISO-
OFDM system. MIMO-OFDM techniques allow transmitting different streams
over the different subcarriers and, through MIMO precoding, different spatial
beams in each of the subcarriers. However, this scheme requires a huge com-
putational complexity because it is necessary to perform a precoding algorithm
over all the subcarriers.

In the last few years, the use of many-core processors such as general-purpose
graphic processing units (GPGPUs) is becoming attractive for the efficient imple-
mentation of algorithms in many fields of engineering [18, 233]. This is due to the
cost-effectiveness of GPUs together with their tremendous capability for parallel
processing.

69



Chapter 5. Hardware Implementation

The chapter is organized as follows. Section 5.1 presents an introduction to the
GPU architecture and its possibilities. Section 5.2 presents a GPU implementa-
tion of all the precoding techniques analyzed in Section 3.6, showing that the THP
structure is the one that best adapts to the GPU architecture. Section 5.3 opti-
mizes the THP implementation and presents a reconfigurable scheme that allows to
transmit using two precoding techniques: THP and LR-THP. Finally, the problem
of LR is analyzed and an efficient solution for GPU and GPU+CPU architectures
is proposed, since it has shown to be the main bottleneck in the implementation
of the related precoding techniques.

5.1 Introduction to GPU and CUDA

Traditionally, the main role of GPU has been rendering 3D scenes into a 2D
screen. This work basically consists on continuously calculating the value of each
pixel according to some complex rendering operations. Since the calculations for
the different pixels can be performed independently, this task shows an enormous
inherent parallelism [19, 234].

In the last few years, the demand for more powerful GPUs has increased due to
the appearance of higher definition screens with higher refresh rates. In addition,
the adoption of these devices as general-purpose computing resources has allowed
a faster evolution. Nowadays, GPUs1 are architectures that contain hundreds of
computational cores with very fast on-chip memory and high-bandwidth external
memory. Due to their ubiquitous presence in computers, laptops and smartphones
together with the fact that not many applications make an intense use of them,
a GPU can be considered as a powerful coprocessor that allows offloading the
CPU [235].

In order to understand the features of GPUs as a computational architecture, it is
important to revise the two main branches microprocessor design: multicore archi-
tectures and many-core architectures [236]. A multi-core architecture (typically
CPUs) may represent up to 10-12 processing cores, each designed to maximize
the execution speed of sequential applications. Hence, a refined control logic and
large cache memories are provided to reduce the latency. On the other hand, a
many-core architecture (typically GPUs) may have hundreds of processing cores
and its design focuses on the maximization of the execution throughput of parallel
applications. In order to save chip real state to accommodate the large number
of processing cores, pipelined memories and arithmetic operations with long la-
tency are employed. As a result, many-core architectures may achieve 10 times as
many floating-point operations per second (FLOPS) as those achieved by multi-
cores [237]. However, these results are not directly related to execution times of
applications, but are the raw speed that the computational resources can support.

1In what follows, the term GPU will refer refer to both dedicated GPUs or GPGPUs.
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Generally speaking, multi-core architectures will perform better in applications
with a few threads, while many-core architectures will achieve better performance
in applications with a large number of threads [236].

5.1.1 CUDA

Although GPUs prior to 2006 had powerful architectures, its use was very re-
stricted to graphics processing. The main reason was that performing non-graphic
computations using Cg language programming or graphics application program-
ming interface (API) such as OpenGL was a difficult task [19, 234]. In 2006, Nvidia
introduced compute unified device architecture (CUDA), a general purpose parallel
computing platform and programming model that exposes the massive computa-
tion potential offered by the programmable GPU [237]. CUDA allows using a
well-known programming language, such as C, C++ or Fortran, as a high level
programming language in a multithreaded environment, providing instructions to
support communication and synchronization.

According to the CUDA programming model, the CUDA threads are executed in a
separate device operating as a coprocessor of the host. Normally, the host consists
of a CPU and its corresponding random access memory (RAM) that execute one
or more sequential threads. The device consists of one or several GPUs and GPU
memory executing one or more parallel kernels. There are two different types of
GPU memory: shared memory and global memory. The shared memory is a fast
on-chip memory whose size is about several hundred of kilobytes, while the global
memory is a larger and slower off-chip memory.

The kernel consists of a set of common sequential operations performed indepen-
dently in all the threads. Since all the threads execute the same code, a CUDA
device can be considered as a single program, multiple data (SPMD) machine [238].
This concept is similar to single-instruction multiple-data (SIMD) [239]. However,
in an SIMD system, all the processing units execute the same instruction at the
same time, while in an SPMD system the execution does not need to be concurrent.

Threads are organized into thread-blocks (TBs) and TBs are organized into a
grid, setting up a two-level hierarchy (see Fig. 5.1). CUDA supports 1, 2 or 3-
dimensional TBs, as well as 1, 2 or 3-dimensional grids. All the threads in a TB
have the same block index but a different thread index. Hence, a unique identifier
can be generated from these indices. The number of elements in each dimension
must be specified on each kernel launch [237]. Threads within a TB can syn-
chronize through a barrier to coordinate memory accesses. In contrast, TBs are
completely independent and can only share data through the global memory, as
seen in Fig. 5.2. Thread organization is very important because different organi-
zations may result in a very different performance.
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Figure 5.1: Example of execution of a CUDA program using a 2-dimensional grid with
NBPD blocks per dimension and 1-dimensional block with NT threads.

Before performing the operations of the kernel, the global memory on the device
has to be allocated and the data has to be transferred from the host memory to the
device memory (see Fig. 5.2). Once the kernel execution has finished, the result
data is copied from the device memory to the host memory and, if the data is no
longer needed, the device memory is freed up.

Figure 5.1 shows the execution of a CUDA program. It is important to point out
that the operations in the kernel are executed by a large number of threads. Once
all the threads have completed their operations, the kernel finishes and the execu-
tion continues on the host. In this simplified example, the kernel is called from the
CPU and there is no overlap between CPU and GPU operations. However, more
advanced applications could use these features to achieve a higher performance.
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5.1.2 Hardware considerations

The CUDA GPU hardware architecture is based on an array of multithreaded
streaming multiprocessors (SMs). Once a kernel is called, the blocks of the grid
are distributed among the multiple SMs. The threads within a TB are executed
concurrently on one SM and, depending on the TB dimension, multiple TBs can
be executed concurrently. As the execution of TBs finishes, new TB are processed
on the vacant SMs.

An SM basically consists of several CUDA cores for arithmetic operations, several
special functions for single-precision floating-point operations and several warp
schedulers. A warp is a group of 32 consecutive threads that form the basic unit
of thread scheduling in SMs and its size is implementation-specific. The number
of CUDA cores, special functions and warp schedulers depends on the compute
capability. In the case of CUDA cores, this number ranges between 8 (compute
capability 1.x) and 128 (compute capability 5.0) [237].

When one or several TBs are processed, the SM divides them into warps and the
warp scheduler sets the scheduling of each one. The execution units are designed
to execute all the threads in a warp following the SIMD model, i.e., each instruc-
tion is performed in all the threads in the warp. Thus, full efficiency is achieved
when all the threads have the same execution path. Warp divergence occurs when
threads do not follow the same execution path and it is mainly due to conditional
statements or conditional loops. In this case, the SIMD model turns into a single-
instruction multiple-thread (SIMT) model where all the branches of the execution
path are executed sequentially, disabling in each case the threads that are not on
that path [237]. A considerable improvement can be obtained by avoiding warp
divergence.
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5.2 GPU implementation of precoding algorithms

This section collects the results presented in [228] where a MU-MISO-OFDM sys-
tem is contemplated. Considering the extension of (3.1) to the OFDM case ana-
lyzed in section 2.4 and aggregating the received signal of the different MSs in a
vector, the received signal can be expressed as

y[k] = H[k]x[k] + n[k]. (5.1)

Matrices H[k] used for the evaluation of the implementations follow the Gaussian
i.i.d. model depicted in section 2.6.1 and no correlation between channel matrices
for different subcarriers has been considered.

Tables 5.1 and 5.2 collect the steps of the different algorithms analyzed in chapter
3. It is important to point out that, as in section 3.6, the implementation of the
ZF algorithm consists of using the THP scheme suppressing the modulo operation.
In addition, the implementations make use of the real-valued form expressed in
(3.2).

5.2.1 Implementation details

The implementation of multiuser precoding schemes in a MU-MISO-OFDM sys-
tem is a quite expensive computational task, since the precoding algorithms must
be performed for every subcarrier. In order to take advantage of the inherent par-
allelism of this multi-carrier system, the Nvidia Quadro FX 5800 GPU has been
used for the implementations. Its specifications are given in Table 5.3.

In the proposed implementations, the operations involved in the preprocessing
and the per-symbol-vector stages have been parallelized independently, defining
for each stage a kernel with a different grid configuration. The first kernel includes
the operations required by each one of the K subcarriers during the preprocessing
stage, such as QR-decompositions, lattice basis reduction and matrix inversions.
These operations are performed in R = K threads, that is, the operations related
to different subcarriers are executed concurrently by different threads.

The second kernel is devoted to performing the various operations to obtain the
precoded signal using the results obtained in the preprocessing stage, which are
valid while the channel remains constant. As the channel remains constant during
Lch symbol periods, a total of R = KLch threads use the preprocessing results to
obtain their precoded symbol vectors. A one-dimensional grid configuration with
NT = 128 number of threads per block is considered in both kernels. The number
of blocks can be straightforwardly calculated as NB = ⌈R/NT⌉.

Due to the large amount of required memory, the implementations only employ
GPU global memory to store the data structures needed for the precoding process,
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Table 5.1: ZF and THP algorithms.

A. ZF algorithm

A1.- Preprocessing stage:

1.- Hr = L0Q0 = (L0G−1)(GQ0) = LQ

2.- Q† = (GQ0)† = QT
0 G−1

A2.- Per-symbol-vector processing stage:

1.- for m = 1, . . . , 2M

x̃m = sm −∑m−1
l=1 Lm,lx̃l

end

2.- xr =
√

γZFQ†x̃

B. THP algorithm

B1.- Preprocessing stage:

1.- Hr = L0Q0 = (L0G−1)(GQ0) = LQ

2.- Q† = (GQ0)† = QT
0 G−1

B2.- Per-symbol-vector processing stage:

1.- for m = 1, . . . , 2M

x̂m = sm −∑m−1
l=1 Lm,lx̃l

x̃m = x̂m mod A = x̂m − A
⌊

x̂m+A/2
A

⌋

end

2.- xr =
√

γTHPQ†x̃

using double precision. Before starting to execute the first kernel (preprocessing
stage), the channel matrices of all the subcarriers, H[k], are copied to the GPU
global memory. When the kernel finishes, the threads store their results in the
global memory of the GPU as well. These results are subsequently used by the
second kernel (per-symbol-vector stage).

To carry out the next stage, where the final precoded signal is obtained, only the
information symbols of all the subcarriers and MSs, s[k], need to be copied to the
global memory, since the preprocessing results are already on the device. Once
the final precoded signals are obtained by the threads, they are transferred to the
CPU memory in order to be transmitted.
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Table 5.2: LRAP algorithms.

C. LRAP-lin algorithm

C1.- Preprocessing stage:

1.- H†
r = H̃

†
rR

C2.- Per-symbol-vector processing stage:

1.- pr = −AR−1
⌈

Rsr

A

⌋

2.- xr =
√

γ
LRAP−lin

H†
r(sr + pr)

D. LRAP-VB algorithm

D1.- Preprocessing stage:

1.- H†
r = H̃

†
rR

2.- QH̃
†
r = L

D2.- Per-symbol-vector processing stage:

1.- q = −QH†
rsr

2.- for m = 1, . . . , 2M

q̃m = A

⌈
qm−

∑
m−1

l=1
Lm,lq̃l

A

⌋

end

3.- pr = R−1q̃

4.- xr =
√

γ
LRAP−VB

H†
r(sr + pr)

E. LR-THP algorithm

E1.- Preprocessing stage:

1.- Hr = RH̃r

2.- H̃r = L0Q0 = (L0G−1)(GQ0) = LQ

3.- Q† = (GQ0)† = QT
0 G−1

E1.- Per-symbol-vector processing stage:

1.- ŝ = R−1sr

2.- for m = 1, . . . , 2M

x̂m = ŝm −∑m−1
l=1 Lm,lx̃l

x̃m = x̂m mod A = x̂m − A
⌊

x̂m+A/2
A

⌋

end

3.- xr =
√

γLR−THPQ†x̃
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Table 5.3: Nvidia Quadro FX 5800 GP features.

Compute capability 1.3
Number of SM 30
Number of CUDA cores 240
Clock rate 1.30 GHz
Global memory 4 GB
Constant memory 64 kB
Shared memory per block 16 kB

5.2.2 Results

In this section, the execution times of the GPU and CPU implementations of the
previous algorithms are evaluated. The selected CPU is an Intel Xeon E5430 at
2.66GHz with 32GB of RAM memory and 12MB of cache memory. The compiler
used is the Intel C compiler with the global performance optimization -o3.

Without loss of generality, the results consider the same number of transmit an-
tennas and MSs, Nt = M = 4, Lch = 20 and different numbers of subcarriers, K.
In LTE Rel. 10, the transmission bandwidth can be further expanded from the one
in Rel. 8 by means of carrier aggregation, supporting transmission bandwidths up
to 100 MHz using 6000 subcarriers [240].

Figure 5.3 shows the speed-up obtained when running algorithms on the GPU
compared to the CPU implementation. Note that not all the algorithms under
study achieve the same speed-up, indicating that some of them are more suitable
for GPU implementation than others. Algorithms such as ZF, THP or LR-THP
achieve a high speed-up even for a small number of subcarriers.

In Fig. 5.4, the times of the preprocessing stage and the per-symbol-vector stage
are considered independently for the speed-up calculation. Figures 5.4a and 5.4b
represent the speed-up for the preprocessing stage and the per-symbol-vector stage,
respectively, for a system with Nt = M = 4. It can be noticed that there is not
a large difference in the algorithms regarding the speed-up at the preprocessing
stage. However, Fig. 5.4b shows that a parallel implementation on a GPU of the
per-symbol-vector stage for ZF, THP and LR-THP can be much more efficient
than its implementation on a CPU.

A comparison among the computational complexity of the precoding algorithms
based on the system size was carried out in section 3.6 and in [192]. In order to
validate this analysis, a comparison among their computational times has been per-
formed for Nt = M = 4 and different number of subcarriers, K (Fig. 5.5). Again,
it is interesting to point out that THP has almost the same computational time
than ZF, providing a better performance for a very similar computational time,
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Figure 5.3: Speed-up for Nt = M = 4 and different number of subcarriers, K.

but at the cost of non-linearity. It is also interesting to observe that, although
Fig. 3.12 shows that LR-THP has a slightly lower computational complexity than
LRAP-lin, its computational time is slightly higher. This difference can be justi-
fied by the fact that matrix R and R−1 in C2.1 (Table 5.2) may contain many
zeros. Hence, the computational cost of these matrix products decreases and it has
not been considered in section 3.6. In addition, LR-THP requires more memory
accesses than LRAP-lin. However, the computational time for LR-THP is still
much lower than for LRAP-VB, allowing better BER and sum-rate performances
at a lower computational cost and time.

The algorithms with the best speed-ups are those that make use of the THP
structure (ZF, THP, LR-THP). This fact confirms that LR-THP is the best choice
to achieve quasi-optimal bit-error-rate through an efficient implementation on a
GPU.
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Figure 5.4: Speed-up per stage for Nt = M = 4 and different number of subcarriers.
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Figure 5.5: Computational time in GPU for Nt = M = 4 and different number of
subcarriers, K.

5.3 Reconfigurable GPU implementation of THP

Results in the previous section have shown that ZF, THP and LR-THP techniques
best fit the GPU architecture. This interesting result motivated the improvement
of the THP and LR-THP implementations along with a reconfigurable GPU im-
plementation combining the use of LR [229].

In section 3.6, LR-THP demonstrated to improve the performance of conventional
THP at the expense of an increased computational cost, mainly due to the LR
stage. To address this issue, the proposed implementation has been developed
using a GPU since it provides a huge capability of parallel processing and rapid
prototyping.

A comparison between the improved GPU implementations of the algorithms un-
der study and their CPU counterparts is carried out, showing that the GPU con-
siderably speeds up the execution of the algorithms. GPUs also allow for recon-
figurability and this advantage has been exploited to propose the reconfigurable
THP scheme. Moreover, since the GPU is more seldom used than the CPU in
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Figure 5.6: Reconfigurable THP scheme.

conventional applications, its use as a co-processor in signal processing systems is
very promising.

5.3.1 Reconfigurable THP scheme

Figs. 3.8-3.11 show that the THP algorithm can be substantially improved by first
performing an LR over the channel matrix. However, depending on the user re-
quirements and channel conditions, the performance of THP can be sufficient with
a much lower computational cost than LR-THP. Thus, a reconfigurable scheme
that can switch between the conventional THP algorithm and LR-THP is proposed
and depicted in Fig. 5.6.

As reported in [241], reconfigurable approaches are meaningful since they allow
a flexible trade-off between the energy efficiency and QoS. Note that, through a
switch, the original data sr is replaced by the modified data R−1sr, allowing the
use of a reduced channel matrix H̃r = R−1Hr in the THP block.

5.3.2 Implementation details

The Nvidia Tesla C2070 GPU has been used for the reconfigurable scheme. Table
5.4 presents the specifications of the device. The architecture of this GPU is
Fermi and hence, it supports a high parallelism level with several kernel execution
overlapping, data copy and kernel execution overlapping, simultaneous host to
device and device to host data copy, etc. The installed CUDA toolkit and SDK
version is 4.0 [237].
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Table 5.4: Nvidia Tesla C2070 features.

Compute capability 2.0
Number of SM 14
Number of CUDA cores 448
Clock rate 1.15 GHz
Global memory 4 GB
Constant memory 64 kB
Shared memory per block 48 kB

In this case, a single kernel is employed for the implementation of either the THP
or the LR-THP algorithm, reducing the overhead related to kernel executions.
The initial input data will differ depending on the selected algorithm. A two-
dimensional grid with two-dimensional blocks is considered. The blocks have 16
threads per dimension, such that NT = 256. Since the channel is considered
to remain constant during Lch = 20 time intervals, each thread block will be in
charge of the processing of a subgroup of subcarriers associated with these number
of intervals. Thus, the number of subcarriers to be processed by each block can be
software-defined at the beginning as Nsub = ⌊NT/Lch⌋. For the case considered in
this section Nsub = 12 subcarriers/block. Then, for a certain number of subcarriers

the number of blocks per dimension is obtained as NB =
⌈√

K/Nsub

⌉
.

Before starting the process, the channel matrices and signals to be precoded
(H[k], s[k]) associated with Lch time intervals and K subcarriers are stored in
the GPU global memory. The preprocessing stage of the algorithm is executed by
one thread per subcarrier and its output data (matrices L, Q† and, only for the
LR-THP case, R−1) are stored in the GPU shared memory, which allows a faster
access. After this, all threads are synchronized to fetch the data from shared
memory and start the per-symbol-vector processing stage using one thread per
symbol-vector. Vector x is obtained and stored temporally in the registers and,
at the end, copied to global memory for its output.

5.3.3 Results

In this section, the parallel implementation of THP and LR-THP algorithms on
a GPU is compared to their implementations in a high-performance CPU. The
selected CPU is an Intel Xeon X5680 at 3.33GHz with 96GB of DDR3 main
memory and 12 MB of cache memory running Linux. The compiler used is Intel
C compiler with the global performance optimization -o3.

Figure 5.7 shows the speed-up for Nt = M = 4 using double precision and dif-
ferent number of subcarriers, K. It can be observed that, while the GPU-based
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Figure 5.7: Speed-up of THP and LR-THP schemes on GPU compared to CPU for
Lch = 20 and Nt = M = 4.

THP implementation performs up to 7 times faster than its CPU counterpart,
the LR-THP implementation reaches a speed-up up to 5.5. Both speed-ups are
quite promising, but it would be interesting to investigate the speed-up reduction
effect experienced by the LR-THP with respect to the THP. For this purpose,
the speed-up achieved by the implementation of only the LR stage was evaluated
independently for the same system configurations previously discussed. Results
showed that this partial speed-up ranges between 2 and 3, meaning that this stage
acts as a bottleneck for the implementation of the LR-THP.

As described in section 5.1, any flow control instruction can significantly impact
the effective instruction throughput achieved by the GPU due to warp divergence.
Indeed this is what happens when the LR is applied over different channel matrices
H[k], since the LLL method contains two if statements dependent on the processed
channel matrix (see Algorithm 1 in section 2.7). This situation causes the serial
execution of the different paths, thus increasing the total number of instructions
executed for this warp and consequently the computational time. This problem
could be partially alleviated when correlation between subcarriers exists, since the
execution path can be similar for highly correlated matrices. However, in this case,
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Figure 5.8: Computational time of THP, LR-THP and the LR-stage on GPU compared
to CPU for Lch = 20 and Nt = M = 4.

uncorrelated channel matrices are considered, and therefore, the implementation
evaluation is performed considering the worst case.

In addition, the computational time of the THP and LR-THP schemes on a GPU
is depicted in Fig. 5.8. It can be seen that LR-THP has a considerably higher
execution time than THP, increasing the difference between them as the number
of subcarriers increases. Observing the execution time of the LR-stage used in LR-
THP scheme, it can be observed that this stage takes even longer than Lch = 20
runs of the THP. This result again shows that the LLL algorithm is not as suitable
as the THP scheme for a GPU implementation.
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5.4 Parallelization of the LLL algorithm on GPU

The previous sections showed that LR is the main bottleneck in the implementation
of LR-THP in a multi-carrier system. Until now, only the multi-carrier parallelism
had been considered. In this section, the parallelization of the LR problem itself
is proposed. This result can be used to leverage different levels of parallelism in
multi-carrier systems.

Several hardware implementations of the LLL algorithm can be found in the litera-
ture. Implementations that make use of LR to improve the detection performance
of multiple antenna systems can be found in [242–246]. In [242] an LR-aided sym-
bol detector for MIMO-OFDM is implemented using 65 nm application-specific
integrated circuit (ASIC) technologies. In [243] a field-programmable gate array
(FPGA) implementation of a variant of the LLL algorithm, the Clarkson’s algo-
rithm, is presented. Its main benefit is the complexity reduction without significant
performance loss in MIMO detection. In [244] a hardware-efficient very-large-scale
integration (VLSI) architecture of the LLL algorithm is implemented, which is used
together with SIC in MIMO data detection. More recently, [245] makes use of a
Xilinx XC4VLX80-12 FPGA for implementing LR-aided detectors, whereas [246]
uses an efficient VLSI design with a pipelined architecture capable of sustaining a
throughput of 880 Mb/s for detecting 64-QAM symbols in a 4x4 MIMO system.

This section presents a low level, fine-grained parallelism LR algorithm, the cost-
reduced all-swap LLL (CRAS-LLL) algorithm. Its low processing time is as-
sured by an efficient work distribution, minimizing the idle time of the launched
threads [230]. Based on the parallel block-reduction concept presented in [247],
a higher level, coarse-grained parallelism is presented as an extra level of paral-
lelism. The idea is to subdivide the original lattice basis matrix in several smaller
submatrices and perform an independent LR on them followed by a boundary
check between adjacent submatrices [231]. The independent LR over the subma-
trices is performed using the CRAS-LLL algorithm. The implementation of the
algorithms is carried out on several architectures including multi-core CPU, GPU
and a heterogeneous platform consisting of CPU+GPU. The nomenclature used
in this section can be found in section 2.7.

5.4.1 Introduction to parallel lattice reduction strategies

Since the LLL algorithm shows a highly sequential behavior, multiple levels of par-
allelism have to be identified and explored in order to parallelize this algorithm.
Previous parallel LR implementations, such as the ones presented in [248–250],
have only focused on multi-core architectures. Their main drawback is the low
number of threads and the limited parallelization possibilities offered by these
architectures compared to the GPU architectures. If the problem could be di-
vided into several sub-problems and these sub-problems could benefit from a multi-
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threaded environment, the low number of threads offered by the multi-cores would
represent a significant limiting factor. In the case of GPUs, the high number of
CUDA cores makes the parallel execution of a high number of threads possible,
thus making the usage of a multi-level parallelism feasible.

5.4.2 Cost-reduced all-swap LLL algorithm

The order in which the Swap procedure is applied in the LLL algorithm (Algo-
rithm 1) is very limiting when implemented within a parallel framework. The
concept of any swap reduction, which was introduced in [251], enables simultane-
ous basis swaps and serves as a basis for future parallel implementations. Further
computational cost can be saved by rearranging and delaying the frequently used
SizeReduction procedure [248].

The procedures SimpleSizeReduction, SimpleSwap and Swap are defined in
order to give an accurate description of the CRAS-LLL and the following algo-
rithms.

Procedure 1 SimpleSizeReduction(B, k, l) Given a lattice generator matrix
B and the associated GSCs matrix U, if the condition (2.32) is not satisfied, i.e.
|µk,l| > 1

2 , the following updates have to be applied:

• µ = ⌈µk,l⌋, µk,l = µk,l − µ, bk = bk − µbl.

Procedure 2 SimpleSwap(B, k) Given a lattice generator matrix B, the asso-
ciated orthogonal basis B∗ and GSCs matrix U, if the condition (2.33) is not
satisfied, or equivalently ‖b∗

k‖2 < (δ − µ2
k,k−1)‖b∗

k−1‖2, the following updates have
to be applied:

• swap bk with bk−1

• b∗p
k−1 = b∗

k + µk,k−1b∗
k−1, µp

k,k−1 = (b∗
k−1, b∗p

k−1)/‖b∗p
k−1‖2,

b∗p
k = b∗

k−1 − µp

k,k−1b∗p
k−1

• b∗
k−1 = b∗p

k−1, b∗
k = b∗p

k , µk,k−1 = µp

k,k−1

Procedure 3 Swap(B, k) Given a lattice generator matrix B, the associated or-
thogonal basis B∗ and GSCs matrix U, if the condition (2.33) is not satisfied, or
equivalently ‖b∗

k‖2 < (δ−µ2
k,k−1)‖b∗

k−1‖2, the following updates have to be applied:

• perform SimpleSwap(k)
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• swap µk,j with µk−1,j, for 1 ≤ j < k − 1,

•

(
µi,k−1

µi,k

)
=

(
µi,k−1µp

k,k−1 + µi,k‖b∗
k‖2/‖b∗p

k−1‖2

µi,k−1 − µi,kµk,k−1

)
for k + 1 ≤ i < n.

In Algorithm 2, a detailed description of the CRAS-LLL algorithm is presented.
This algorithm combines the any swap strategy with the size reductions strat-
egy [230]. The performance of the CRAS-LLL algorithm basically depends on
the efficiency of the work distribution, inner products, size reductions and column
swappings.

Figure 5.9 depicts the implementation details for the main parts of the algorithm.
The work distribution is simple to solve and it is highly parallel. In order to get
an efficient utilization of the threads, a 2 dimensional thread block configuration
is proposed, TB(Tx, Ty). The y dimension is defined based on the size of the
original basis, namely Ty = min (m/2, 32), where the maximum limit is selected
for optimization reasons. By enabling the usage of Tx = min (m, 32) threads in the
x dimension, the threads that belong to the same y dimension will form a warp,
and consequently, the global memory loads and stores issued by the threads of
the warp will be coalesced. Thus, the size reductions, inner products and column
swaps can be computed in a more efficient manner, exploiting the advantages of
the caching system and the low latency of the shared memory [230].

Algorithm 8 in Appendix A shows the CUDA pseudo-code to facilitate the GPU
implementation. In this algorithm, the y dimension also defines the extent of
parallelism. The iteration variable of the for loop is increased in every iteration
by 2Ty. In other words, in every phase the threads with the same y-index have
to reduce and swap at most m/(2Ty) vectors. Matrices B, B∗, U are stored in
the global memory of the GPU. This memory has a high latency, but with a
coalesced access pattern, optimal memory usage can be achieved. Depending on
the basis dimension, the usage of the shared memory is also possible for storing
matrices B, B∗, U. The shared memory is also used to store the GSCs µi,i−1 and
to create two buffer arrays that will help compute the inner products and size
reductions. When computing the inner product, the elements of bk are read in
a coalesced pattern and each thread will sum the corresponding elements in the
shared memory buffer. After the sum, the parallel prefix sum pattern is applied to
the buffer resulting in the inner product value. In the case of a size reduction, the
corresponding elements are reached in a coalesced pattern and the corresponding
µk,k−1 is read from the shared memory. Because the threads belonging to the
same ytid will access the same µk,k−1 in the shared memory, the result will consist
of a memory broadcast instead of a bank conflict [231].

Algorithm 9 in Appendix A shows the implementation of the CRAS-LLL algorithm
for multi-core GPU using OpenMP [252]. Two-level parallelism is implemented
based on a nested parallelism construct. The outer level parallelism starts the
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Algorithm 2 CRAS-LLL [230, 231]

1: Input: B, δ
2: Output: LLL reduced basis
3: Compute B∗ and U with the Gram-Schmidt algorithm
4: oddSwap = true, evenSwap = true, i = 1
5: while oddSwap or evenSwap do

6: if i mod 2 == 1 then

7: oddSwap = false, off = 1
8: else

9: evenSwap = false, off = 0
10: end if

11: for k = 2 + off to m step 2 do ⊲ Embarrassingly parallel for all k
12: Update µk,k−1

13: SimpleSizeReduction(k,k − 1) ⊲ Only µk,k−1 is reduced
14: if ‖b∗

k
‖2 < (δ − µ2

k,k−1)‖b∗
k−1‖

2 then

15: SimpleSwap(k) ⊲ No GSCs are updated
16: if i mod 2 == 1 then

17: oddSwap = true
18: else

19: evenSwap = true
20: end if

21: end if

22: end for

23: i = i + 1
24: end while

25: UpdateGSCoefficients ⊲ Highly parallel
26: procedure SimpleSizeReduction(k,l)
27: if |µk,l| >

1
2

then

28: µ = ⌈µk,l⌋, µk,l = µk,l − µ, bk = bk − µ · bl

29: end if

30: end procedure

31: procedure SimpleSwap(k)
32: Swap bk with bk−1

33: b
∗p
k−1

= b∗
k

+ µk,k−1b∗
k−1

34: µp

k,k−1
= (b∗

k−1, b
∗p
k−1

)/‖b∗p
k−1
‖2

35: b
∗p
k

= b∗
k−1 − µp

k,k−1
b

∗p
k−1

36: b∗
k−1 = b

∗p
k−1

,b∗
k

= b
∗p
k

,µk,k−1 = µp

k,k−1

37: end procedure

38: procedure UpdateGSCoefficients

39: for i = m− 1→ 1 do

40: for j = m→ i + 2 do

41: µj,i = (bj , b∗
i
)/‖b∗

i
‖2

42: SimpleSizeReduction(j,i)
43: end for

44: end for

45: end procedure
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bk = bk - µk,k -1 
bk -1

WorkDistribution SizeReduction

InnerProduct

Swap

Figure 5.9: CRAS-LLL algorithm mapping to GPU architecture

concurrent processing of simMat number of lattice basis and the inner parallel
construct is responsible for the parallel LR of a basis with TPM number of threads.
As the outer level parallelism is expanded, simMat is increased and the threads
available for the parallel LR are decreased.

5.4.3 Modified block LLL

This section presents the modified block LLL (MB-LLL) algorithm, which splits
the original matrix basis into several submatrices of lower dimension in a block-wise
manner and performs the CRAS-LLL on them. Once the LR of the submatrices
is finished, the boundaries between adjacent submatrices are checked and finally
the GSCs outside the initial groups are updated. The main condition is to keep
every submatrix as an LLL-reduced matrix throughout the processing [231].
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Algorithm 3 MB-LLL algorithm

Input: B, δ, block-size l
Output: LLL reduced basis
Compute B∗ and U with the Gram-Schmidt algorithm
p = ⌈m/l⌉ ⊲ p denotes the number of blocks
for k = 1→ p do ⊲ Create the subgroups B[k],B

∗
[k]

,U[k]

B[k] = (bl·(k−1)+1, . . . , bl·k)
B∗

[k]
= (b∗

l·(k−1)+1
, . . . , b∗

l·k)

U[k] = U(l·(k−1)+1...l·k),(l·(k−1)+1...l·k)

echange[k] = true
end for

while ∃k such that exchange[k] is true do

for k = 1→ p do ⊲ Embarrassingly parallel
if exchange[k] is true then

CRAS-LLL(B[k],B
∗
[k]

,U[k]) ⊲ CRAS-LLL without performing GSO.

group[k] = true
end if

end for

for k = 1→ p− 1 do ⊲ Embarrassingly parallel
if group[k] or group[k + 1] is true then ⊲ Checking boundaries

Update µk·l,k·l−1

SimpleSizeReduction(k · l,k · l − 1)
if ‖b∗

k·l+1‖
2 < (δ − µ2

k·l,k·l−1)‖b∗
k·l‖

2 then

for j = k · l − 1→ k · l − l + 1 do ⊲ Prepare the GSCs outside the groups
µk·l+1,j = (bk·l+1, b∗

j
)/‖b∗

j
‖2

end for

for i = k · l + 2→ k · l + l do

µi,k·l = (bi, b∗
k·l)/‖b

∗
k·l‖

2

end for

Swap(k · l + 1) ⊲ Update only GSCs inside the groups
echange[k] = true, echange[k + 1] = true

end if

end if

end for

end while

UpdateGSCoefficients ⊲ Update only GSCs outside the groups

The details of MB-LLL are given in Algorithm 3. Since the LLL reduction of
the subgroups and the boundaries check can be done independently, no frequent
synchronization is required. Thus, coarse grained parallelism can be achieved by
working on the sub-problems.
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5.4.4 Cost-reduced modified block LLL

This section presents the cost-reduced modified block LLL (CRMB-LLL) algorithm
in order to further reduce the computational complexity of the MB-LLL algorithm.
The main idea behind the CRMB-LLL algorithm is the relaxation of the first LLL
condition while executing the LR for the submatrices, resulting in the delay of
the GSCs update and using less costly procedures when performing the boundary
checks [232].

In the MB-LLL algorithm, the submatrices affected by a boundary swap have
to be LLL-reduced and the GSCs have to be updated. Moreover, in order to
maintain the LLL conditions in the submatrices affected by a boundary swap, the
Swap procedure has to be performed. The computational reduction is achieved by
eliminating the GSCs update in the submatrices after the execution of the CRAS-
LLL and the usage of the SimpleSwap procedure instead of Swap in case of a
boundary swap. Since the GSCs are updated only when the ordering condition
(2.33) is met for every column vector, the processing time can be considerably
reduced.

5.4.5 Implementation of MB-LLL and CRMB-LLL

The performance of the MB-LLL and CRMB-LLL algorithms is evaluated for
different architectures: a heterogeneous platform consisting of a CPU and a GPU
is proposed and it is compared with implementations running on a GPU with
dynamic parallelism (DP) capability and a multi-core CPU architecture. The
algorithm mappings on different parallel architectures is very challenging, since the
number of processing cores, latency and size of cache and other different memories
available differ significantly.

DP-based GPU

The implementation of these algorithms can make use of new features introduced
in CUDA 5.0, such as DP [253]. This feature allows launching new kernels and
synchronizing from the GPU without returning the control to the CPU. DP is
only supported by devices of compute capability 3.5 and higher. Figure 5.10
presents the scheme of the MB-LLL kernel, but it is also valid for the CRMB-LLL
algorithm. The CPU launches the MB-LLL Kernel that is responsible for:

• Passing the correct data and launching the CRAS-LLL kernels in order to
perform the LLL reduction of the sub-problems.

• Launching the Boundaries Check kernels for checking the LLL conditions at
the boundaries of the sub-groups.
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Figure 5.10: Kernels scheduling for the MB-LLL algorithm.

• Launching the GSC-Update kernel to update the GSCs coefficients and to
perform the size reductions wherever it is required.

It can be seen that synchronization of the threads is necessary only after finishing
the LR of the sub-problems and after the boundary check. The size of the TBs is
different for each kernel because the tasks that have to be performed are different
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as well. Through the efficient work distribution and the emphasized use of the
parallel design patterns, significant speed-up can be achieved compared to existing
results.

The size of the grid is equal to the number of matrices that are simultaneously
processed and the number of threads in one TB is equal to the number of subma-
trices. Every thread has to prepare the data for the corresponding submatrices
and launch the CRAS-LLL kernel. The kernel has to be re-launched if the LLL
conditions were broken by a boundary swap, which can be solved by tracking state
variables placed in the global memory. When all the submatrices are reduced, the
Boundaries Check kernel is launched. Since the operations performed in this sec-
tion are dot products and column swaps, the thread configuration of the TB is the
same as in case of the CRAS-LLL kernel.

The CRAS-LLL and Boundaries Check kernels are repeated until there are no
swaps on the boundaries. Because one matrix is assigned to one TB in the parent
MB-LLL kernel, the processing of the different matrices can be done simultane-
ously despite the variable number of iterations. Finally, the GSCs outside the
blocks are updated with the GSC-Update kernel and the size-reduction is per-
formed wherever is needed.

Heterogeneous platform CPU+GPU

The schematic of the heterogeneous platform is shown in Fig. 5.11. The multi-
ple CPU OpenMP threads are responsible for launching CRAS-LLL, Boundaries
Check and GSC Update kernels, updating the state variables and implementing the
control logic of the dynamic scheduling. A comprehensive overview of OpenMP
can be found in [252]. A different CUDA stream is assigned for every CPU thread,
making possible the concurrent kernel execution and reducing the idle time of the
CUDA cores [237]. The proposed architecture allows a dynamic scheduling of ker-
nels where the overhead introduced by host-device communication is hidden by
the use of CUDA streams.

The mapping details of the CRMB-LLL algorithm on the heterogeneous platform is
presented in Algorithm 4. Before launching the CRAS-LLL and Boundaries Check
kernels, the CPU thread updates the matIndD array placed in the GPU’s global
memory to specify which matrices need further processing. The size of the grid is
dynamically adjusted according to the number of non-processed matrices in every
iteration. After the Boundaries Check kernel is executed and the boundaryExchH
is updated on the host, the CPU thread checks if the LR of any matrix has finished.
If LLL reduced matrices are found, the matIndH is updated and consequently
the size of the grids assigned to the CRAS-LLL and Boundaries Check kernels is
decreased. The GSC update kernel starts after all the matrices assigned to one
CPU thread have been completely processed.

93



Chapter 5. Hardware Implementation

Algorithm 4 The mapping of the CRMB-LLL on the heterogeneous platform

1: Input: [B1, B2, . . . , Bm], δ, block-size l, T number of OpenMP threads
2: Output: [B1, B2, . . . , Bm] as LLL reduced basis
3: #pragma omp parallel {
4: mpt = m/T ⊲ Number of matrices to be processed by one thread
5: bpm = n/l ⊲ Number of blocks per matrix
6: Assign a CUDA streamid to the current CPU thread with identifier id
7: Define arrays matIndD[mpt] on the GPU and matIndH[mpt] on the host ⊲ The indexes of

the unprocessed matrices are stored in these arrays
8: for i = 0 to mpt step i++ do matIndH[i] = id ·mpt + i end for

9: Define arrays boundaryExchD[mpt · bpm] and boundaryExchH[mpt · bpm]
10: while mpt > 0 do

11: Asynchronously copy matIndH to matIndD on streamid

12: Launch CR − AS − LLL kernel on streamid with grid size gridlll = mpt · bpm and
T B(Tx, Ty) ⊲ The CRAS-LLL is performed on the submatrices, without updating the GSCs

13: Launch the BoundaryCheck kernel on streamid with grid size gridbc = mpt · (bpm− 1)
and T B(Bx, By) ⊲ The LLL conditions (2.32) and (2.33) are checked on the boundary of
two adjacent submatrices. In case the conditions are not met, the SimpleSwap is executed
instead of the Swap procedure.

14: Asynchronously copy boundaryExchD to boundaryExchH on stream id
15: Synchronize CPU thread with streamid

16: if There was no boundary exchange for one matrix then

17: Remove the matrix index from matIndH and mpt← mpt− 1 ⊲ The CPU threads
have to process the result of the boundary exchange

18: end if

19: end while

20: Launch the GSC − Update kernel on streamid ⊲ In this kernel all the GSCs are updated
and size reduction is performed where necessary.

21: }
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B1 · · · Bk

Bk+1 · · · B2k

B2k+1 · · · B3k

B3k+1 · · · BK

Figure 5.11: Kernels scheduling on the heterogeneous platform for the MB-LLL algo-
rithm.

Multi-core CPU

The control structure required by the multi-core architecture is similar to the
one presented in the heterogeneous platform. The difference is that instead of
launching GPU kernels, the master threads fork a specified number of slave threads
that are processing the submatrices in parallel. The parallel LR of the submatrices
is performed according to Algorithm 9 in Appendix A, which gives the details of
the OpenMP implementation of the CRAS-LLL algorithm.

Two-level parallelism is implemented based on nested parallelism. The outer level
parallelism starts the concurrent processing of simMat number of lattice basis and
the inner level is responsible for the parallel LR of a basis with TPM number of
threads. As the outer level parallelism is expanded, simMat is increased and the
threads available for the parallel LR are decreased. In this case, the very limited
number of CPU threads restrict the exploitation of several levels of parallelism.

5.4.6 Results

This section presents results regarding the implementation of the CRAS-LLL, MB-
LLL, CRMB-LLL algorithms on the different architectures.

Firstly, a comparison of the CRAS-LLL implementation on different Nvidia GPUs
is presented. The GPU configurations used for the comparison are: 1 × K20, 2 ×
K20, 2 × C2075 and 1 × GTX690. A comparison of the hardware components of
these GPUs can be found in Table 5.5. The GTX690 has the highest number of

95



Chapter 5. Hardware Implementation

Table 5.5: Nvidia GTX690, K20 and C2075 GPU features.

Model Architecture Die Count Memory (MB) SMs CUDA cores

GeForce GTX 690 2xGK104 2 2 × 2048 2 × 8 2 × 1536

Tesla K20 GK110 1 5120 13 2496

Tesla C2075 GF100 1 6144 14 448

Model Clock rate (MHz) GFLOPS (FMA) TDP (W) Price

GeForce GTX 690 915 2 × 2810 300 ∼ $1100

Tesla K20 705 3519 225 ∼ $3000

Tesla C2075 1150 1030 238 ∼ $2100

CUDA cores and achievable FLOPS. In the case of the C2075, the clock rate of
the cores is slightly higher. However, the number of CUDA cores is significantly
lower. The multi-GPU configurations are used in order to balance the die number
of the K20 and C2075 GPUs with the GTX690 GPU.

Figure 5.12 compares the average computational time of one lattice basis on the
above mentioned GPU configurations. Results consider square real matrices of
the form of (2.27) and δ = 3/4. The average computational time was computed
by averaging the processing time of 8000 lattice basis, thus the same number of
thread blocks were defined for the grid. The computations were done in single-
precision floating point arithmetic. The best results are achieved by the 2 × K20
GPU configuration, however the GTX690 performs better than 1 × K20. The
result achieved with the 2 × C2075 also outperforms the 1 × K20. This is a sur-
prising result since the FLOPS achieved by the 2 × C2075 GPUs are significantly
lower compared to the K20 GPU. Presumably, this is mainly motivated by the
different use of the L1 cache in the Kepler architecture. In addition, comparing
the computational times with other implementations in the literature, it can be
stated that this implementation reduces the computational time even for small
matrices [243, 244].

Figure 5.13 shows the computational time of the CRAS-LLL and the MB-LLL
algorithms, evaluated on the Nvidia Tesla K20 GPU. In the case of MB-LLL,
different configurations regarding the block size are shown. It can be observed
that the block concept used in the MB-LLL algorithm allows the reduction of the
computational time for matrix sizes larger than 256. Taking into account that
the processed matrices are real, this case can correspond to a system with 128
transmit or receive antennas, known as massive MIMO systems as introduced in
section 2.3. Thus, GPUs have shown to possess a powerful architecture for signal
processing in massive MIMO systems.
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Figure 5.12: Computational time of CRAS-LLL on 1 × and 2 × Tesla K20, 1 × GeForce
GTX690 and 2 × Tesla C2075 GPUs for different matrix sizes.
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Figure 5.13: Computational time of the CRAS-LLL and MB-LLL algorithms with
different block sizes, l, for different matrix sizes.

Figure 5.14 shows the computational times of the MB-LLL algorithm implemented
on the architectures discussed in section 5.4.5 for different matrix sizes, where l
denotes the size of the processed blocks. The performance measurements were
evaluated with all the possible block sizes and the best configuration is shown. The
architectures used for the computational time measurements are the Nvidia Tesla
K20 (with DP capability) and an Intel Core i7-3820 processor. The processing
times show similar performance for large matrices when the GPU is involved.
However, the heterogeneous platform clearly outperforms the solution based on
DP in the case of small matrices. This gap is caused by the overhead required
when launching CUDA kernels from CUDA kernels, without CPU involvement due
to the DP feature, and the limited overlapping execution of kernels on different
streams. The conclusion is that the data transfer between CPU and GPU required
by the heterogeneous system is less time consuming than the overhead of the kernel
launched with DP and the limitation of the concurrent execution of kernels on
different streams.
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Figure 5.14: Computational time of the MB-LLL algorithm with different block sizes,
l, on different architectures and for different matrix sizes.

Figure 5.15 compares the average computational time of the CRAS-LLL, MB-LLL
and CRMB-LLL algorithms for different matrix sizes. The algorithms have also
been evaluated on the Intel Core i7-3820 CPU, the Nvidia GeForce GTX 690 GPU
and the heterogeneous system containing the previously mentioned CPU and GPU.
Since DP does not mean any benefit as shown in Fig. 5.14, the Nvidia GeForce
GTX 690 GPU has been selected instead of the K20. Regarding the GPU and
combined CPU+GPU implementations, the following conclusions can be drawn:

• The computational time of the CRMB-LLL algorithm is 25 − 40% lower in
cases of small and medium-sized matrices compared to the MB-LLL algo-
rithm and the performance is similar with larger matrices.

• The CRAS-LLL algorithm performs better than the CRMB-LLL algorithm
in case of small matrices. However, for large matrices the block concept
implemented in the CRMB-LLL algorithm achieves 30% speed-up compared
to the CRAS-LLL algorithm.
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Figure 5.15: Computational times of CRAS-LLL, MB-LLL and CRMB-LLL algorithms
on different architectures for different matrix sizes.
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5.5 Conclusion

• The systems using the GPU outperforms the CPU for every matrix size with
speed-ups ranging from 6 to 15.

Regarding the CPU implementations the following conclusions can be drawn:

• The CRMB-LLL always outperforms the MB-LLL algorithm with speed-ups
ranging from 2 to 7,

• The CRAS-LLL algorithm performs better than the MB-LLL and CRMB-
LLL for small matrices (23 − 26),

• The computational time of the CRMB-LLL is 10−20% lower in case of larger
matrices compared to the CRAS-LLL.

A surprising result is that, while the CRMB-LLL achieves a significant speed-up
compared to the MB-LLL for the CPU architecture, the same does not occur for
the GPU architecture. This fact is due to several reasons. The computational
complexity reductions for the CRMB-LLL affect only the CRAS-LLL and Bound-
aries Check kernels. However, in case of large matrices, the GSC-Update kernel is
taking the major part of the processing time. This kernel has to access the global
memory frequently and these accesses have a high latency. In case of the CPU,
this problem is alleviated by the high speed memory access and the large amount
of available cache.

The performance of LR mostly depends on the precision of the computation, the
size and type of the basis matrix and the architecture used. In Table 5.6, the
performance of existing implementations is presented. Previous research mostly
focused on small matrices. In [249], performance measures for higher dimension
matrices are presented as well. However, the total runtime of the algorithm is not
specified.

5.5 Conclusion

This chapter has provided details about the GPU implementation of the precoding
algorithms presented in Chapter 3 for a MU-MISO-OFDM system. The precoding
stage is highly accelerated by simultaneously processing the calculations associated
with all the subcarriers by forwarding their data to different threads. The GPU
implementation has been compared with its CPU counterpart. The different speed-
up achieved by the different precoding algorithms reveals that ZF, THP and LR-
THP algorithms are more suitable for a GPU implementation than the rest.

Due to the good performance of the THP implementation, a reconfigurable GPU-
based implementation of the THP scheme combined with a LR stage has been
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Chapter 5. Hardware Implementation

Table 5.6: Performance comparison of different LR implementations.

Ref Algorithm Architecture 4 × 4 8 × 8 64 × 64 1024 × 1024

[243] Clarkson’s Algorithm Virtex-II-Pro FPGA 4.2 × 10−6 x x x

[244] Reverse Siegel LLL Virtex-4 FPGA 0.18 × 10−6 x x x

[244] Reverse Siegel LLL ASIC 130 nM 0.04 × 10−6 x x x

[250] SB-LLL ADRES 0.17 × 10−6 x x x

[254] Complex LLL Virtex-5 FPGA 0.79 × 10−6 x x x

[255] Brun’s Algorithm ASIC 250 nM 0.07 × 10−6 x x x

[230] CRAS-LLL GTX690 GPU x 0.33 × 10−6 1.37 × 10−5 1.67 × 10−2

[232] CRMB-LLL
GTX690 GPU +

Intel i7-3820 CPU
x 0.77 × 10−6 1.30 × 10−5 1.28 × 10−2

presented. The reconfigurable nature of GPUs allows gating the LR stage off
when the user requirements are sufficiently guaranteed by the THP scheme, trading
computational cost and performance. The LR stage has proven to be the main
bottleneck in this parallel implementation.

In order to improve the LR stage in the implementation of precoding algorithms,
several strategies for the parallel implementations of the LLL algorithm have been
proposed. The CRAS-LLL algorithm allows carrying out different operations of the
LLL algorithm simultaneously in parallel. In addition, the MB-LLL and CRMB-
LLL algorithms divide the original matrix into several submatrices, allowing to
perform the CRAS-LLL algorithm on the submatrices. A heterogeneous platform
based on a CPU and a GPU has been proposed for the implementation of these
algorithms and its performance has been compared with implementations running
on a GPU with DP capability and a multi-core architecture. Results show that the
use of a GPU allows a speed-up ranging from 6 to 15 compared to multi-core CPUs.
In addition, the block concept used in the CRMB-LLL allows achieving a 30%
speed-up compared to the CRAS-LLL algorithm in the heterogeneous platform,
which is the architecture that has achieved the best performance.
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Chapter 6

Limited Feedback exploiting

Frequency Correlation

In FDD MU-MISO-OFDM systems, a large amount of channel in-
formation has to be provided by the MSs through the feedback link. In
order to reduce this amount of information, the correlation in the fre-
quency domain can be leveraged. In this chapter, two different feedback
schemes based on vector quantization (VQ) [256] and on the KL [257]
transform, respectively, are analyzed.

As seen in section 2.5, since CSIT cannot be obtained directly from the reverse
link in FDD systems, it must be provided by the MSs through the feedback link.
Usually, quantized feedback information is considered due to its better performance
compared to unquantized feedback [144].

In MU-MISO-OFDM systems, the amount of feedback information can be consid-
erable for a large number of OFDM subcarriers or a long CIR. Since the signal
processing is performed on a per-subcarrier basis, information of all the subcarriers
is required at the BS. In practice, CSI at the different subcarriers presents a high
correlation that can be exploited to reduce the amount of feedback information.

First, this chapter presents an introduction to quantization. Next, two different
strategies that allow taking advantage of the frequency correlation in order to
improve the performance of the limited feedback scheme are presented. These
strategies are based on the VQ and on the KL transform.
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Chapter 6. Limited Feedback exploiting Frequency Correlation

6.1 Introduction to quantization

Given an input that usually can take any value in a continuous range, the purpose
of quantization is to select a value from a finite set that best represents the input.
Thus, the output can be represented by an integer {1, 2, . . . , N} where N is the
size of the finite set. This operation is widely used in analog-to-digital conversion.

Depending on the dimensions of the input and the output, this process is known
as scalar quantization or vector quantization. In scalar quantization, the input
values as well as the elements of the finite set are scalars. In vector quantization,
the quantizer operates with vectors instead of scalars. A detailed review on the
history of quantization and different quantization techniques can be found in [258].

6.1.1 Scalar quantization

An N -level scalar quantizer can be defined by a mapping Q : R → C, where C is
the codebook defined as

C = {x̂1, x̂2, . . . , x̂N }, x̂n ∈ R. (6.1)

The quantization rate or resolution is defined as R = log2 N . Generally, N is a
power of 2 integer. If all the quantizer levels are assumed to have binary codewords
of equal length, i.e. fixed rate quantizer, the number of bits per sample is also
defined by B = log2 N . Values x̂n are commonly referred to as output values,
quantized values or output levels. We assume that the indices of the output values
are chosen so that

x̂1 < x̂2 < . . . < x̂N . (6.2)

Associated with every output value, there is a region which is a partition of the
real line such that

Rn = {x ∈ R : Q(x) = x̂n}. (6.3)

From this definition, it can be derived that the quantizer covers the whole range
and the partition cells are non-overlapping:

⋃

n

Rn = R, (6.4)

Rn

⋂
Rn′ = ∅, for n 6= n′. (6.5)

A scalar quantizer is defined to be regular if each region Rn is an interval and

x̂n ∈ (xn−1, xn). (6.6)

The values xn are commonly referred to as boundary points, decision levels or
decision thresholds [259]. Therefore, the regions can be defined as Rn = (xn−1, xn].
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6.1 Introduction to quantization

Conditions for optimality

The design of the quantizer consists of obtaining the parameters of the quantizer,
i.e. the output values and decision thresholds, that minimize the average distortion
for a fixed N . In general, this problem does not have any explicit closed-form
solution, but some effective algorithms can be used [259, Chap. 6].

There are two conditions for output levels and decision thresholds that are neces-
sary for optimality by each one assuming that the other part is fixed:

Optimal decision thresholds

For a fixed set of output levels C = {x̂1, x̂2, . . . , x̂N }, each partition must
satisfy

Rn ⊂ {x : d(x, x̂n) ≤ d(x, x̂n′); ∀n′ 6= n}. (6.7)

In other words, an input value x is quantized to value x̂n if and only if it
produces the minimal distortion:

Q(x) = x̂n ⇐⇒ d(x, x̂n) ≤ d(x, x̂n′); ∀n′ 6= n. (6.8)

The most common measure of distortion is the squared error or squared
Euclidean distance between the input and the output values, defined as

d(x, x̂) = (x − x̂)2. (6.9)

When using this distortion, (6.7) implies that for a given input x, the output
x̂n is chosen to minimize |x − x̂n|. In other words, the nth region consists
of all the input values closer to x̂n than to any other output value. This is
achieved by selecting xn as the midpoint between the adjacent levels,

xn =
x̂n + x̂n+1

2
. (6.10)

For this reason, this condition is known as the nearest neighbor condition.

Optimal output values

For a given partition Rn, its optimal output level x̂n is the centroid or
center of mass of that part of the input probability density function (PDF)
that lies in the region Rn. Considering the mean squared error, the optimal
output value is given by

x̂n = E [x | x ∈ Rn] . (6.11)

This condition is known as the centroid condition, and its fulfillment implies
that the mean of the quantizer output is the same as the mean of the
input, the quantizer output is uncorrelated with the quantizer error and the
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expected squared quantization error is the difference between the variances
of the signal and the quantized output [259, Chap. 6]:

E [Q(x)] = E [x] (6.12)

E [Q(x)(Q(x) − x)] = 0 (6.13)

E
[
(x − Q(x))2

]
= E

[
x2
]

− E
[
(Q(x))2

]
(6.14)

In addition, the fulfillment of both conditions (optimal decision thresholds
and optimal output values) considering the squared error distortion assures
the regular condition expressed in (6.6).

Uniform quantizer

A uniform quantizer is defined as a regular quantizer where the decision thresholds
are equally spaced and the output values are at the midpoints of the quantization
intervals:

xn − xn−1 = ∆ n = 2, . . . , N − 1 (6.15)

x̂n =
xn−1 + xn

2
n = 2, . . . , N − 1 (6.16)

In case of bounded inputs, x0 and xN are fixed by the boundaries of the inputs.
However, in case of unbounded inputs, the quantizer has two overload regions
where x0 = −∞ and xN = ∞. The output values of these regions are expressed
as x̂1 = x1 − ∆/2 and x̂N = xn−1 + ∆/2, as shown in Fig. 6.1.

The uniform quantizer provides a reasonably good performance for a wide vari-
ety of input signals, even though their PDFs are not uniformly distributed [259,
Chap. 5]. In case of bounded inputs, the maximum possible error is ∆/2. The
main problem of dealing with unbounded inputs is that the maximum error is infi-
nite in the overload regions. However, most of the PDFs have a rapidly decreasing
tail probability that reduces the probability of containing an input sample far from
the output values for an appropriate quantizer design. For this reason, uniform
quantizers are usually employed in analog-to-digital conversions.

Non-uniform quantizer

In non-uniform quantizers, the decision thresholds are not equally spaced, allowing
to adapt the output levels to the shape of the input PDF. Thus, a better perfor-
mance is obtained over the use of uniform quantizers. Non-uniform quantization
can be performed using uniform quantizers together with non-linear functions at
the input and output of the quantizer, known as compressor and expander func-
tions. However, a general algorithm to obtain a non-uniform codebook from an
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Figure 6.1: Example of uniform quantizer.

input PDF is presented and used in this thesis. In addition, this algorithm can
also be applied when only training data is available instead of the PDF, although
its details are not provided in this section.

Lloyd algorithm is an iterative algorithm based on the conditions of optimality.
This algorithm was first described in an unpublished report in 1957 and published
much later [260]. Independently, a similar algorithm was presented in [261], and
therefore this algorithm is also known as Lloyd-Max algorithm.

The main idea behind Lloyd algorithm is to start with an initial codebook, a uni-
form codebook for instance, and iteratively improve the codebook by alternatively
recalculating the decision thresholds and output values according to (6.10) and
(6.11). The stopping criterion is usually based on the average distortion. If the
reduction in the average distortion during the last iteration is below a threshold,
convergence is assumed and the algorithm stops. In particular, the fractional drop
in distortion

Dm − Dm+1

Dm
< ǫ (6.17)

has shown to be an effective test to determinate the convergence [259, Chap. 6].
Given the PDF of the input signal, fX(x), the average distortion is obtained as

D =

N∑

n=1

∫

Rn

(x − x̂n)2fX(x)dx. (6.18)

The flow chart of the Lloyd algorithm is shown in Fig. 6.2. A different initial
codebook could be used. However, a reasonable initial codebook according to the
input PDF can considerably decrease the number of iterations. If the algorithm
converges to a codebook in the sense that additional iterations do not change the
codebook, then the achieved codebook satisfies both optimality conditions.

109



Chapter 6. Limited Feedback exploiting Frequency Correlation

Initial

Codebook

Optimal

decision

thresholds

Stop

Compute

distortion

Optimal

output

values

Test

convergence

Lloyd

iteration

Figure 6.2: Lloyd algorithm for quantizer design.

Bit allocation

In communication systems, different parameters have to be simultaneously quan-
tized with a limited number of bits. The manner in which those bits are distributed
among the different parameters is known as bit allocation, and it is a major concern
for obtaining the maximum benefit. In a system where the different parameters
have the same “importance”, an equal bit allocation can be used. However, bits
have to be reasonably distributed in systems where the parameters have a different
“importance”.

Real-valued bit allocation

In order to perform the bit allocation, a trade-off between the distortion and
the rate or quantization bits dedicated to quantize every random variable is
necessary. Rate-distortion theory analyzes the problem of determining the
minimal number of bits, B, allocated to the quantization of a random vari-
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6.1 Introduction to quantization

able to achieve an expected distortion lower than D [262, 263]. In the case
of a Gaussian random variable with zero mean and variance σ2, the rate-
distortion function with squared error distortion is given by [28, Chap. 10]

B(D) =

{
1
2 log2

σ2

D , 0 ≤ D ≤ σ2,
0, D > σ2.

(6.19)

We can rewrite (6.19) to express the distortion in terms of the rate as

D(B) = σ22−2B . (6.20)

It is important to observe that this distortion is a lower bound. A per-
formance close to this limit can be achieved by the joint quantization of
multiple random variables. However, scalar quantization can also perform
reasonably close to the rate-distortion function.

Assuming now that there exist B bits to be allocated among the quantizers
of a set of K independent Gaussian random variables, X1, X2, . . . , XK , with
zero mean and variances σ2

1 , σ2
2 , . . . , σ2

K . The definition of the squared error
distortion is extended to

d(x, x̂) = ‖x − x̂‖2 =

K∑

k=1

|xk − x̂k|2, (6.21)

where x = [x1, . . . , xK ] and x̂ = [x̂1, . . . , x̂K ]. Therefore, the optimal bit
allocation that minimizes the average distortion subject to

B =

K∑

k=1

Bk (6.22)

Bk ≥ 0, ∀k (6.23)

is given by [264]

Bk = max

(
1

2
log2

(
σ2

k

γ

)
, 0

)
, (6.24)

where γ is the solution to

K∑

k=1

max

(
1

2
log2

(
σ2

k

γ

)
, 0

)
= B. (6.25)

The parameter γ can be obtained through a kind of reverse water-filling [28,
Chap. 10]. The achieved distortion is given by

D =

K∑

k=1

Dk =

K∑

k=1

min(γ, σ2
k). (6.26)
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Integer-valued bit allocation

Although this bit allocation has considerable interest from a theoretical
point of view, it presents some limitations in practical systems because the
solution does not provide integer values of Bk. The extension to obtain
integer-valued bit allocation is not straightforward, since it might lead to
violate the restriction

∑K
k=1 Bk = B or to require an excessive compu-

tation. For this reason, [259, Chap. 8] presents the greedy bit allocation
(GBA) algorithm, a simple algorithm to obtain an integer-valued bit allo-
cation. Although the algorithm is not optimal, it yields good assignments
in practice.

The GBA algorithm makes use of the high resolution quantization approx-
imation. This approximation allows expressing the distortion function for
any input PDF as

D(B) ≈ aσ22−2B , (6.27)

where the constant a can be calculated from the PDF of the normalized
random variable X/σ, f(x), as

a =
1

12

(∫ ∞

−∞

(f(x))
1/3

dx

)3

. (6.28)

For a Gaussian random variable, the constant is ag =
√

3π/2. This constant
determines the distance from the rate-distortion bound shown in (6.20).

The GBA algorithm is shown in Algorithm 5. This algorithm essentially
consists of allocating one bit at a time to the most needy quantizer, where
the degree of neediness is measured by the average distortion given in (6.27).
This algorithm together with the high resolution approximation allows to
perform an integer-valued bit allocation among different quantizers with
different PDFs.

Algorithm 5 Greedy bit allocation algorithm [259, Chap. 8]

1: Input: B ⊲ Total number of quantization bits
2: Output: Bk ⊲ Bits allocated to each quantizer
3: Bk = 0, ∀k ⊲ Initialization
4: b = 0 ⊲ Number of allocated bits so far
5: Sk = Dk(Bk), ∀k ⊲ Initial values of demand according to (6.27)
6: while b < B do

7: Find the index k with the maximum demand Sk

8: Bk = Bk + 1 ⊲ Bit allocated to the kth quantizer
9: Sk = Dk(Bk) ⊲ Recalculate demand according to (6.27)

10: b = b + 1
11: end while
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6.1.2 Vector quantization

VQ is a generalization of scalar quantization that deals with vectors instead of
scalars. The availability of multiple dimensions introduces new ideas and tech-
niques that offer a larger flexibility in the quantizer design. However, there are
many similarities between vector and scalar quantization.

VQ has traditionally been used in lossy data compression due to the superior
performance compared to the scalar quantization. However, the performance im-
provement comes at the cost of larger computational and memory requirements,
which grow exponentially with the dimension [265].

A vector quantizer can by defined by a mapping Q : R
K → C, where C is the

codebook defined as

C = {x̂1, x̂2, . . . , x̂N }, x̂n ∈ R
K . (6.29)

The rate or resolution of the vector quantizer is defined as R = (log2 N)/K, which
expresses the number of quantization bits per vector component.

Associated with every output vector x̂n, there is a region in R
K such that

Rn = {x ∈ R
K : Q(x) = x̂n}. (6.30)

From this definition, it can be determined that the quantizer covers the entire
range and the partition cells are non-overlapping:

⋃

n

Rn = R
K , (6.31)

Rn

⋂
Rn′ = ∅, for n 6= n′. (6.32)

Regions can be classified into granular and overload regions. A granular region
has a finite K-dimensional volume, whereas an overload region is unbounded. A
vector quantizer can be defined as regular if every region Rn is a convex set and

x̂n ∈ Rn, ∀n. (6.33)

Figure 6.3 shows a comparison between scalar quantization and vector quantization
for two independent, zero mean and unit variance Gaussian variables, X1 and X2.
This case is equivalent to the quantization of a complex variable where the real
and imaginary parts are uncorrelated. Figure 6.3a shows the different regions and
output values corresponding to the scalar quantization of each variable, whereas
Fig. 6.3b shows the regions and output values for a vector quantizer. These figures
show that the vector quantizer has a larger flexibility since it can have different
region shapes, which are adapted to the PDFs of the input random variables.
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Figure 6.3: Scalar quantization vs. vector quantization for X1, X2 ∼ N(0, 1).
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Conditions for optimality

The optimality conditions for scalar quantization can be generalized to vector
quantization [259, Chap. 11]. As in the scalar case, this thesis considers the squared
error distortion applied over vectors defined in (6.21).

Optimal decision thresholds

For a fixed set of output levels C = {x̂1, x̂2, . . . , x̂N }, each partition must
satisfy

Rn ⊂ {x : d(x, x̂n) ≤ d(x, x̂n′); ∀n′ 6= n}. (6.34)

In other words, an input value x is quantized to value x̂n if and only if it
produces the minimal distortion:

Q(x) = x̂n ⇐⇒ d(x, x̂n) ≤ d(x, x̂n′); ∀n′ 6= n. (6.35)

Thus, all input points closer to x̂n than to any other output vector must be
assigned to regions Rn. This condition is equivalent to the nearest neighbor
condition for scalar quantizers.

Optimal output values

For a given partition Rn, its optimal output level x̂n is the centroid or
center of mass of that part of the input PDF that lies in the region Rn:

x̂n = E [x | x ∈ Rn] . (6.36)

Again the fulfillment of the centroid condition implies that the mean of
the quantizer output is the same as the mean of the input, the quantizer
output is uncorrelated with the quantizer error and the expected squared
quantization error is the difference between the variances of the signal and
the quantized output [259, Chap. 11]:

E [Q(x)] = E [x] (6.37)

E
[
xT Q(x)

]
= E

[
‖Q(x)‖2

]
(6.38)

E
[
‖Q(x)‖2

]
= E

[
‖x‖2

]
− E

[
‖x − Q(x)‖2

]
(6.39)

In addition, the fulfillment of both conditions considering the squared error
distortion assures the regular condition expressed in (6.33).
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Figure 6.4: Lloyd algorithm for quantizer design with empirical data.

Vector quantizer design

Lloyd algorithm can be straightforwardly generalized to the vector quantization
case by considering its optimality conditions. As previously seen in Fig. 6.2, this
algorithm consists of starting with an initial codebook and iteratively improving
it by alternatively applying the optimality conditions. Applied over vectors, this
algorithm is known as the Generalized Lloyd algorithm [259, Chap. 11], k-mean
algorithm [266] or LBG algorithm [267].

The optimality conditions expressed above are valid when the input PDF is known.
In vector quantization, the centroid calculation may involve the evaluation of mul-
tiple integrals over non-regular regions in R

K which cannot be obtained through
analytical methods. In addition, the input PDF is unknown in many practical
systems. Therefore, the evaluation of the optimality conditions over empirical
observations of the data is usually performed, as shown in Fig. 6.4.

Let T be a set of signal observations, a.k.a. training set,

T = {v1, . . . , vT } , (6.40)
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where T is the size of the training set. The subset Tn ⊂ T is defined as the subset
that contains all the training vectors located in the region Rn:

Tn = {vt : vt ∈ Rn} . (6.41)

Hence, the calculation of the centroid from the training set can be performed as

x̂n =
1

|Tn|

|Tn|∑

t=1

vt, (6.42)

The convergence of the Generalized Lloyd algorithm has been analyzed in [268].
Since the initial codebook may be decisive for the convergence of the algorithm,
different techniques for the calculation of the initial codebook are proposed in [259,
Chap. 11].

6.2 Vector quantization over CFR pilots

In this section, the performance of a feedback scheme based on VQ is evaluated in
a MU-MISO-OFDM system (see Fig. 6.5). In the proposed scheme, the different
MSs estimate the channel at the pilot subcarriers and group the estimations into
vectors, which are quantized using VQ. Hence, the vector quantizer is used in the
frequency domain [256].
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6.2.1 Channel estimation

The channel estimation algorithm is performed as in [269]. This algorithm exploits
the frequency correlation properties of the time varying wireless channel to esti-
mate the different subcarriers. The estimation of the channel matrix is equivalent
to estimating the P frequency coefficients per transmit antenna for each of the
M MSs. Given the uncorrelated spatial fading assumption, the strategy consists
of transmitting Nt orthogonal pilot sequences, one from each transmit antenna,
and estimating the gain parameter in each receive antenna. The SISO estimation
algorithm is described and then, extended to the MISO case.

SISO Channel Estimation

The SISO channel estimation is based on transmitting pilot symbols in several
equally spaced OFDM subcarriers, with data symbols in the rest of subcarriers. For
a complex-valued, discrete-time OFDM channel with L non-zero samples, at least
P ≥ L pilot symbols are necessary to obtain an estimate of all K subcarriers [269].
The SISO-OFDM channel estimation is performed as follows:

1. The frequency domain pilot symbols are collected into a P × P diagonal
matrix:

XP = diag {[x[0], x[K/P ], . . . , x[(P − 1)K/P ]]} . (6.43)

2. The received symbols at the pilot subcarriers are collected in a vector:

yP = [y[0], y[K/P ], . . . , y[(P − 1)K/P ]]
T

. (6.44)

The least squares (LS) estimation of the pilot subcarriers is obtained by
dividing the received symbols by the pilot transmitted symbols:

h̄LS = X−1
P yP , (6.45)

where h̄LS =
[
h̄CFR[0], h̄CFR[K/P ], . . . , h̄CFR[(P − 1)K/P ]

]T
is a vector

that contains the estimated CFR at the pilot subcarriers. The CIR is ob-
tained by performing the P -point IDFT operation:

h̄CIR =
K

P

1√
K

FH
P h̄LS, (6.46)

where FP is the P × L matrix obtained by selecting the rows corresponding
to the pilot subcarriers positions and the first L columns of the K × K DFT
matrix.

3. The estimated K-point CFR is obtained through the DFT with zero-padding
of the estimated CIR,

h̄CFR =
√

KFLh̄CIR =
K

P
FLFH

P h̄LS, (6.47)
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6.2 Vector quantization over CFR pilots

where FL is the K × L matrix obtained selecting the first L columns of the
K × K DFT matrix.

MIMO Channel Estimation

In order to estimate the MU-MISO-OFDM channel, the SISO channel estimation
is extended. Instead of transmitting P pilot symbols spaced by K/P subchannels,
it can be seen as transmitting P frequency domain sequences of length Nt. This
scheme is shown in Fig. 6.6 where p and d generically denote a pilot symbol
and a data symbol, respectively. Since the pilot symbols are orthogonal, the
channel estimation can be performed independently for each transmit antenna at
the different MSs. The total amount of pilot symbols necessary to estimate the
MU-MISO-OFDM channel are NtP .

p     0     0     0     d  · · ·  d     p     0     0     0     d  · · ·  d     p     0     0     0     d  · · · 

0     p     0     0     d  · · ·  d     0     p     0     0     d  · · ·  d     0     p     0     0     d  · · ·  

0     0     p     0     d  · · ·  d     0     0     p     0     d  · · ·  d     0     0     p     0     d  · · ·  

0     0     0     p     d  · · ·  d     0     0     0     p     d  · · ·  d     0     0     0     p     d  · · · 

freq.

BS

Nt

{ { {1 P· · ·

Figure 6.6: Pilot symbol distribution for channel estimation, where p and d generically
denote a pilot symbol and a data symbol, respectively.

Choosing P = K/Nt, the best estimation of the channel matrix can be obtained at
the cost of not transmitting data symbols during the estimation period. Thereby,
pilot symbols in each antenna are spaced by Nt subcarriers and all subcarriers are
occupied by a pilot symbol during this period.

6.2.2 Vector quantization

Once the channel estimation has been performed, there are several techniques
to feedback the channel information. Since channel estimation method is known
at both the transmitter and receiver, an easy method consists of sending back
the estimation of the channel at the position of the pilot subcarriers so that the
interpolation can be performed at the BS.

Grouping the estimations at the position of the pilot subcarriers into one vector,
hLS , and quantizing it would be the straightforward manner of using VQ. However,
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Chapter 6. Limited Feedback exploiting Frequency Correlation

the large number of vector elements involve a large number of quantization bits,
resulting in a prohibitive computational complexity of the codebook design and
the searching process. This section proposes to divide the vector hLS into smaller
vectors of Lv components, such that

h̄l
LS =

[
h̄LS [lLv], . . . , h̄LS [(l + 1)Lv − 1]

]
, for l = 1, . . . , P/Lv − 1. (6.48)

Then, VQ is performed over vectors h̄l
LS . The accuracy of the CSIT will depend

on the number of bits used to feed back these vectors. Given Bv feedback bits
per vector of Lv components, a codebook with 2Bv codewords is built using the
generalized Lloyd algorithm. The codebook can be expressed as

C = {vj , 1 ≤ j ≤ 2Bv}. (6.49)

The codebook is generated from a random training set obtained from the statistical
channel model. The same codebook can be equally generated at the BS and the
different MSs by using the same seed to initialize the random generator. For small
values of Bv, the vector quantizer has a small number of codewords, therefore
training and searching processes do not have a large computational cost. However,
as Bv increases, the computational complexity of the designing and searching
processes also increase.

Given a segment of the channel vector, h̄l
LS , the MS selects the codeword which

minimizes the squared Euclidian distance:

v̂l = arg min
1≤j≤2Bv

‖h̄l
LS − vj‖2. (6.50)

Once these indices have been provided, the BS can recompose the entire channel
from its own codebook given de index l of v̂l. The recomposed channel can be
expressed as

Ĥ[k] = H[k] + E[k], (6.51)

where Ĥ[k] is the estimated channel at the BS, H[k] is the true channel and the mth
row in E[k] represents the additive estimation and quantization error vector for
the mth user and kth subcarrier, whose entries are i.i.d. and follow a CN (0, σ2

e,k)
distribution. For a given subcarrier, the normalized mean square error (MSE) of
the estimated channel is defined as

MSE =
E

[
‖Ĥ − H‖2

F

]

E [‖H‖2
F]

=
E
[
‖E‖2

F

]

E [‖H‖2
F]

. (6.52)
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6.2.3 Numerical results

In this section, the performance of the proposed limited feedback scheme in a
MU-MISO-OFDM system is evaluated. The system consists of a BS with Nt = 4
transmit antennas and M = 4 single-antenna MSs. The transmission is done
using K = 512 subcarriers. The EPA and ETU from the Extended ITU channel
models have been considered. The power delay profiles of these models can be
found in Table 2.1. The spatial fading is assumed to be uncorrelated. The channel
estimation is performed with P = K/Nt = 128, such that there are no data symbol
during this symbol period. Since the effect of the different SNRs in precoding
algorithms has been previously studied, only the effect of having an imperfect
knowledge of the matrix channel due to the limited feedback scheme is analyzed.
Therefore, the noise is not considered either in the channel estimation or in the
symbol detection, so errors at the MSs are only due to the imperfect CSIT.

Regarding the vector quantizer, several codebooks with different Lv and Bv have
been obtained. Codebooks with Lv equal to 4, 8, 16 and 32 have been calculated.
The cost of each codebook is defined as Bv/Lv and indicates the number of quan-
tization bits per pilot subcarrier and MS. The values of Bv have been selected to
obtain a comparable cost for different values of Lv. However, obtaining codebooks
for Bv > 13 has been unaffordable for computational restrictions. Therefore, the
cost of the codebook is mainly determined by Lv.

In Fig. 6.7, the MSE of the recomposed channel at the BS is plotted versus the cost
of sending back the quantized version of the pilot subcarriers. It can be seen that
the efficiency of the feedback information regarding the cost increases with Lv.
However, larger values of Bv are necessary in this case, affecting the complexity
of the design of the codebook and also the complexity of the quantization process.
It can also be noted that the MSE achieved with the EPA channel model is lower
than the one achieved with the ETU channel model. This is mainly due to its
larger coherence bandwidth, since VQ allows taking advantage of the correlation.

Figure 6.8 shows the BER obtained with the different precoding techniques versus
the number of bits per vector Bv for Lv = 16. The value Lv = 16 has been
chosen because it has shown a good efficiency and covers a wide range of MSE.
As expected, the MSE decreases as the amount of feedback information increases.
However, these figures are useful for selecting a precoding technique and the value
of Bv for a given MSE requirement in the system. For example, the use of an LR-
based precoding technique can save around 1-2 bits per each vector quantization
compared to ZF or THP at the cost of a higher computational complexity.
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Figure 6.7: Average MSE for the quantized channel matrices considering different Lv

and Bv.
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Figure 6.8: BER for Lv = 16 and different values of Bv.
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6.2.4 Conclusion

A limited feedback scheme based on VQ for MU-MISO-OFDM systems has been
presented in this section. The CFR vector at the pilot positions is divided into
segments of fixed length and quantized through VQ by a fixed number of bits.
The performance achieved by different length and bits configurations has been
compared. Simulations show that the higher efficiency for feedback information
is achieved using longer vectors in the vector quantizer. However, it implies the
use of larger codebooks, increasing the complexity of the codebook design and the
quantization process.

In addition, the performance of different multiuser precoding algorithms has been
evaluated when this channel quantization scheme has been used. Results show
that nonlinear techniques based on LR are sufficiently robust against imperfect
CSIT, outperforming the non-LR techniques. This main conclusion confirms the
benefit of LR techniques even under imperfect CSIT.

6.3 Channel quantization based on the

Karhunen-Loève transform

The previous section presented a VQ scheme that allowed to exploit the bene-
fits of VQ and the correlation of the CFR. However, the design of the vector
quantizer and the quantization process have a considerable computational cost for
large codebooks. Because of that, other alternatives with a lower computational
complexity can be found in the literature.

In [161], three different quantization schemes that make use of the frequency corre-
lation to reduce the feedback information are compared: analog feedback, direction
quantized feedback using VQ and time domain quantized feedback. The results
show that the scheme based on time-domain quantization outperforms the other
schemes in systems where all the subcarriers are modulated, requiring a lower
computational complexity as well.

The KL transform has been used in many fields of engineering, especially in im-
age and video compression [270]. The KL transform is considered an optimal
orthogonal transform in the sense of decorrelation of Gaussian sources and energy
compaction. This property makes the KL transform the optimal choice to quan-
tize correlated Gaussian variables with a minimum MSE. In this section, a channel
quantization scheme based on the KL transform is presented [257]. A compari-
son in terms of MSE and computational complexity between this scheme and the
time-domain quantization scheme presented in [161] is shown. The comparison is
carried out in a system where not all the subcarriers are modulated, as it usually
occurs in modern communication standards [271].
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6.3 Channel quantization based on the KL transform

The same system as in the previous section is again considered (see Fig. 6.5). For
simplicity, the expressions of the channel in the time and frequency domain are
repeated since they are used throughout this section. For a given transmit antenna
and a given MS, the discrete CIR is given by hCIR = [hCIR[0], . . . , hCIR[L − 1]]

T
,

where L denotes the number of samples in the CIR. The CFR for the K ≥ L
OFDM subcarriers is expressed as

hCFR =
√

KFLhCIR, (6.53)

where hCFR = [hCFR[0], . . . , hCFR[K − 1]]
T

and FL is an K × L matrix obtained
by taking the first L columns of a unitary K × K DFT matrix.

As in [161], it is assumed that channels are identically distributed and spatially
uncorrelated for all MSs. However, in this case not all the subcarriers are used
to carry data since only a subset of Km subcarriers from a total number of K
subcarriers are modulated. The (K − Km) unmodulated subcarriers, also known
as virtual subcarriers or null subcarriers, are located at the edges of the used
spectrum and used as a guard band. The CFR corresponding to the modulated
subcarriers can then be expressed as

hCFR,m = MhCFR, (6.54)

where M is a diagonal matrix with ones and zeros in the position of the modulated
and unmodulated subcarriers, respectively.

6.3.1 Time-domain quantization

Time-domain channel quantization has been analyzed in [161] for the case where
all the subcarriers are modulated. However, in this case, there are some unmodu-
lated subcarriers at the edge of the baseband spectrum and the analysis is slightly
different. It is important to note that, for the sake of clarity, the indices corre-
sponding to the transmit antenna and the MSs have been omitted from the CIR
and CFR, since the quantization has to be performed for every antenna and every
MS independently.

The quantized CIR vector is given by

ĥCIR = Q{hCIR}. (6.55)

Hence, the quantized CFR can be expressed as

ĥCFR =
√

KFLĥCIR. (6.56)

In order to compare the performance of different channel quantization schemes,
the MSE of a quantized channel for the Km modulated subcarriers is defined as

MSE = E

[
‖hCFR,m − ĥCFR,m‖2

]
. (6.57)
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Substituting (6.54) and (6.56) into (6.57), the MSE for the time-domain quanti-
zation scheme can be expressed as

MSE = KE

[
(hCIR − ĥCIR)HFH

L MHMFL(hCIR − ĥCIR)
]

. (6.58)

When all the subcarriers are modulated, M becomes the identity matrix and (6.58)
turns into KE[‖hCIR −ĥCIR‖2], as seen in [161], eq. (18). In fact, (6.58) shows that
the MSE is minimized by minimizing the quantization error, E[‖hCIR − ĥCIR‖2].
Assuming an accurate CIR estimation, it can be assumed that the error in the
frequency-domain is equally distributed along the whole CFR (used and non-used
subcarriers). Then, using the high resolution approximation of [259], the overall
MSE in (6.58) can be approximated by

MSE ≈ KmE

[∥∥∥hCIR − ĥCIR

∥∥∥
2
]

≈ Kmag

L−1∑

l=0

σ2
l 2−bl , (6.59)

where σ2
l is the variance of hCIR[l], obtained from the covariance matrix ChCIR

=

E[hCIRhCIR
H ], and ag =

√
3π/2 is the constant associated with the Gaussian

PDF. The parameter bl is the number of bits used to quantize hCIR[l], and can be
expressed as

bl = max

(
log2

(
σ2

l

γ

)
, 0

)
, (6.60)

where γ is the solution to
∑L

l max
(
log2(σ2

l /γ), 0
)

= B and B is the total number
of quantization bits. It is important to note that this bit allocation process is
equivalent to the one shown in section 6.1.1 but applied over complex random
variables. Taking a look at (6.59), it is interesting to point out that the MSE per
subcarrier, i.e. MSE/Km, is independent of the number of modulated subcarriers,
Km.

6.3.2 Karhunen-Loève-Domain Quantization

Unlike the DFT where the orthogonal functions consist of sinusoids at different
frequencies, the KL transform orthogonal functions are determined by the covari-
ance matrix of the process. In this case, the covariance matrix of the modulated
channel can be expressed as

ChCFR,m
= E[hCFR,mhH

CFR,m] = MChCFR
MH , (6.61)

where ChCFR
= E[hCFRhH

CFR] = KFLChCIR
FH

L is the covariance of the entire
CFR.

The KL transformed channel is expressed as

hKL = VHhCFR,m, (6.62)
126



6.3 Channel quantization based on the KL transform

where VH is obtained from the eigendecomposition ChCFR,m
V = VD, where the

columns of matrix V are the eigenvectors of ChCFR,m
related to the corresponding

eigenvalues of the diagonal matrix D. From (6.61) and assuming that the elements
of hCIR are uncorrelated, it can be shown that the number of non-zero eigenvalues
is related to the number of non-zero elements in the diagonal of ChCIR

. In addition,
when all the subcarriers are modulated, i.e. Km = K and M = I, the eigenvalues
are equal to the diagonal of ChCIR

since FL forms a complete orthogonal basis of
ChCFR,m

.

The covariance matrix of the transformed channel is

ChKL
= E[hKLhH

KL] = VHChCFR,m
V = D, (6.63)

that shows that the elements of hKL are uncorrelated and their variances are given
by the eigenvalues of matrix ChCFR,m

.

The channel at the BS can be calculated as

ĥCFR,m = VĥKL = VQ{hKL}. (6.64)

Taking into account the recovered channel (6.64), the MSE for the KL-domain
quantization scheme can be expressed as

MSE = E

[
(hKL − ĥKL)HVHV(hKL − ĥKL)

]

= E

[∥∥∥hKL − ĥKL

∥∥∥
2
]

. (6.65)

As in the time-domain quantization scheme, equation (6.65) reveals that the MSE
is due to the quantization stage. Using the high resolution approximation, the
overall MSE can be approximated as

MSE ≈ ag

L∑

l

η2
l 2−bl , (6.66)

where ag =
√

3π/2 and η2
l is the variance of the elements of hKL, obtained in (6.63).

The parameter bl is the number of bits dedicated to quantize the lth element of
hKL, which can be expressed as

bl = max
(
log2(η2

l /γ), 0
)

, (6.67)

where γ is the solution to
∑L

l max
(
log2(η2

l /γ), 0
)

= B. The main advantage
of this scheme compared to the time-domain quantization scheme is that, as the
number of modulated subcarriers decreases, so does the variance of the elements
to quantize, η2

l . This fact can be proven using Cauchy’s Interlace Theorem [272],
taking into account that reducing the number of modulated subcarriers sets to
zero the rows and columns of CHm

corresponding to the unmodulated subcarriers.
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6.3.3 Efficient eigendecomposition

The computation of the eigenvalues and eigenvectors of the channel covariance
matrix ChCFR,m

is usually the most computational demanding task in the KL-
domain quantization procedure. The tridiagonalization of the matrix through
Householder reflections, together with the QR method or the bisection method
would efficiently obtain all the eigenvalues and eigenvectors. However, not all
the eigenvalues and eigenvectors must be obtained since the number of non-zero
eigenvalues is related to the number of paths in the channel, as seen in the previous
section. In addition, the process can take advantage of the Hermitian Toeplitz
structure of the channel covariance matrix in order to reduce the computational
complexity. Under these conditions, iterative methods, such as Jacobi-Davidson or
Lanczos, can be advantageous since they access the matrix only through matrix-
vector products in an iterative manner [273].

In the following scheme, the Lanczos method has been used because it has shown
to have very good properties for parallel implementations on modern multi and
many core processors [274]. In the Lanczos method, given an initial vector r

which may be random or may contain some information about an eigenvector, an
orthonormal basis u1, . . . , um of the Krylov subspace Km(A, r) is established. In
this basis, the matrix A is represented as a tridiagonal matrix [273]

Ãj =




α1 β1 0

β1 α2
. . .

. . .
. . . βj−1

0 βj−1 αj




, (6.68)

where the calculation of the different α’s and β’s are detailed in [273] and rewrit-
ten in Algorithm 6. This tridiagonal eigendecomposition can be performed in an
efficient and parallelizable way with special techniques [275].

From Algorithm 6, it can be seen that the new basis is built by calculating one
column at a time. The algorithm stops when a sufficiently large basis Uj has been
obtained and, consequently, the eigenvalues of Ãj (called Ritz values) provide
good approximations to the eigenvalues of A. The error, given by the norm of the
residual vector, can be used as a convergence criteria and can be calculated from βj

and S (see [273]). The Lanczos method first converges to the largest eigenvalues in
terms of magnitude, although a spectral transformation (also known as shift-and-
invert) can modify this behavior and even accelerate it [273]. Once the algorithm
has converged, the approximated eigenvectors of A can be obtained as

V = UjS, (6.69)

where Uj = [u1, . . . , uj ].
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Algorithm 6 Lanczos algorithm

1: Input: A, r

2: Output: eigenvalues D, eigenvectors V,
3: β0 = ‖r‖2

4: for j = 1, 2, . . . until convergence do

5: uj = r/βj−1

6: r = Auj

7: r = r − βj−1uj−1

8: αj = uH
j r

9: r = r − αjuj

10: re-orthogonalize if necessary
11: βj = |r|
12: compute approx. eigendecomp.: Ãj = SDSH

13: test bounds for convergence
14: end for

15: compute approx. eigenvectors of A: V = UjS

6.3.4 Computational complexity

This section compares the computational complexity of the time-domain and KL
quantization schemes. The different operations and their computational cost are
shown in Table 6.1. In the comparison, the quantization stage is omitted since it
is common in both schemes, and the knowledge of hCIR and hCFR,m is assumed.

Table 6.1: Comparison of the computational complexity

Operations Computational complexity
TD scheme:

MS ĥCIR = Q{hCIR}
BS ĥCFR,m =

√
KMFLĥCIR O (min(LnzKm, K log2 K))

KL scheme:
MS ChCFR,m

V = VD O (LnzKm(log2 Km + Lnz))
hKL = VHhCFR,m O (LnzKm)

ĥKL = Q{hKL}
BS ĥCFR,m = VĥKL O (LnzKm)

It is important to note that ĥCFR,m in the time-domain scheme can be obtained
through a matrix-vector product or FFT, depending on the value of K, Km and
the number of non-zero elements in the sampled CIR vector, h, which has been
denoted as Lnz.

Regarding the KL scheme, it can be seen that the most computational expensive
operation is the eigendecomposition. The computational complexity of the Lanczos
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algorithm is not straightforward to calculate since it is an iterative method and
its convergence depends on the characteristics of the matrix [217, 273]. However,
the covariance matrix ChCFR,m

only has Lnz non-zero eigenvalues and it has been
checked through simulations that it converges in Lnz +1 iterations for any value of
Km and an error lower than 10−10. The complexity of an iteration of the Lanczos
algorithm is determined by the matrix-vector product of line 6. Since matrix A

has a Toeplitz structure, this operation can be carried out with a complexity of
O(Km log Km) by using circulant matrices and the FFT [217]. Taking into account
the final matrix product of line 15, the complexity of the Lanczos algorithm for
the covariance matrices is O (LnzKm(log Km + Lnz)), which is much lower than
the complexity of an arbitrary dense matrix, O

(
K3

m

)
. It is important to point out

that, except for this eigendecomposition, the computational complexity of the rest
of the operations in both schemes is similar. Nevertheless, the eigendecomposition
has to be carried out only when the statistics of the channel, i.e. ChCIR

, change.

6.3.5 Numerical results

In this section, numerical results are shown by comparing the performance of time-
domain and KL quantization schemes. A system as the one presented in Fig. 6.5,
with M = Nt = 4, is considered. The physical layer parameters, such as K = 1024
and the sampling frequency fs = 15.36 MHz, are based on [271]. The EPA and
the ETU models from the Extended ITU channels have been considered since
they represent a low and a high delay spread channel, respectively. The delays
and relative powers of the different taps can be found in Table 2.1. For the given
fs, Lnz = 5 and Lnz = 9 for EPA and ETU, respectively.

Figure 6.9 is provided as an illustrative example. In order to compare the quanti-
zation schemes, a perfect CIR estimation is assumed. It can be seen that, whereas
the time-domain scheme quantizes the whole CFR, the KL scheme focuses on
quantizing the modulated CFR. Thus, the KL scheme obtains a more accurate
quantized channel in the band of interest.

The optimal bit allocation schemes proposed in (6.60) and (6.67) achieve a real-
valued bit allocation (RBA) for the total number of quantization bits, B. However,
for practical implementations where an integer-valued bit allocation is needed, the
GBA detailed in Algorithm 5 is used. In the following figures, RBA denotes the
theoretical results obtained in (6.59) and (6.66), whereas GBA denotes practical
results for 105 channel realizations using optimal non-uniform quantization for
Gaussian sources.

Figure 6.10 shows the performance of the time-domain and KL quantization schemes
in terms of the average MSE per modulated subcarrier, for a different number of
subcarriers and a fixed number of quantization bits per transmit antenna, B, that
depends on the delay spread of each channel. It can be shown that, whereas the
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Figure 6.9: Quantized channel using time-domain (TD) and KL quantization schemes
for EPA channel model with Km = 601 modulated subcarriers using B = 30 bits per
transmit antenna.

MSE for the time-domain scheme remains constant with Km, the MSE for the KL
scheme decreases with Km due to the fact that the variance of hKL also decreases
with Km. The irregularities in the MSE of the GBA implementations are due
to the fact that, unlike the RBA scheme, the integer bit allocation can remain
unchanged for small variations of the variance of the elements in hKL.

Figure 6.11 shows the average MSE per modulated subcarrier of both quantization
schemes for a different number of quantization bits and Km = 601 modulated sub-
carriers [271]. In these figures, the channel estimation has been performed before
the quantization stage, using 50 equally spaced pilot subcarriers. The SNR for
the pilot symbols is 20 dB. Whereas a linear interpolation of the pilot subcarriers
would be sufficient in the KL scheme, a more complex channel estimation, such as
the CIR channel estimation, is needed in the time-domain scheme. It can be noted
that there is a gap of around 4 and 7 quantization bits between the time-domain
and the KL schemes for a given value of MSE. This gap remains almost constant
for low values of B. As the number of quantization bits increases, the quantization
error decreases and becomes comparable to the estimation error, which is around
2 · 10−3 and 7 · 10−3 for EPA and ETU channels, respectively. Thus, the difference
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(a) EPA channel model, B = 30 bits
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Figure 6.10: MSE per modulated subcarrier for EPA and ETU channel models and
different number of modulated subcarriers Km using B quantization bits per transmit
antenna.

132



6.3 Channel quantization based on the KL transform

10 20 30 40 50 60
10 −3

10 −2

10 −1

100

Quantization bits per transmit antenna (B )

M
S
E

 p
er

 m
od

u
la

te
d
 s

u
b
ca

rr
ie

r

 

 

Time domain (RBA)
KL domain (RBA)
Time domain (GBA)
KL domain (GBA)

(a) EPA channel model

40 50 60 70 80 90 100
10 −2

10 −1

100

Quantization bits per transmit antenna (B )

M
S
E

 p
er

 m
od

u
la

te
d
 s

u
b
ca

rr
ie

r

 

 

Time domain (RBA)
KL domain (RBA)
Time domain (GBA)
KL domain (GBA)

(b) ETU channel model

Figure 6.11: MSE per modulated subcarrier for EPA and ETU channel models and
Km = 601 modulated subcarriers and different number of quantization bits per transmit
antenna.
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between the time-domain and KL schemes decreases. Figure 6.11 also validates
the approximations used in (6.59) and (6.66).

6.3.6 Conclusion

This section has analyzed a channel quantization scheme based on the KL trans-
form and has compared it with the time-domain channel quantization presented
in [161] in a system where not all the subcarriers are modulated. In terms of com-
plexity, the KL scheme has a slightly higher computational complexity than the
time-domain scheme. The difference lies in the eigendecomposition that must be
performed in the KL scheme, but only when the statistics of the channel change.
On the other hand, the time-domain scheme requires a more complex channel
estimation in order to obtain the CIR of the channel.

In terms of performance, theoretical MSE expressions have been obtained for both
schemes. These expressions have been validated through simulations. Numerical
results show that a reduction in the MSE of the quantized channel is achieved
when using the KL scheme instead of the time-domain scheme. This reduction is
higher as the number of unmodulated subcarriers increases.

6.4 Conclusion

This chapter has presented two feedback strategies to exploit the frequency cor-
relation in MU-MISO-OFDM systems. The first strategy consists of grouping
the estimations of the pilot subcarriers into vectors and quantizing them using
VQ [256]. The performance of the system achieved with different VQ configura-
tions has been evaluated. Results show that a higher feedback efficiency is obtained
using longer vectors. However, the computational complexity of the quantization
scheme increases with the length of those vectors, showing an interesting trade-off
between performance and computational complexity. In addition, the different
precoding techniques have been evaluated under imperfect CSIT achieved with
the VQ feedback scheme. Results show that LR-based techniques can greatly deal
with imperfect CSIT.

The second feedback strategy consists of using the KL transform to decorrelate
the CFR before quantizing it [257]. Motivated by [161] where it is stated that
time-domain channel quantization is the simplest and most effective technique to
exploit the frequency correlation, both techniques are compared in a system with
unmodulated subcarriers at the edges of the used spectrum. Results show that
the proposed technique outperforms the time-domain channel quantization with a
slightly higher computational complexity.
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Limited Feedback exploiting

Spatial Correlation

MIMO techniques allow leveraging the spatial dimension in addi-
tion to the time and frequency dimensions. With the use of this new
dimension, the amount of CSIT increases with respect to SISO sys-
tems. However, the spatial correlation can be leveraged to reduce the
CSIT. In this chapter, spatial statistical characterizations of the SCM
and the Kronecker correlation model are presented. Based on these sta-
tistical characterizations, three different channel quantization schemes
are proposed as limited feedback schemes and evaluated in a system
considering the SCM [176, 220].

Limited feedback schemes presented in Chapter 6 took advantage of the frequency
correlation in order to reduce the feedback information. Although these schemes
are useful in MIMO systems, they have to be applied independently to the different
SISO channels in a MIMO system, since the spatial dimension is not considered.
Thus, they can be considered as extensions of SISO techniques applied to the
MIMO case.

In this chapter, the correlation in the spatial dimension is analyzed and leveraged
to reduce the feedback overhead. These schemes can be considered specific for
MIMO systems, and not just extensions to the SISO case, since they make use of
the spatial dimension. First, the spatial statistical characterization of the SCM
is presented. Due to the high complexity and the large number of parameters
involved in the SCM, the characterization is restricted to the high-correlation case.
Second, a channel quantization scheme based on this statistical characterization
is presented and evaluated in a coordinated system.
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Since the analysis of the SCM has shown to be a difficult task, the following section
focuses on the Kronecker correlation model. This simpler model allows a deeper
analysis of the spatial correlation. Statistical characterizations of the envelope and
phase of the fading for each antenna have been stated assuming that the spatial
correlation is known. Next, two different channel quantization schemes based on
these statistical characterizations are presented and evaluated in a more realistic
channel such as the SCM.

7.1 Quantization based on the spatial characterization

of the SCM

This section proposes a low-complexity limited feedback scheme based on time-
domain channel quantization for a cluster allowing joint processing (JP). JP is one
of the techniques that falls under the umbrella of CoMP, and consists of several
coordinated cells acting as a single and distributed antenna array. The limited
feedback scheme leverages the spatial correlation between the different antennas
of each BS without requiring any previous statistical knowledge of the channel.
The reduction of feedback information is achieved by means of the quantization
of the CIR coefficients. The contributions in this section can be summarized as
follows:

• A proper pilot symbol allocation grid based on LTE-A that allows the pilot
channel estimation in the cluster under consideration is proposed.

• A low-complexity limited feedback scheme based on channel quantization
for highly correlated environments is presented. A practical expression of
the quantization error has been obtained and compared to the error of the
standard quantization scheme.

• The effect of imperfect CSIT due to the quantization schemes on some mul-
tiuser precoding techniques, such as ZF, THP and LR-THP, has been eval-
uated.

7.1.1 System model

The limited feedback scheme presented in this section exploits the spatial correla-
tion of the transmit antennas in a BS covering a 120o sector, as seen in Fig. 7.1.
A highly correlated scenario and the SCM from the 3GPP have been considered.
Without loss of generality, the BSs are equipped with a linear array of Nt = 4
antennas in the examples and simulations, although it can be straightforwardly
extended to other values.
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BS

Figure 7.1: Example of a 120o sector.

7.1.2 Statistical characterization of the spatial channel

The time-domain coefficients of the S-multipath channel between a single-antenna
MS and the nth antenna of the BS are given by (2.19). To simplify the analysis, it
is assumed that the antenna gain of the sector array is the same for the different
subpaths, since the angular spread at the BS is only 2o and 5o for macrocell and
microcell environments, respectively:

GBS,s,r = GBS(θs,r,AoD) = GBS(θBS + δs,AoD) = GBS,s, (7.1)

where θBS and δs,AoD were defined in Section 2 (see Fig. 2.9).

According to (2.19), the ratio between the coefficients of the nth and the n′th
antennas in the same sector array for the sth path can be expressed as:

hns

hn′s
=

∑R
r=1 exp (j [kdn sin(θs,r,AoD) + Φs,r])

∑R
r=1 exp (j [kdn′ sin(θs,r,AoD) + Φs,r])

. (7.2)

Note that the SCM assumes the same path loss and shadow fading for the channels
of the antennas in the same sector array. Particularizing this expression to the
case of R = 1 subpaths as an example, the coefficients ratio becomes:

hns

hn′s
= exp (j [k(dn − dn′) sin(θs,AoD)]) , n 6= n′. (7.3)

Analyzing this expression, it can be observed that |hns/hn′s| = 1. Therefore,
for the case of R = 1, feedback information could be reduced since only the
magnitude of one channel coefficient needs to be fed back. However, R = 20 is
the only value supported in the SCM specification [182]. Then, the magnitude of
the ratio between channel coefficients (|hns/hn′s|) in (7.2) cannot be considered
equal to 1. As stated previously, the correlation between hns and hn′s is due
to the joint distribution of the AoA and the AoD, and it cannot be explicitly
specified. However, it can be observed in Fig. 7.2 that for R = 20, the ratio
between these parameters can be approximated by a random variable following a
Laplacian distribution centered in 1. Figure 7.2 shows the estimated PDF of the
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Figure 7.2: Estimated PDF of |hns/hn′s| and its Laplacian approximaiton for R = 20
subpaths and reference antenna n′ = 2.

magnitude of the ratio between channel coefficients, |hns/hn′s|, and its Laplacian
approximation for the adjacent antennas (n = 1, 3) and the further antenna (n =
4), taking the antenna n′ = 2 as the reference. Figure 7.2 and the rest of results
in this section have been obtained using a Monte Carlo simulation considering a
suburban macrocell scenario and an antenna spacing of λ/2 [182, 276]. Note that
the estimated PDF of the fourth antenna has a higher variance due to its lower
correlation with the reference antenna.

The estimated PDFs of the different parameters of the channel coefficients (real
and imaginary parts, angle and envelope) are shown in Fig. 7.3. For the sake
of simplicity, the effect of path loss and shadow fading have not been taken into
account in the statistical characterization since they are usually quantized and fed
back separately. It can be seen that the real and imaginary parts of each channel
coefficient show a Gaussian distribution centered in 0 and variance:

var (Re{hns}) = var (Im{hns}) = σ2
Re−Im ≈ 0.085. (7.4)

Component |hns| is the magnitude of two normally distributed components with
the same variance. Since the maximum variation of θs,r,AoD in each sector is 120o,
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Figure 7.3: Estimated PDF of the different CIR parameters for R = 20 subpaths,
n′ = 2 and n = 1, 3, 4.

the real and imaginary parts are not completely uncorrelated. Thus, |hns| does
not present a strict Rayleigh distribution but it can be approximated as a Rayleigh
distribution centered in

√
π
2 σRe−Im ≈ 0.363 and a variance:

var (|hns|) ≈ 0.049. (7.5)

The phase of the CIR coefficients shows a uniform distribution in [−π, π), therefore
its variance can be expressed as:

var (∠(hns)) = π2/3 ≈ 3.290. (7.6)

Finally, the ratio between the magnitude of the channel coefficients, |hns/hn′s|,
can be approximated by a random variable with Laplacian distribution centered
in one and a variance given by

var (|hns/hn′s|) ≈ 0.016, (7.7)

which is the lowest variance among the analyzed parameters.
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7.1.3 Proposed quantization scheme

The proposed limited feedback scheme takes advantage of the reduced variance of
the parameter |hns/hn′s| in comparison to σ2

Re−Im
due to the spatial correlation.

In order to make use of the previous statistical analysis, the n′th antenna and the
time-domain fading coefficient associated to this antenna are defined as references.
The central antenna is the most suitable reference antenna in a linear array since
the correlation between it and the rest of the antennas is the largest.

The steps of the scheme are summarized in Table 7.1. First of all, an optimal
quantization using BR bits is performed over the real and imaginary parts of the
reference time-domain fading, which shows a Gaussian PDF [261]. This step is
shown in (7.1.A). It should be pointed out that, since hn′s is the reference channel
fading, a higher number of bits must be used to quantize it since the quantization
error in this parameter will affect the rest of channel fading coefficients. Next,
instead of quantizing the real and imaginary parts of the fading coefficients of
the rest of the sector array, the parameters |hns/ĥn′s| and ∠(hns) are properly
quantized, as shown in (7.1.B) and (7.1.C). In these equations, QBM

considers
the quantization of a Laplacian random variable using BM bits [277], whereas
QBP

considers a uniform quantization with BP bits. The number of bits used to

represent the quantized value ĥdif
ns , BM , will be lower than the number of bits used

to quantize Re{hn′s} and Im{hn′s}, BR, due to the significantly lower variance of

|hns/ĥn′s|. This scheme is referred to as differential quantization (DQ).

Table 7.1: DQ feedback scheme

A.- MS: channel quantization and feedback

1.- ĥn′s = QBR
(Re{hn′s}) + j QBR

(Im{hn′s}) (7.1.A)

2.- ĥdif
ns = QBM

(
|hns/ĥn′s|

)
(7.1.B)

γ̂ = QBP
(∠(hns)) (7.1.C)

B.- BS: channel reconstruction

1.- ĥns = ĥdif
ns |ĥn′s| exp(jγ̂) (7.1.D)

It has to be pointed out that, in order to reduce the quantization error, ĥdif
ns is

obtained from the quantized version of hn′s, that is, ĥn′s. Thus, the BS can re-
construct the parameter with lower quantization error. On the other hand, the
variable ∠(hns) presents a uniform distribution in [−π, π), hence it is quantized
through uniform quantization. Quantizing ∠(hns/hn′s) instead of ∠(hns) does
not offer any benefit since both variances are similar. Therefore, additional math-
ematical operations can be avoided by quantizing ∠(hns) directly as in (7.1.C).

The reconstructed coefficients at the BS once ĥdif
ns and γ̂ have been received are

expressed in (7.1.D).
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Finally, in order to improve the stability of |hns/ĥn′s| quantization, the MS can

choose the reference antenna as the central one (n′ = 2, 3) showing a larger |ĥn′s|,
using only one additional bit for sending back this information.

7.1.4 Extension to CoMP

Since the limited feedback scheme presented in Table 7.1 reduces the feedback
overhead related to the antennas in a sector array, it could be independently
applied to the different BSs of a coordinated cluster such as the one shown in
Fig. 7.4. However, it is necessary to extend the LTE-A RSs pattern in order to
allocate enough pilot symbols to perform the composite channel estimation.

b=3
b=1

b=2

BS1

BS2

BS3

Figure 7.4: Example of a coordinated cluster of |B| = 3 cooperating sectors and Nt = 4
transmit antennas per sector.

The LTE slot, also used in LTE-A, is composed of 7 OFDM symbols with a
duration of 0.5 ms, whereas the LTE subframe consists of two LTE slots. The
number of subcarriers in an OFDM symbol is represented by K. However, not
all the subcarriers are modulated. Only Km subcarriers placed around the zero
frequency in the baseband spectrum are modulated. The subcarrier spacing is
∆f = 15kHz and it remains constant for the different bandwidth configurations.
The sampling frequency fs is proportional to K. In LTE-A, CSI-RSs have been
introduced for the use of up to 8 transmit antennas. However, for backward
compatibility, the CSI-RSs must be placed in resource elements (REs) that do not
contain cell-specific reference signals (CRSs) or UE-RSs [240].

This section considers a coordinated cluster of |B| = 3 cooperating 120o sectors
and Nt = 4 transmit antennas per sector. In this case, there are |B|Nt = 12
transmit antennas in the cluster, and it is therefore required to extend the LTE-A
CSI-RSs pattern. Figure 7.5 shows the pilot symbol allocation grid proposed for
the coordinated cluster under consideration [220]. This figure depicts the positions
of the CSI-RSs of the different transmit antennas within the set of used subcarriers.
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n,b CSI-RS on the n  th antenna at the b th sector

Data symbol

Time

Freq.

Resource Block (RB)

Cell-specific reference signals

UE-specific reference signals

1-2,1

3-4,1

1-2,2

3-4,2

1-2,3

3-4,3

Figure 7.5: Proposed pilot symbol allocation in a resource block (RB) of LTE-Advanced
for a cluster of |B| = 3 sectors with Nt = 4 transmit antennas per sector [240].

A frequency-division multiplexing (FDM) scheme is used to transmit the CSI-RSs
of the different pairs of transmitting antennas (1-2 and 3-4 in each sector) in the
coordinated cluster. To separate the RSs of each antenna in the pair, either code-
division multiplexing (CDM) or time-division multiplexing (TDM) could be used.
In particular, TDM with code length spanning on two resource elements in time
domain is proposed in Rel. 10 [240].

More advanced pilot allocation schemes using a combination of FDM, TDM and
CDM are presented in [278–280]. However, the evaluation of the different pilot
allocation schemes is out of the scope of this thesis. Therefore, it is assumed that
the MSs obtains an error-free channel estimation through a simple LS channel
estimation [11, Chap. 8]. It should be pointed out that the presence of a guard
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Table 7.2: Channel and system parameters

Parameter Value

Inter-site distance 500 m
Channel model 3GPP SCME
Channel scenario Suburban Macro
Number of paths (S) 6
Carrier frequency 2 GHz
Sampling frequency (fs) 30.72 MHz
Bandwidth 20 MHz
CP length (µs / samples) 4.69 / 144
Shadowing standard deviation 8 dB
Number of subcarriers (K) 2048
Number of modulated subcarriers (Km) 1200
Number of used RB 100
Number of coordinated sectors in the cluster (|B|) 3
BS antennas per sector (Nt) 4
BS antenna spacing λ/2
MSs number (M) 8
Signal constellation 64-QAM

band with unmodulated subcarriers causes an ill conditioning problem in the LS
estimation. Thus, different solutions, such as the ones presented in [281, 282], need
to be applied in order to achieve an accurate estimation.

7.1.5 Numerical results

This section presents simulation results comparing the performance of the limited
feedback scheme based on DQ to another scheme where the real and imaginary
parts of the channel coefficients are quantized considering a Gaussian PDF. This
scheme is referred to as Gaussian quantization (GQ) scheme. In addition, the
effect of the quantized CSIT over the different precoding algorithms presented in
Chapter 4 has been evaluated.

A macrocell deployment model is considered with parameters as specified in [182,
276] and collected in Table 7.2. Therefore, the statistical analysis carried out in
Section 7.1.2 is valid for this channel. The channel follows a block fading model,
remaining constant between one channel estimation period and its following one.
The sum-power constraint has been equally allocated over all subcarriers and MSs
are randomly distributed over the coordinated cluster area (see Fig. 7.4).
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Performance of limited feedback schemes

This section discusses the relation between the number of bits employed to quantize
the different parameters in the DQ scheme and its performance.

The performance of the proposed quantizer for different bit allocations has been
evaluated through Monte Carlo simulations. The GQ scheme has also been eval-
uated for comparison. In this scheme, BG bits are used to quantize the real and
imaginary parts of each coefficient of the CIR. A similar scheme, but using uniform
quantization instead of Gaussian quantization is proposed in [161]. It is important
to observe that the optimizations applied to the scheme in [161], such as different
bit allocation across the different paths, could also be applied to the DQ and GQ
schemes. However, this comparison has been performed with equal bit allocation
across the different paths.

The metric used to compare both feedback schemes is the cost, which indicates
the total number of bits that each MS uses to quantize the CIR of all the transmit
antennas in the cluster. The cost for both schemes can be expressed as:

CDQ =



2BR

|B|∑

b=1

Lb + (BM + BP )(Nt − 1)

|B|∑

b=1

Lb



+



ND

|B|∑

b=1

(Lb − 1)



 , (7.8)

CGQ =



2BGNt

|B|∑

b=1

Lb



+



ND

|B|∑

b=1

(Lb − 1)



 , (7.9)

where Lb is the number of resolvable paths of the channel between each user
and the bth sector array and ND is the number of bits dedicated to quantize the
discrete delay of the different paths. The first term in (7.8) and (7.9) collects the
cost related to quantize the channel coefficients of the paths, whereas the second
term collects the cost of quantizing the discrete delays, which is the same for both
schemes.

Since there is not any standardization regarding the number of bits that should be
used to quantize explicit feedback, the explicit feedback scheme in IEEE 802.11n
has been adopted as a reference [13]. In this scheme, 4–8 bits are used to quantize
the real and imaginary parts of the entries of the CSI matrices. In the case of the
GQ scheme, ND = 5 bits and BG = 5–8 bits, involving a cost ranging from 675
to 1025 bits per MS approximately. This range of costs would be affordable in a
system as the CoMP field testbed presented in [71].

On the other hand, many different configurations of the DQ scheme varying the
number of bits given to BR, BM and BP have been evaluated in [220]. Table 7.3
collects those configurations that show the best performance in the same range
of cost as the GQ scheme. Once BR has been determined, these configurations
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Table 7.3: Configurations of the Differential Quantizer.

♯ BR BM BP Cost MSE

1 7 3 5 643 0.0563
2 7 3 6 687 0.0348
3 7 4 6 732 0.0180
4 7 4 7 777 0.0124
5 7 5 7 821 0.0071
6 8 5 7 850 0.0060
7 7 6 7 865 0.0058
8 8 6 7 895 0.0043
9 8 6 8 939 0.0031
10 8 7 8 985 0.0023

can be approximately obtained considering the magnitude ratio and the phase as
independent variables and using the GBA algorithm presented in Algorithm 5.
The reference antenna in each sector array is chosen between n′ = 2 and n′ = 3
depending on the magnitude of ĥn′s. The MSE is defined as

MSE = E

[
‖ĥm[k] − hm[k]‖2

]
= |B|Ntσ

2
e , (7.10)

where hm[k] represents the CFR vector for the mth MS on the kth subcarrier,
ĥm[k] represents its quantized version and σ2

e was introduced in (4.1). The values
of the MSE column have been obtained from the simulation.

In order to compare the performance of GQ and DQ, Fig. 7.6 shows the MSE ob-
tained with both feedback schemes for the configurations stated before. It can be
observed that the DQ scheme offers more flexibility regarding the bit allocation,
which allows for a larger number of cost-MSE combinations than GQ. The dashed
line represents the LS regression of the MSE achieved by the different DQ config-
urations in terms of cost. In this regard, the MSE achieved by the DQ scheme
results in approximately half the cost of the GQ scheme. Setting a particular
MSE target, the figure shows that around 75 bits/MS can be saved every feedback
period by using DQ instead of GQ. This reduction can represent up to 10% of the
total amount of the feedback channel information.

In summary, DQ outperforms GQ in terms of MSE with respect to the same
number of bits and shows higher flexibility regarding feedback bit allocation.
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Figure 7.6: MSE vs. cost for GQ and DQ feedback schemes.

Performance of precoding techniques

In the previous subsection, different feedback bit allocations for the DQ scheme
were analyzed, carrying out a performance comparison between that scheme and
the GQ schemes in terms of MSE. However, from a practical point of view, it is
more interesting to evaluate the cluster performance in terms of BER and sum-
rate. This section compares how the different precoding techniques perform with
the limited feedback schemes under evaluation. Note that either BER or sum-
rate could be further improved by means of power allocation. Nevertheless, these
techniques may result in some users being dropped due to their channel condition,
therefore no particular power allocation technique is used. Simulation results are
shown in terms of SNR. The transmit sum-power P for the different SNR values
has been calculated assuming an MS placed at the cell-edge, taking into account
the propagation characteristics of the channel and the thermal noise.

As seen in Chapter 4, BER and sum-rate depend on the variance of the additive
error of the channel, σ2

e , among other parameters. Using (7.10), the configurations
of Table 7.3 for the DQ scheme and Fig. 7.6, it can be stated that σ2

e in both GQ
and DQ feedback schemes can be approximated through LS fitting by the following
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Figure 7.7: Average uncoded BER per subcarrier for ZF, THP and LR-THP with GQ
and DQ feedback schemes and SNR=30 dB.

expression:
σ2

e = a · 10bC , (7.11)

where C represents the cost expressed as the number of bits per MS and a and
b are fitting parameters. For the GQ scheme, a ≈ 1.860 and b ≈ −3.712 · 10−3,
whereas for the DQ scheme, a ≈ 1.612 and b ≈ −4.073 · 10−3. From this result, it
can be seen that the GQ scheme has a slightly larger slope, although the difference
between them remains almost constant.

Figure 7.7 compares the BER performance of ZF, THP and LR-THP techniques
in a system with these limited feedback schemes, channels generated according
Table 7.2 and a system SNR of 30 dB. The results show an almost linear relation
between log10(BER) and the cost for GQ. However, the traces for DQ present
some fluctuations. This is due to the fact that MSE and σ2

e do not strictly follow
a line for the selected configurations in Fig. 7.6. Nevertheless, it is important
to point out that these configurations outperform the GQ scheme for any given
cost, regardless of the precoding technique. Using the DQ scheme instead of using
the GQ scheme allows savings of up to 75 bits/MS for configurations with a BER
between 10−2 and 10−3.
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Figure 7.8: Average sum-rate per subcarrier for ZF, THP and LR-THP with GQ, DQ
and Perfect CSIT and SNR=30 dB.

Figure 7.8 shows the results in terms of the average cluster sum-rate. As in
Fig. 7.7, it can be seen that the sum-rate obtained for the DQ scheme is not
completely linear with the cost. For a given sum-rate and precoding technique,
around 50 bits/MS can be saved by using the DQ scheme instead of the GQ scheme.
This figure also shows a trade-off between processing complexity and feedback in-
formation to increase the sum-rate.

Figures 7.9 and 7.10 show the BER and sum-rate achieved by the cluster under
consideration for the GQ and DQ schemes and different system SNRs, respectively.
The first scheme uses GQ with BG = 7 bits whereas the second scheme uses DQ
with BR = 7, BM = 6 and BP = 8 bits. These two configurations have been
chosen due to their similar cost (around 910 bits/MS).

Figure 7.9 shows that the DQ scheme achieves lower BER for all SNR values than
the GQ scheme, providing a gain between 2 and 4 dB for system SNRs ranging
from 10 to 20 dB. For SNRs higher than 20 dB, the BER remains constant al-
though the system SNR increases. Considering the SINR expressions (4.6), (4.14)
and (4.19), it is interesting to calculate the SNR value so that σ2

e = 1/P . This
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Figure 7.9: Average uncoded BER per subcarrier for ZF, THP and LR-THP with GQ
(BG = 7), DQ (BR = 7, BM = 6, BP = 8) and Perfect CSIT.

happens for SNR ≈ 14.3 and SNR ≈ 17.3 when using the GQ and DQ scheme,
respectively. Next, it can be considered that σ2

e ≫ 1/P for SNR > 20, so the
system is interference-limited in this region due to the imperfect CSIT. The same
behavior can be observed in Fig. 7.10, where the growth of the sum-rate starts to
decrease for SNRs higher than 20 dB. Here, DQ schemes can achieve a gain up to
5 dB over GQ.

With regard to the different precoding techniques under the imperfect CSIT pro-
vided by the GQ and DQ feedback schemes, simulation results validate the anal-
ysis performed in Chapter 4. Figure 7.9 shows that LR-THP can provide a gain
of around 4 dB over THP for a given BER, whereas THP outperforms ZF with a
gain of around 2 dB. It is also interesting to point out that the different precoding
techniques also achieve different levels of BER floor for SNR higher than 20 dB.
Although Fig. 7.10 shows similar results in terms of sum-rate for all the precoding
techniques, it can be observed that THP performs closer to LR-THP than to ZF.
In the noise limited region (from 15 to 25 dB), LR-THP provides a gain of around
3 dB over THP, whereas the gain of THP over ZF increases to more than 5 dB.
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Figure 7.10: Average sum-rate per subcarrier for ZF, THP and LR-THP with GQ
(BG = 7), DQ (BR = 7, BM = 6, BP = 8) and Perfect CSIT.

7.1.6 Conclusion

This section has presented a low-complexity limited feedback scheme for highly
correlated environments. The scheme is based on the spatial statistical character-
ization of the SCM and has been evaluated in a coordinated cluster. The channel
estimation is performed using the proposed pilot symbol allocation grid for a coor-
dinated cluster and the CSI is fed back through the proposed scheme. This scheme
takes advantage of the spatial correlation between antennas without requiring a
statistical knowledge of the channel or a higher computational complexity. Its
performance has been compared to the GQ scheme, which is based on Gaussian
quantization without considering spatial correlation. The simulation results show
that the proposed scheme outperforms the GQ scheme in terms of MSE, offering
a higher flexibility regarding feedback bit allocation.

The effect of imperfect CSIT due to the limited feedback scheme has been evaluated
on different precoding schemes: ZF, THP and LR-THP. The proposed scheme
achieves a higher sum-rate than the GQ scheme for the same number of feedback
bits. Simulation results also show that the proposed scheme achieves a better
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performance in terms of sum-rate and BER when ZF, THP or LR-THP techniques
are used. Among the evaluated precoding techniques, numerical results show that
the highest robustness against imperfect CSI is achieved with LR-THP at the cost
of a higher complexity.

7.2 Quantization based on the spatial characterization

of the Kronecker correlation model

The previous section has shown that the statistical analysis of the spatial correla-
tion in the SCM is a very difficult task due to the complexity of the model and the
large number of parameters involved in the channel generation. For this reason,
the statistical characterization was only possible for a high correlation. In order
to obtain a more general statistical characterization, a simpler channel model is
necessary.

In this section, the statistical characterization of the spatial downlink channel
in a MU-MISO system assuming the Kronecker correlation model is presented.
In this characterization, one of the antennas in the array is also chosen as the
reference antenna and the channel fading from this antenna is considered to be
the reference channel fading. The rest of the channel fading coefficients, known
as non-reference channel fading, are statistically characterized by their envelope
and phase taking into account the reference antenna fading and the corresponding
correlation coefficient.

Two different channel quantization schemes that make use of this statistical char-
acterization to reduce the feedback information are presented. In the proposed
schemes, the envelope and phase of the reference channel fading are quantized con-
sidering a Rayleigh distribution and a uniform distribution, respectively [174, 283].
For the non-reference channel fading coefficients, the quantization is performed
considering their PDF, which in turn depend on the reference channel fading and
the spatial correlation between each channel fading and the reference one. The
difference between the proposed schemes is related to the reference channel fad-
ing. Whereas in one of the proposed schemes the reference channel fading is fixed,
in the other scheme the reference channel fading changes along the quantization
process.

The proposed schemes have been compared to a scheme based on standard po-
lar quantization (PQ), where the spatial correlation is not taken into account,
and a scheme based on the KL transform, that achieves maximum decorrelation
of Gaussian sources. The main advantage of the proposed schemes is that, in-
stead of having to send back the entire correlation matrix, only the correlation
coefficients between the reference channel fading and each of the non-reference
fading coefficients need to be sent back. This approach can offer significant sav-
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ings in feedback overhead. Numerical results have been obtained considering the
SCM [182]. Results show that the proposed schemes outperform the KL scheme
and the scheme based on standard polar quantization in highly and moderately
correlated scenarios. Thus, the contributions in this section can be summarized
as follows:

• Statistical envelope and phase characterizations of the non-reference channel
fading coefficients given the reference fading are presented using the results
of [114, 284]. These characterizations, which focus on the channel quanti-
zation design, include the expressions of the raw moments needed for the
codebook generation. An approximation of the phase difference distribu-
tion presented in [284] showing a lower computational complexity is also
proposed.

• Two different channel quantization schemes that make use of the envelope
and phase statistical characterizations are presented. These schemes exploit
the spatial correlation in order to reduce the feedback information. Com-
parisons to similar quantization schemes are shown and a discussion about
the performance in terms of MSE, complexity and required feedback is also
provided.

7.2.1 System model

A narrowband MU-MISO FDD communication system is considered, with a sin-
gle BS that simultaneously transmits to multiple MSs using spatial multiplexing.
The BS is equipped with a uniform linear array of Nt antennas with an antenna
separation d, and the MSs have a single antenna. Each MS is assumed to obtain
an error-free channel estimation and has to send back the quantized version of
the estimated channel through the feedback channel, since this information will be
necessary for scheduling and precoding tasks at the BS. Focusing on a given MS,
the received signal can be expressed as

y = hHx + n, (7.12)

where vector h = [h1, . . . , hNt
]H ∈ C

Nt×1 is composed of the channel fading
coefficients between each antenna in the BS and the antenna in the MS, vec-
tor x ∈ C

Nt×1 represents the signal transmitted by the BS and is subject to a
power constraint E[‖x‖2] ≤ PT, and n is the noise component, which follows a
circularly-symmetric complex Gaussian distribution with zero mean and unit vari-
ance, CN (0, 1). Using the Kronecker correlation model, the channel vector can be
expressed as [174, 285]

h = C1/2
s g, (7.13)

where Cs = E
[
hhH

]
∈ C

Nt×Nt is the spatial correlation matrix at the transmitter
and g ∈ C

Nt×1 is a vector whose elements are i.i.d. circularly-symmetric complex
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Gaussian variables, with zero mean and unit variance, CN (0, 1). Previous research
has shown that the Kronecker model results in poor estimates for capacity [178].
However, this model is not used to evaluate the channel capacity, but to study the
effect of the spatial correlation at the transmitter in the feedback scheme.

7.2.2 Statistical characterization of the spatial channel

This section presents the statistical characterization of the channel vector mod-
eled in (7.13). First, a system with only Nt = 2 transmit antennas is considered.
However, once the statistical characterization is stated, it is extended to the case
of Nt > 2 antennas. It is important to note that, due to the separable correlation
assumed in the Kronecker model [174], this analysis can be straightforwardly ex-
tended when the MSs have multiple antennas and the correlation is also present at
the receiver. Let g = [g1, g2]T be a vector with i.i.d. elements, as stated in (7.13),
and let Cs be the spatial correlation matrix at the transmitter, given by

Cs =

[
1 ρ∗

ρ 1

]
. (7.14)

Following (7.13) and (7.14), the elements of vector h can be expressed as

h1 = k1g1 + k∗
2g2 (7.15)

h2 = k2g1 + k1g2, (7.16)

where k1 and k2 are given by

k1 =

√
1 + |ρ| +

√
1 − |ρ|

2
∈ R

+ (7.17)

k2 =
ρ(
√

1 + |ρ| −
√

1 − |ρ|)
2|ρ| ∈ C. (7.18)

It can be noted that, for arbitrary correlated channels, k2
1 + |k2|2 = 1. For uncorre-

lated channels (|ρ| = 0), the previous equations become k1 = 1 and lim|ρ|→0 k2 = 0,

while for highly correlated channels (|ρ| ≈ 1), k1 ≈ |k2| ≈ 1/
√

(2). Thus, since
h1 and h2 are a linear combination of i.i.d. CN (0, 1) random variables, they will
also show a CN (0, 1) distribution. The real and imaginary parts of h1 and h2 have
equal power given by

E
[
(Re{h1})2

]
= E

[
(Im{h1})2

]
= E

[
(Re{h2})2

]
= E

[
(Im{h2})2

]
=

1

2
. (7.19)
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The covariances between the real and imaginary parts of h1 and h2 are given by
the following relationships:

E [Re{h1}Im{h1}] = E [Re{h2}Im{h2}] = 0 (7.20)

E [Re{h1}Re{h2}] = E [Im{h1}Im{h2}] = k1Re{k2} =
Re{ρ}

2
(7.21)

E [Re{h1}Im{h2}] = −E [Im{h1}Re{h2}] = k1Im{k2} =
Im{ρ}

2
. (7.22)

Envelope statistical characterization. Case Nt = 2

Let us define, without loss of generality, transmit antenna number 2 as the ref-
erence antenna and antenna number 1 as the non-reference antenna, and their
corresponding reference and non-reference channel fading coefficients as hr = h2

and hnr = h1. The envelope of each channel shows the following Rayleigh distri-
bution,

frr
(rr) =

rr

b2
R

exp

(
− r2

r

2b2
R

)
(7.23)

frnr
(rnr) =

rnr

b2
R

exp

(
− r2

nr

2b2
R

)
, (7.24)

where rr = |hr|, rnr = |hnr| and bR =
√

1/2 is the parameter of the Rayleigh
distribution.

As seen in [114], the joint probability distribution of the two envelopes, rr and rnr,
can be expressed by means of the bivariate Rayleigh distribution as

f(rnr, rr) =
rnrrr

b4
R(1 − |ρ|2)

exp

(
− r2

nr + r2
r

2b2
R(1 − |ρ|2)

)
I0

(
rnrrr|ρ|

b2
R(1 − |ρ|2)

)
, (7.25)

where I0(·) is the modified Bessel function of the first kind of order 0. From (7.23)
and (7.25), the conditional probability density function (CPDF) of rnr given rr

and correlation coefficient ρ can be expressed as1

f(rnr|rr, ρ) =
rnr

b2
R(1 − |ρ|2)

exp

(
− r2

nr + r2
r |ρ|2

2b2
R(1 − |ρ|2)

)
I0

(
rnrrr|ρ|

b2
R(1 − |ρ|2)

)
. (7.26)

Fig. 7.11 shows the analytical CPDF described by (7.26) and the empirical re-
sults, obtained through Monte Carlo simulations with 106 channel realizations for
different values of reference fading envelopes, rr, and a fixed value of |ρ| = 0.9.
The Rayleigh PDF shown in (7.24) is denoted as Analytical Rayleigh. It can be
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Figure 7.11: CPDF of (7.26) for different envelope values of the reference channel
fading, rr, and a fixed value of |ρ| = 0.9.

observed that the CPDFs of the non-reference fading envelope are located approx-
imately close to the value of the reference due to the high correlation.

Figure 7.12 shows the analytical CPDF of (7.26) and the empirical results, ob-
tained through Monte Carlo simulations with 106 channel realizations for a fixed
value of rr = 2 and different values of the correlation coefficient magnitude, |ρ|.
In this figure, it can be observed that, as the correlation increases, the PDFs be-
come narrower and closer to the value of the reference fading envelope. It is also
important to note that (7.26) is equivalent to (7.24) for uncorrelated antennas
(|ρ| = 0).

Expressing the modified Bessel function of the first kind of order 0, I0(x), through
its Taylor series expansion around x = 0 [286, Sec. 9], the nth moment of f(rnr|rr, ρ)
for a given rr and ρ can be calculated as

mn =

∫ ∞

0

rn
nrf(rnr|rr, ρ)drnr = exp

(−C

A

) ∞∑

k=0

CkΓ
(
k + n

2 + 1
)

Ak− n
2 (k!)2

, (7.27)

1In (7.26), we include the correlation coefficient as a parameter, f(rnr|rr, ρ), to explicitly note
the dependence of the CPDF on ρ.
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where A = 2b2
R(1 − |ρ|2), C = r2

r |ρ|2 and Γ(·) is the Gamma function [286, Sec. 6].
The integral in (7.27) has been calculated in Appendix B within an arbitrary
interval [a, b], and its result can be directly applied to interval [0, ∞].

As can be seen in (7.27), the closed expressions of the mean and variance of the
PDFs cannot be easily simplified. From Fig. 7.11, it becomes apparent that the
variance of the PDF does not significantly change with the reference fading, rr.
However, Fig. 7.12 shows that the variance of the non-reference fading decreases
and the mean value tends to get closer to the reference fading, rr, as the value of
the correlation coefficient increases.

Phase statistical characterization. Case Nt = 2

The phase of a channel fading follows a uniform distribution in the half-open
interval [−π, π), and its PDF can be expressed as [287]

fθr
(θr) = fθnr

(θnr) =

{
1

2π , −π ≤ θ < π
0, otherwise

(7.28)
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where θr = ∠hr, θnr = ∠hnr and θ generically denotes either θr or θnr.

Equations (7.15) and (7.16) show that the joint probability distribution of the
phases, θr and θnr, cannot be easily calculated and, to our knowledge, no previous
work relating to the statistics of the two phases can be found in the literature.
However, considering a high correlation environment with |ρ| ≈ 1, k2 can be
written as

k2 ≈ ejθρk1, (7.29)

where θρ = ∠ρ. By substituting (7.29) into (7.15) and (7.16), hnr can be written
as a function of hr expressed as hnr ≈ e−jθρhr. Thus, the relation between the two
phases is given by

θnr ≈ θr − θρ. (7.30)

This approximation holds for highly correlated channels, but it includes an error
that increases as the correlation decreases. In order to evaluate the error of this
approximation, the phase deviation is defined as

∆ = θnr − (θr − θρ). (7.31)

The distribution of the phase deviation ∆ can be obtained from the results in [284].
In our case, the PDF of the phase deviation can be expressed as2

f∆(∆, ρ) =
2(1 − |ρ|2)

3π(1 − |ρ| cos ∆)2 2F1

(
2,

1

2
;

5

2
; −1 + |ρ| cos ∆

1 − |ρ| cos ∆

)
, (7.32)

where 2F1(·, ·; ·; ·) is the Gaussian hypergeometric function [286, Sec. 15].

Figure 7.13 shows the analytical PDF (7.32) and the empirical results obtained
through a Monte Carlo simulation with 104 channel realizations for different values
of the correlation magnitude, |ρ|. It can be noted that, as the correlation coefficient
decreases, this PDF tends to exhibit a uniform distribution , as observed in (7.28).
On the other hand, its variance decreases as the correlation coefficient increases.

Envelope and phase characterization for Nt > 2

The previous characterization can be extended to a system with a linear array
of Nt > 2 transmit antennas. First, an antenna is selected as a reference. The
envelope and the phase of the fading of the reference antenna are characterized by
(7.23) and (7.28), respectively. With regard to the Nt − 1 non-reference antennas,
the envelope and phase of the nth non-reference channel fading are expressed

as r
(n)
nr and θ

(n)
nr , respectively, and they are characterized by their own channel

2In (7.32), the correlation coefficient is included as a parameter, f∆(∆, ρ), to explicitly note
the dependence of the PDF on ρ.
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fading, the correlation coefficient of the nth non-reference antenna with respect
to the reference antenna, ρn, and the reference channel fading. Finally, (7.26)

defines the statistical characterization of the non-reference fading envelope, r
(n)
nr ,

and (7.32) defines the corresponding function of its phase deviation, ∆(n).

7.2.3 Proposed quantization scheme

This section makes use of the statistical characterization discussed in Section 7.2.2
to propose a quantization scheme for a system with an arbitrary number of trans-
mit antennas, Nt. Uniform polar quantization has been considered in the proposed
scheme. The choice of uniform quantization is motivated by a lower complexity
with respect to non-uniform quantization in the codebook generation task, while
the choice of polar quantization is because the statistical characterization of the
channel has been obtained in terms of the envelope and phase of the channel fading
coefficients. The steps for the quantization scheme are summarized in Table 7.4. It
is important to note that these steps are performed by the different MSs indepen-
dently of each other. The notation for the number of bits used in the quantization
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of each parameter has also been included in the table, although it will be defined
below.

First, a transmit antenna is chosen as a reference. In order to obtain a better
quantization performance, the following heuristic formula for the selection of the
reference antenna could be used:

Nr = arg max
N ′

r

Nt∑

n=1
n 6=N ′

r

|ρn,N ′

r
|, 1 ≤ N ′

r ≤ Nt, (7.33)

where Nr is the reference antenna and ρn,N ′

r
is the correlation coefficient between

the nth and the N ′
rth antennas. With this strategy, the selected antenna presents

the highest cumulative correlation between itself and the rest of the antennas.
A large correlation value provides a lower quantization error as can be inferred
from Figs. 7.12 and 7.13. The fading experienced from this antenna is denoted as
the reference channel fading. The channel fading coefficients from the rest of the
antennas are denoted as non-reference channel fading.

The envelope and the phase of the reference channel fading, whose PDFs are given
in (7.23) and (7.28) respectively, are quantized using uniform polar quantization
((A.1) and (A.2) in Table 7.4). The non-reference channel fading coefficients are
quantized taking advantage of their correlation with the reference channel fading,
which is assumed to be known at both receiver and transmitter. Rows (A.3) and
(A.4) in Table 7.4 show the quantization of the nth non-reference fading. The
envelope quantization process considers the CPDF seen in (7.26). It is important

to note that the CPDF uses the quantized version r̂r to quantize r
(n)
nr , since this

parameter is the one that will be available at the BS. In the phase quantization

process, the phase deviation ∆(n) = θ
(n)
nr − (θ̂r − θρn

) is quantized instead of

quantizing θ
(n)
nr , since θ̂r and θρn

are known by the BS. Note that, the PDF depicted
in (7.44) is used instead of the PDF depicted in (7.32). This will be discussed below
in this section. In what follows, this quantization scheme will be referred to as the
conditional quantization (CQ) scheme, since the quantization of the non-reference
channel fading coefficients is conditioned by the reference fading.

At the BS, the reference fading can be easily reconstructed from its quantized
envelope and phase ((B.1) in Table 7.4). The non-reference fading coefficients,

ĥ
(n)
nr , can be calculated using (B.2) in Table 7.4 given the relationship of the phases

shown in (7.31).
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Table 7.4: Proposed quantization scheme

A.- MS: channel quantization
Quantized value PDF considered Quantization bits

1.- r̂r (7.23) BMr
(A.1)

2.- θ̂r (7.28) BPr
(A.2)

3.- r̂
(n)
nr (7.26) BMnr,n

(A.3)

4.- ∆̂(n) (7.44) BPnr,n
(A.4)

B.- BS: channel reconstruction

1.- ĥr = r̂r exp
(

jθ̂r

)
(B.1)

2.- ĥ
(n)
nr = r̂

(n)
nr exp

(
j(∆̂(n) + θ̂r − θρn

)
)

(B.2)

Codebook generation for the reference channel fading

Uniform polar quantization is used to quantize the reference channel fading. The
decision thresholds and the output values for the envelope (rr,m, r̂r,m) and the

phase (θr,p, θ̂r,p) of the reference channel fading have been obtained in [288] and
are given by:

rr,m = mdr m = 1, . . . , Mr − 1 (7.34)

r̂r,m = (m − 1/2)dr m = 1, . . . , Mr (7.35)

θr,p = pdθ − π p = 1, . . . , Pr − 1 (7.36)

θ̂r,p = (p − 1/2)dθ − π p = 1, . . . , Pr (7.37)

where r0 = 0, rMr
= ∞, θ0 = −π and θPr

= π. Parameters Mr and Pr are
the number of quantization levels for envelope and phase, respectively, and the
parameters dr and dθ are the interval sizes. Once Mr and Pr are fixed, the code-
book is obtained by minimizing the distortion function with respect to dr and dθ.
Since the phase is uniformly distributed, the optimal interval size for the phase
is directly obtained with dθ = 2π/Pr. Thus, the optimal interval size dr can be
obtained through a one-dimensional Newton-Raphson optimization technique over
the distortion function [288]

Dr(dr) =

Mr∑

m=1

∫ rr,m

rr,m−1

(
r2

r + r̂2
r,m − 2sinc(Pr)rrr̂r,m

)
frr

(rr)drr. (7.38)

In real systems, parameters such as Mr and Pr are usually considered to be power
of 2 integers [13]. Thus, BMr

= log2 Mr and BPr
= log2 Pr are the number of

bits dedicated to quantizing the envelope and the phase, respectively, and Br =
BMr

+ BPr
is the number of bits dedicated to quantizing the reference channel

fading.
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Codebook generation for non-reference channel fading

The uniform polar quantizer shown in [288] has been used for the reference channel
fading. However, Fig. 7.14a shows that a more suitable uniform quantizer for the
envelope of non-reference channel fading can be obtained by including a shift pa-
rameter, dr0. This parameter shifts the decision thresholds and the output values
of the envelope quantizer dr0 units, allowing a smaller or larger first partition. The
codebook for the phase of the non-reference channel fading coefficients is shown
in Fig. 7.14b. For the sake of clarity, the superscript (n), which denotes the nth
non-reference fading, has been omitted in the magnitude and phase of the channel
fading coefficients and in the parameters of the quantizer, (dr0, dr and d∆), since
a different quantizer has to be obtained for each non-reference fading. However,
the subindex n has been kept in the number of quantization levels and in the
correlation coefficient as this will be needed in the study of the overall distortion
and bit allocation. The partitions and the output values of the quantizer of the
non-reference channel fading coefficients can be expressed as:

rnr,m = dr0 + mdr m = 1, . . . , Mnr,n − 1 (7.39)

r̂nr,m = dr0 + (m − 1/2)dr m = 1, . . . , Mnr,n (7.40)

∆p = pd∆ p = −
(

Pnr,n

2
− 1

)
, . . . ,

(
Pnr,n

2
− 1

)
(7.41)

∆̂p = (p − 1/2)d∆ p = −
(

Pnr,n

2
− 1

)
, . . . ,

Pnr,n

2
(7.42)

where Mnr,n and Pnr,n are the number of quantization levels for the envelope
and phase of the nth non-reference channel fading, respectively, and m and p are
integers.

For fixed values of the number of quantization levels for envelope and phase, and
omitting the quantization error of the reference fading, the distortion function for
the nth non-reference channel fading, given a certain reference envelope rr and
the correlation coefficient between the nth non-reference channel fading and the
reference one, ρn, can be expressed as

Dnr(dr0, dr, d∆, ρn|rr) =

Mnr,n∑

m=1

Pnr,n∑

p=1

∫ rnr,m

rnr,m−1

∫ ∆p

∆p−1

∣∣∣rnre
j∆ − r̂nr,mej∆̂p

∣∣∣
2

f(rnr|rr, ρn)f∆(∆, ρn)drnrd∆,

(7.43)

where ∆ = θnr−(θ̂r−θρn
) is the phase deviation. Likewise, Mnr,n and Pnr,n are con-

sidered to be power of 2 integers. Thus, BMnr,n
= log2 Mnr,n, BPnr,n

= log2 Pnr,n

and Bnr,n = BMnr,n
+ BPnr,n

are the number of bits dedicated to quantizing the
envelope, the phase and the total number of bits for the nth non-reference channel
fading, respectively.
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Figure 7.14: Illustrative example of parameters dr0, dr and d∆ for a non-reference
codebook for rr = 2, |ρn| = 0.9, Mnr,n = 4 and Pnr,n = 4. The partitions and the output
values are represented by green segments and red X marks, respectively.
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7.2 Quantization based on the spatial characterization of the Kronecker correlation model

The solution for the definite integrals in (7.43) that involve the PDF of the phase
deviation, f∆(∆, ρn), requires numerical integration and the evaluation of the
Gaussian hypergeometric function, 2F1(·, ·; ·; ·), which results in a significant com-
putational cost. In addition, the minimization algorithm may require multiple
evaluations of the distortion function at different points to obtain the optimal
codebook for each non-reference channel fading. In order to avoid this highly de-
manding computation, an approximation to (7.32) is presented using a truncated
Laplace distribution:

f̃∆(∆, ρn) =

{
exp(−|∆|/bL,n)

2bL,n(1−exp(−π/bL,n)) , −π ≤ ∆ < π

0, otherwise
(7.44)

where bL,n is the parameter of the Laplace distribution that can be accurately
adjusted in terms of least square fitting for high correlation environments by

b2
L,n = 0.52|ρn|2 − 2.96|ρn| + 2.45. (7.45)

This approximation allows the definite integral in (7.43) to be solved analytically
using the results provided in the Appendix B.

Figure 7.15 shows the analytical PDF of the phase deviation, seen in (7.32), and
the proposed Laplace approximation, seen in (7.44), for different values of ρn. It
can be observed that, as the correlation coefficient increases, the approximation is
closer to the analytical PDF and it includes a higher error for small magnitudes
of the correlation coefficient.

Using the proposed approximation (7.44) in (7.43), the distortion for the nth non-
reference channel fading given a certain reference envelope, rr, and the correlation
coefficient between the nth non-reference antenna and the reference antenna, ρn,
can be expressed as

Dnr(dr0, dr, d∆, ρn|rr) =

Mnr,n∑

m=1

∫ rnr,m

rnr,m−1

r2
nrf(rnr|rr, ρn)drnr +

Mnr,n∑

m=1

r̂2
nr,m

∫ rnr,m

rnr,m−1

f(rnr|rr, ρn)drnr (7.46)

− 2

Mnr,n∑

m=1

r̂nr,m

∫ rnr,m

rnr,m−1

rnrf(rnr|rr, ρn)drnr

Pnr,n∑

p=1

∫ ∆p

∆p−1

cos(∆ − ∆̂p)f̃∆(∆, ρn)d∆,

where the first three integrals can be solved using the 2nd, 0th and 1st moments
of f(rnr|rr, ρn), respectively, as shown in (7.27), and the solution of the fourth
integral can be found in equation (B.17) of the Appendix B.

The convergence of the minimization of the distortion expressed in (7.46), which
is a 3-dimension minimization problem on (dr0, dr, d∆), is not straightforward to
analyze and is out of the scope of this paper. The Nelder-Mead simplex method
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Figure 7.15: Analytical PDF of the phase deviation, f∆(∆, ρn), and its approximation
using the Laplace distribution, f̃∆(∆, ρn), for different values of the correlation coefficient,
|ρn|.

can be used to minimize the distortion due to the good convergence properties
that it has demonstrated in other problems and because it does not require any
derivative information [289].

After carrying out preliminary simulations using non-uniform codebooks, the MSE
obtained has been slightly lower. Nevertheless, the convergence criterion of the
minimization problem for non-uniform codebooks was not met in all cases. For
this reason, only the results obtained with uniform codebooks have been included,
where the convergence was achieved in all cases.
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7.2 Quantization based on the spatial characterization of the Kronecker correlation model

Overall distortion

In order to express the overall distortion, it is necessary to determine both the
distortion due to the quantization of the reference channel fading and the distortion
due to the quantization of the non-reference channel fading coefficients. In what
follows, it is assumed that the aforementioned quantizers are always optimized for
the different number of levels and the distortion is expressed in terms of the number
of quantization bits. Thus, the distortion in the reference and non-reference fading
quantization, seen in (7.38) and (7.43), for different number of quantization bits
is denoted as Dr(BMr

, BPr
) and Dnr(BMnr,n

, BPnr,n
, ρn|rr), respectively.

The distortion in a non-reference channel fading has been expressed in (7.43) and
depends on the current reference channel fading and the correlation coefficient.
The average distortion in the nth non-reference channel fading for a given corre-
lation coefficient can be expressed as

Dnr(BMnr,n
, BPnr,n

, ρn) =

Mr∑

m=1

Dnr(BMnr,n
, BPnr,n

, ρn|r̂r,m)P (r̂r,m), (7.47)

where r̂r,m is the mth value in the codebook of the reference envelope and P (r̂r,m)
is the probability of quantizing a reference envelope with the value r̂r,m, (i.e., the
probability of the mth envelope decision interval). This probability is given by

P (r̂r,m) =

∫ rr,m

rr,m−1

f(rr)drr = Γ

(
1,

r2
r,m−1

2b2
R

)
− Γ

(
1,

r2
r,m

2b2
R

)
, (7.48)

where Γ (s, x) denotes the upper incomplete Gamma function [286, Sec. 6]. Thus,
the distortion over the whole channel vector can be expressed as

D(BMr
, BPr

, bMnr
, bPnr

, ρ) = Dr(BMr
, BPr

) +
∑

n∈Snr

Dnr(BMnr,n
, BPnr,n

, ρn),

(7.49)

where bMnr
, bPnr

and ρ are vectors that contain BMnr,n
, BPnr,n

and ρn for the
Nt − 1 non-reference channel fading coefficients and Snr is the set of the Nt − 1
non-reference antennas. The number of quantization bits dedicated to quantizing
the non-reference fading coefficients is given by Bnr =

∑
n∈Snr

Bnr,n, and the total
number of quantization bits is B = Br + Bnr.
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Bit allocation

The previous subsections have shown how to obtain the optimal codebook that
minimizes the distortion in reference and non-reference channel fading. However,
the solution for allocating the total number of bits to quantize the envelopes and
phases of the reference and non-reference channel fading coefficients has not been
discussed yet.

The number of bits dedicated to quantizing the reference channel fading depends
on the correlation between the channel fading coefficients. For uncorrelated or
low-correlated environments, the best performance is obtained using an equal bit
allocation per channel fading since the PDFs of the different channel fading co-
efficients are almost equal. However, as the correlation increases, a lower overall
distortion can be achieved by increasing the number of bits of the reference channel
fading, since this value will be used for the quantization of non-reference fading
coefficients and the variance of the rest of channel fading coefficients will be lower.
In the proposed scheme, the number of quantization bits for the reference channel
fading varies from Br = ⌈B/Nt⌉ to Br = ⌈B/Nt⌉+3, depending on the correlation.
Therefore, the optimal bit allocation is obtained from pre-calculated tables.

For the envelope and phase quantization of the reference channel fading, the aver-
age ratio between the number of levels of the phase and the magnitude quantizers
for the minimum distortion is 2.77 [288], which is equivalent to allocating 1.47
more bits to the phase than to the magnitude. Since the number of levels is as-
sumed to be power of 2 integers, this condition can be obtained by ensuring that

(BMr
, BPr

) :

{
BPr

− BMr
= 1 Br odd

BPr
− BMr

= 2 Br even
(7.50)

This technique has proven to obtain the minimum distortion for integer bit allo-
cation in at least the range 3 ≤ Br ≤ 14. Therefore, the number of bits dedicated
to the reference envelope and phase can be calculated directly as follows

BMr
=

⌈
Br

2

⌉
− 1 (7.51)

BPr
=

⌊
Br

2

⌋
+ 1. (7.52)

With regard to the bit allocation between the non-reference antennas, Bnr bits have
to be allocated between the envelope and the phase of the non-reference fading
coefficients, BMnr,n

and BPnr,n
bits respectively, in order to minimize (7.49). The

GBA shown in Algorithm 5 is used to perform this task considering the distortion
given in (7.47). Results show that the overall distortion is minimized by dedicating
more bits to those channel fading coefficients that exhibit a lower correlation with
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7.2 Quantization based on the spatial characterization of the Kronecker correlation model

Algorithm 7 Adjacent conditional quantization (ACQ) pseudocode

1: N ′ =
⌊

Nt

2

⌋
⊲ Reference antenna

2: r̂N′ quantized considering (7.23) ⊲ Envelope of the reference fading

3: θ̂r quantized considering (7.28) ⊲ Phase of the reference fading
4: for n = N ′ − 1 to 1 do

5: r̂n quantized considering (7.26) with r̂n+1 as a reference

6: θ̂n quantized considering (7.44) with θ̂n+1 as a reference
7: end for

8: for n = N ′ + 1 to Nt do

9: r̂n quantized considering (7.26) with r̂n−1 as a reference

10: θ̂n quantized considering (7.44) with θ̂n−1 as a reference
11: end for

the reference one, which in a linear array would be those fading coefficients whose
antennas are located the farthest away from the reference one.

7.2.4 Alternative quantization scheme

The main disadvantage of the CQ scheme presented in the previous section and
in [176] is that the correlation between the reference antenna and the antennas
located at the edges of the array can be too small in large arrays or in arrays
with a large antenna separation, d. In order to mitigate this issue, an alternative
quantization scheme based on the same statistical characterization is presented in
this section.

The main idea of this new scheme is that the channel fading coefficient from a
given antenna is quantized taking as a reference the fading coefficient from the
adjacent antenna. Thus, the first step of this quantization scheme is to select
one of the central antennas as a reference. In uniform linear arrays, the reference
antenna will probably fulfill (7.33), as in the case of the CQ scheme. Since there
is no reference to quantize this channel fading coefficient, its envelope and phase
are quantized considering (7.23) and (7.28), respectively, and using uniform polar
quantization. Next, the fading coefficients from the two adjacent antennas are
quantized considering (7.26) and (7.44) for the envelope and phase, respectively, as
the GQ scheme. Next, the fading coefficient of the antenna separated 2d from the
reference antenna is quantized, but considering the adjacent antenna (separated d
from it) as the reference one. Then, the antenna separated 3d from the reference
antenna is quantized based on the fading of the antenna separated 2d, and so
on. This scheme will be referred to as adjacent conditional quantization (ACQ).
The different steps and the pseudocode of the ACQ scheme have been detailed in
Fig. 7.16 and Algorithm 7.
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CQ ACQ

Quantized fading coefficient

Fading coefficient being quantized

d d

Figure 7.16: Comparison between CQ and ACQ.

Fig. 7.16 shows the difference between the ACQ scheme and the CQ scheme. In
the figure, arrows have been drawn from the reference fading coefficients to the
fading coefficients that are being quantized at each step. The main advantage of
the ACQ over CQ is that the reference fading is always the one from the adjacent
antenna, entailing a higher correlation between fading coefficients. This leads to
PDFs with lower variances and lower quantization errors. Another advantage of
ACQ is that the bit allocation task is easier. Since the correlation between each
pair of adjacent antennas is usually the same, the total number of bits can be
equally distributed between the non-reference fading coefficients.

7.2.5 Numerical results

This section evaluates the performance of the proposed quantization schemes. To
the best of our knowledge, no previous work has proposed different PDFs that
are based on the correlation coefficient in order to quantize the different channel
fading coefficients. Thus, the proposed schemes are compared with a scheme that is
based on PQ where identical PDFs are used for all the channel fading coefficients
since that scheme does not consider correlation [288], and with another scheme
that is based on the KL transform [259, 290]. The GBA is used in both of these
schemes [259].
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7.2 Quantization based on the spatial characterization of the Kronecker correlation model

As stated previously, the KL scheme requires the knowledge of the entire spatial
correlation matrix at the BS. Since the spatial correlation matrix exhibits a Her-
mitian symmetry with a unit diagonal [291], it can be reconstructed at the BS by
sending back the coefficients above or below the main diagonal. Therefore, the
number of coefficients of the spatial correlation matrix that need to be estimated
and sent back in the KL scheme is given by

Nc,KL =
Nt(Nt − 1)

2
, (7.53)

and it increases with N2
t . The CQ scheme only requires the correlation coefficients

between the reference channel fading and the rest of the channel fading coefficients,
that is,

Nc,CQ = Nt − 1, (7.54)

resulting in a linear relation between the number of coefficients and the number of
antennas. With regard to the ACQ scheme, correlation coefficients for the different
pairs of adjacent antennas are very close in practice and even the same in many
correlation models such as in [285]. In this case, only one correlation coefficient
would be required. However, the scheme will be generalized for non-uniform arrays
and will consider the same number of correlation coefficients as the CQ scheme,

Nc,ACQ = Nt − 1. (7.55)

However, it is important to note that this fact could be leveraged in order to
further improve the performance of ACQ. Thus, the KL scheme needs to estimate
and provide Nt/2 times the number of correlation coefficients sent back by the
CQ and ACQ scheme. Since the MSs have different spatial correlation matrices
depending on their location, this information has to be fed back by every MS. In
contrast, the PQ scheme does not require any correlation coefficient.

MSs must keep the spatial correlation information periodically updated. The
periodicity parameter Npd (in subframes) shows how often this information is
updated in the LTE-A standard [292]. Since one CSI reference signal is sent every
subframe [11, Chap. 29], the parameter Lch = Npd is defined as the number
of channel quantizations that can be carried out before updating the correlation
information. Note that the quantization of the spatial correlation matrix entails a
reduction of the feedback rate dedicated to quantizing the instantaneous channel
information in systems with a fixed feedback rate.

With regard to the computational complexity of the CQ, ACQ and KL schemes,
the CQ and ACQ schemes directly quantize the envelope and phase of the channel
fading coefficients, while the KL must perform a KL transform, and subsequently
quantize the resulting KL coefficients. On the other hand, the CQ and ACQ
schemes require the calculation of an independent codebook for each value of the
correlation coefficient and each quantized value of the envelope of the reference
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Figure 7.17: MSE for Nt = 4, d = λ/2 and different average number of quantization
bits.

channel fading, while the KL scheme simply scales a Gaussian codebook for quan-
tizing each KL coefficient. However, the symmetry around the reference antenna
in uniform linear arrays allows the CQ codebook for one antenna to be generated
from its symmetric counterpart. In addition, the ACQ only requires the calcu-
lation of one codebook if the correlation between each pair of adjacent antennas
is the same in uniform arrays. Codebooks in the CQ and ACQ schemes can be
stored in tables based on the tabulated correlation coefficient so that channel fad-
ing coefficients can be directly quantized from these tables.

In the simulation, the suburban macrocell scenario of the SCM has been consid-
ered [182]. The system consists of a BS equipped with Nt antennas, an adjacent
antenna separation of d meters, several single antenna MSs moving at vMS = 40
km/h and a carrier frequency of fc = 2 GHz. The effects of path loss and shadow-
ing have not been considered. Since the SCM does not specify the spatial correla-
tion explicitly, the correlation estimation has been performed using the maximum
likelihood estimator over segments of 40 ms, as detailed in [293]. The parameter
Lch is set to 10, which is one of the possible values detailed in [292]. Uniform
quantization is used to quantize the correlation coefficients using Bcc = 5 bits,
which is a reasonable value according to [294].

Figures 7.17-7.19 compare the performance of the PQ, KL, CQ and ACQ schemes
regarding the estimated MSE per antenna, obtained through Monte Carlo simu-
lations for different number of quantization bits. The estimated MSE per antenna
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can be expressed as

MSE ≈ 1

KNt

K∑

k=1

‖hk − ĥk‖2, (7.56)

where K = 105 is the number of channel realizations in the simulation and hk

and ĥk are the original and quantized channels, respectively, for the kth channel
realization. While the PQ scheme uses all the bits to quantize the instantaneous
CSI, the KL, CQ and ACQ schemes dedicate some bits to quantize the correlation
coefficients. In order to make a fair comparison, the sum of bits dedicated to
quantizing the instantaneous CSI and those dedicated to quantizing the correlation
information during Lch quantization processes is the same for the four schemes.
Thus, the horizontal axis in the three figures shows the average number of bits per
channel quantization.

Figure 7.17 shows the MSE performance in a highly correlated scenario where
the separation between two adjacent antennas of the array is set to d = λ/2.
It can be observed that the CQ and ACQ schemes outperform the PQ and KL
schemes, allowing a reduction of about 2 − 4 quantization bits for a given MSE.
The performance of the CQ and ACQ schemes are almost the same because the
distance between the reference antenna in the CQ scheme and the antennas at
the edge of the array is not large. Although the KL scheme is considered to be
optimal in terms of decorrelation of Gaussian sources, it quantizes more correlation
coefficients than the proposed schemes as seen in (7.53)-(7.55), which in turn
results in fewer bits available to quantize the instantaneous CSI. In addition, the
KL scheme presents a higher sensitivity to estimation and quantization errors in
the correlation coefficients than the CQ scheme. This drawback could be solved
by increasing Bcc, but it entails a reduction in the number of bits dedicated to
quantizing the instantaneous CSI, obtaining a similar performance (results with
Bcc = 8 are omitted since a very similar performance to that shown for Bcc = 5 is
obtained). The choice for the optimal Bcc may depend on the value of Lch, since
a longer validity period can be advantageous in order to provide more accurate
correlation information, but this analysis is out of the scope of this thesis.

In Fig. 7.18, the adjacent antenna separation is set to d = λ. Consequently,
the correlation between the transmit antennas decreases as does the difference
between the performance of the CQ scheme and the PQ scheme. However, the CQ
scheme still outperforms the PQ scheme in almost the entire considered range. The
improvement of the ACQ scheme over CQ is due to the increase in the distance
between reference and non-reference antennas in the CQ scheme. Finally, the poor
performance obtained by the KL scheme can be explained by the considerable
number of feedback bits that are used to quantize the correlation coefficients,
whereas the correlation is not as high in Fig. 7.18 as in Fig. 7.17.

Figure 7.19 shows the MSE performance for a system with Nt = 8 transmit anten-
nas and d = λ/2. It is important to note that, even though the antenna separation
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Figure 7.18: MSE for Nt = 4, d = λ and different average number of quantization bits.

is as small as in Fig. 7.17, the distance between non-adjacent antennas increases
with the number of antennas, and the correlation between non-adjacent antennas
decreases. In this case, the CQ scheme outperforms the PQ and KL schemes,
but the differences between the PQ scheme and the CQ scheme are not as rele-
vant. However, the ACQ scheme offers a considerable improvement over the rest
of schemes. Unlike the CQ scheme, the ACQ is barely affected by the increase in
the number of antennas. The KL scheme has to quantize Nc,KL = 28 correlation
coefficients whereas CQ and ACQ only need to quantize Nc,CQ = Nc,ACQ = 7.
Thus, CQ and ACQ can use more bits to quantize the instantaneous CSI and
performs better over the entire range of bits.

Figure 7.20 shows the MSE of the different schemes in terms of the adjacent an-
tenna separation, d, for Nt = 4 antennas and an average number of 28 quantization
bits, whereas 7.21 shows the MSE for Nt = 8 antennas and an average number
of 56 quantization bits. Note that spatial correlation together with the statistical
characterization of the respective fading can be successfully used to reduce the
MSE in the quantization of a MIMO channel in highly correlated environments,
corresponding to arrays with close antennas. In the simulated systems, the cor-
relation could be leveraged by the CQ scheme to obtain the best performance
for antenna separations below d = 1.3λ and d = 0.75λ for the cases of Nt = 4
and Nt = 8 antennas, respectively. In the ACQ scheme, the correlation could be
exploited for antenna separations below around d = 1.5λ for both cases, show-
ing that the number of antennas barely affects this scheme. It is important to
note that the CQ and ACQ schemes are equivalent to the PQ scheme when the
correlation is not considered, although this case has not been contemplated in
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Figure 7.19: MSE for Nt = 8, d = λ/2 and different average number of quantization
bits.

the simulations. Thus, the MSs would hypothetically choose whether or not to
provide the correlation information, assuming the BS that ρ = 0 when it is not
provided, and achieving the best performance between CQ/ACQ and PQ for each
case. Similarly, the KL scheme is equivalent to rectangular quantization when the
correlation is not considered and its performance is almost identical to the PQ
scheme [261].

7.2.6 Conclusion

In this section, the Kronecker correlation model has been considered and a spatial
statistical characterization of the channel for a system with multiple transmit
antennas has been presented. In this characterization, one antenna is selected as
the reference antenna and the channel fading from this antenna is considered to
be the reference channel fading. The statistics for the fading of the rest of the
channels are stated and related to the reference fading by means of the correlation
coefficient. The envelope of a non-reference channel fading is characterized using
the CPDF given the envelope of the reference channel fading and the correlation
coefficient of the non-reference channel fading with the reference fading. The phase
of a non-reference channel fading is characterized by using an approximation based
on high correlation and the statistical characterization of the error induced by this
approximation.
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Figure 7.21: MSE for Nt = 8, different antenna separations and an average number of
quantization bits of 56 bits.

Two channel quantization schemes that make use of this characterization to reduce
the feedback information has also been proposed. In these schemes, the envelope
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and the phase of the reference channel fading are quantized considering a Rayleigh
distribution and a uniform distribution, respectively. The envelopes of the non-
reference channel fading coefficients are quantized according to their conditional
PDF given the reference channel fading envelope and the correlation coefficient.
Finally, the phase of the non-reference channel fading is fed back by quantizing
the error of its approximation using the proposed characterization. The difference
between these schemes is that the reference channel fading is fixed for the CQ
scheme, whereas the ACQ always takes the adjacent channel fading as a reference.

The proposed schemes have been compared with another scheme based on standard
polar quantization, where the spatial correlation is not taken into account, and
with a scheme based on the KL transform, that achieves maximum decorrelation
of Gaussian sources. The main advantage of the proposed schemes is that, unlike
the scheme based on the KL transform, they do not require the entire spatial
correlation matrix. Thus, fewer feedback bits are used to quantize the correlation
information and more bits are available to quantize the instantaneous CSI. The
comparison has been carried out using the SCM. Numerical results show that the
proposed scheme clearly outperforms the other two schemes in highly correlated
scenarios. For the particular parameters used in the simulations, the CQ scheme
allows the spatial correlation to be successfully leveraged in arrays with antenna
separations that are lower than d = 1.3λ and d = 0.75λ for Nt = 4 and Nt = 8
antennas, respectively. In the case of the ACQ scheme, results show that this
scheme is capable of successfully exploiting the spatial correlation for antenna
separations that are below d = 1.5λ, independently of the number of antennas. In
addition, these schemes can be straightforwardly adapted to ignore the correlation
when no benefit is obtained from it.

7.3 Conclusion

This chapter has presented the spatial statistical characterization of the SCM and
the Kronecker correlation model. Based on these characterizations, three different
channel quantization schemes have been presented.

First, the spatial statistical characterization of the SCM has been presented. Due
to the large number of parameters and the complexity of the model, the charac-
terization has been carried out only for the high correlation case. In addition,
some approximations have been required in order to use the characterization in
the proposed quantization scheme. Results have shown that the proposed scheme
clearly outperforms the scheme based on GQ in highly correlated environments.

In order to obtain a more complete spatial statistical characterization, the Kro-
necker correlation model has been considered. This correlation model is simpler
and allows obtaining the characterization for high and low correlations. Based on
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this characterization, two channel quantization schemes have been presented an
evaluated using the SCM. Results show that the proposed schemes outperforms
some existing schemes in highly and moderately correlated scenarios.
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Chapter 8

Conclusions

MIMO communication systems have emerged as one of the most promising tech-
nologies that allow exploiting the spatial dimension in addition to the time and
frequency dimensions. MIMO techniques can also be used in a multiuser scenario,
where several users share the spatial dimension causing multiuser interference. The
use of precoding allows the mitigation of multiuser interference even in systems
with single-antenna receivers.

However, these benefits come at the expense of a more complex system. On the
one hand, spatial multiplexing requires a considerable processing load that depends
on the size of the system: number of transmit antennas, number of receivers and
bandwidth or number of subcarriers. On the other hand, MIMO techniques require
an accurate CSIT. In FDD systems, CSI has to be estimated at the receiver and
provided to the transmitter through the feedback channel, hence reducing the
efficiency of the system.

This thesis focuses mainly on improving the efficiency of precoding implementa-
tions and proposes efficient feedback schemes in MU-MISO systems. This chapter
collects and summarizes the conclusions of the various chapters. In addition, pos-
sible extensions to the performed research are also discussed. Finally, the last
section presents a list of the publications used as reference for this thesis.
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Chapter 8. Conclusions

8.1 Summary

The thesis is divided in two major parts. The first part contains the chapters
related to precoding and the second part contains the chapters related to limited
feedback schemes. This section also summarizes the conclusions of the different
chapters grouped in two parts.

8.1.1 Precoding

Chapter 3 described different precoding algorithms and presented a comparison
among them in terms of BER, sum-rate and computational complexity. Among the
different precoding algorithms evaluated, those that made use of LR achieved the
best BER and sum-rate performance. Regarding the computational complexity,
the analysis showed that LR considerably increases the computational complexity
of the precoding algorithms. Taking into account performance and computational
complexity, the LR-THP algorithm seemed to be the best choice among the LR-
based techniques. Hovever, in cases of tighter computational requirements, either
ZF or THP should be employed instead. Whereas THP offers a better performance,
ZF can be useful in some systems where linearity is important.

Chapter 4 presented the performance of the most interesting precoding techniques
covered in chapter 3 when only imperfect CSIT is available. The analysis showed
that two different regions can be identified based on the transmit power: a noise-
limited region and an interference-limited region. In the noise-limited region, the
performance is limited by the power of the noise at the receiver and the channel
errors are almost negligible. Thus, results in this region are similar to the perfect
CSIT case. However, in the interference-limited region, the channel errors entail
a strong interference that limits the performance of the precoding algorithms. In
both regions, LR-THP was the best technique in terms of performance, showing
that LR is also a key technique when only imperfect CSIT is available.

Chapter 5 provided details on the implementation of the precoding algorithms on
a GPU for a MU-MISO-OFDM system. The GPU implementation was compared
with a CPU counterpart, showing that the GPU was able to considerably acceler-
ate the computation by simultaneously processing the calculations associated with
the different subcarriers. Results showed that ZF, THP and LR-THP algorithms
were more suitable for GPU implementation than other LR-aided precoding tech-
niques as LRAP-lin and LRAP-VB. For this reason, a reconfigurable GPU-based
implementation of the THP scheme combined with an LR stage was presented.
This implementation allows gating the LR stage off when the user requirements
are sufficiently guaranteed by the THP scheme, trading computational cost and
performance. The LR stage showed to be the main bottleneck in this parallel
implementation.
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8.1 Summary

In order to improve the LR stage in the implementation of precoding algorithms,
several strategies for the parallel implementations of the LLL algorithm were pro-
posed. The CRAS-LLL algorithm allowed carrying out different operations of the
LLL algorithm simultaneously in parallel. In addition, the MB-LLL and CRMB-
LLL algorithms divided the original matrix into several blocks, allowing to perform
the CRAS-LLL algorithm in parallel on the different blocks. A heterogeneous plat-
form based on a CPU and a GPU was proposed for the implementation of these
algorithms and its performance was compared with implementations running on a
GPU with DP capability and a multi-core architecture. Results showed that the
use of the GPU allows a significant speed-up compared to multi-core CPUs. In
addition, the block concept used in the CRMB-LLL allowed reducing the compu-
tational time for large matrices. Regarding the different architectures, the hetero-
geneous platform achieved the best performance in terms of computational time.

8.1.2 Limited feedback

Chapter 6 presented two feedback strategies based on scalar quantization and VQ
to exploit the frequency correlation in MU-MISO-OFDM systems. The first strat-
egy consisted of grouping the estimations of the pilot subcarriers into vectors and
quantizing them using VQ. The performance achieved with different quantizer con-
figurations was evaluated. Results showed that a higher feedback efficiency was ob-
tained using longer vectors, although its computational complexity increased with
the length of those vectors, showing an interesting trade-off between performance
and computational complexity. In addition, the different precoding techniques
were evaluated under imperfect CSIT achieved with the VQ feedback scheme, val-
idating the results obtained in Chapter 4. The second feedback strategy consisted
of using the KL transform to decorrelate the CFR before quantizing it [257]. The
proposed scheme was compared with time-domain channel quantization, showing
that it achieved a superior performance in systems with unmodulated subcarriers
at the edges of the used spectrum, at the expense of a slightly higher computational
complexity.

Chapter 7 presented the spatial statistical characterization of the SCM and the
Kronecker correlation model. Based on these characterizations, three different
channel quantization schemes were presented: DQ, CQ and ACQ. The DQ scheme,
based on the characterization of the SCM, showed to outperform the standard
quantization scheme in highly correlated environments. However, due to the large
number of parameters and the complexity of the SCM, the characterization for a
lower correlated environment could not be obtained. In order to obtain a complete
characterization for high and low correlated MISO channels, a simpler model such
as the Kronecker correlation model was then considered. Based on this character-
ization, the CQ and ACQ schemes were presented and evaluated using the SCM.
Results showed that the proposed schemes outperform other well-known schemes
for highly and moderately correlated scenarios.
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8.2 Future work

The main lines of research that remain open after this thesis are:

Parallel computation of precoding

Chapter 5 has presented some parallel implementations of precoding algo-
rithms. Apart from the multicarrier parallelism, the parallelization of the
LR stage has been presented. However, the precoding algorithms themselves
have not been parallelized due to their sequential nature. This fact is not
critical in small systems. However, as the system size increases as in massive
MIMO systems, the time required for the precoding increases considerably.
Preliminary simulations were performed in massive MIMO systems with a
large number of users. To perform the parallelization of the precoding in
large MIMO systems, the idea is to group the users into several groups using
a clustering algorithm and cancel the interference among the different groups
with a linear technique similar to the BD algorithm [47]. Then, the inter-
ference among the users within the same group would be cancelled through
non-linear precoding since the users would exhibit high correlated channels.
Precoding in the different groups would be performed in parallel.

Efficient work distribution on CPU+GPU heterogeneous platforms

A heterogeneous platform has been proposed in chapter 5 for the implemen-
tation of the MB-LLL and CRMB-LLL algorithms. It is important to note
that the CPU threads are only responsible for launching the CUDA kernels,
not for performing any processing operation. Trying to involve the CPU in
the processing, as shown in [235], and finding an efficient way of transferring
the data between the CPU and GPU could further reduce the computational
time of these algorithms.

Use of VQ for quantizing complex scalar random variables

Many quantizers such as those in section 6.3 deal with circularly-symmetric
complex Gaussian random variables. An extended approach for quantizing
these variables would consist of quantizing the real and imaginary parts
separately, using the same number of bits for each part and considering
the work in [261]. However, a better performance could be obtained by
using VQ with vectors of 2 real elements: the real part and the imaginary
part of the random variable (see Fig. 6.3b). In addition, a more flexible
bit allocation could be achieved since even an odd number of bits would
not require a different strategy. Further research could obtain an efficient
way for generating the codebooks analytically (avoiding the use of iterative
algorithms with training data).

CQ and ACQ based on non-uniform quantization

The CQ and ACQ schemes presented in chapter 7 are based on uniform
quantization. The extension to non-uniform quantization following the work
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8.3 Publications

in [288] lead to a very complex analysis due to the kind of PDFs involved.
Therefore, an adaptation of the Lloyd algorithm presented in chapter 6 to
this case would be of interest. In this case, two different codebooks would
be updated in each iteration: one for the envelope and the other one for the
phase.

Detailed analysis of the performance of ACQ

The ACQ scheme presented in chapter 7 has demonstrated to outperform
the CQ scheme for the entire range of spatial correlation, and becomes a
good option for the CSI feedback in highly and moderately correlated chan-
nels. However, a detailed analysis of how the quantization error propagates
through every quantization could reveal a better bit allocation and reduce
the overall distortion.
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Chapter A. CRAS-LLL: CUDA and OpenMP pseudocode

Algorithm 8 CRAS-LLL CUDA kernel pseudocode - processing of one lattice
basis Bi with 2 dimensional thread block configuration TB(Tx, Ty)

1: Input: Bi,B
∗

i,U, δ and thread identifiers idx, idy

2: Output: Bi as a LLL reduced basis
3: Definition of shared arrays buf1[Ty ][Tx], buf2[Ty ][Tx], µ[Ty ]
4: Definition of shared variables odd = true, even = true and private variable off
5: Copy the elements above the diagonal from U to shared array U\[n− 1]
6: while odd or even do ⊲ Tx · Ty threads are working on the while loop
7: off = (off + 1) mod 2
8: for k = idy ∗ 2 + 1 + off to n step k += Ty ∗ 2 do

9: Call DotProduct(b∗
k−1

,b∗
k−1

,buf1[idy ][]), DotProduct(bk,b∗
k−1

,buf2[idy ][])

10: Threads with (idx == 0) set U\[k − 1] = buf2[idy ][0]/buf1[idy ][0]
11: if |U\[k − 1]| > 0.5 then ⊲ Check reduction criteria
12: Threads with (idx == 0) set µ[idy ] = ⌈U\[k − 1]⌋
13: Call SimpleSizeReduction(bk, bk, bk−1, µ[idy ])
14: end if

15: Call DotProduct(b∗
k

,b∗
k

,buf2[idy ][])

16: if buf2[idy ][0] < (δ − U\[k − 1]2) · buf1[idy ][0] then

17: Call SimpleSwap(bk, bk−1, buf1[idy ][])
18: Call SimpleSizeReduction(b∗p, b∗

k
, b∗

(k−1)
, U\[k − 1])

19: Call DotProduct(b∗p,b∗p,buf1[idy ][]), DotProduct(b∗
k−1

,b∗p,buf2[idy ][])

20: Threads with (idx == 0) set U\[k − 1] = buf2[idy ][0]/buf1[idy ][0] and set odd or
even to true depending on the off variable

21: Call SimpleSizeReduction(b∗
k

, b∗
(k−1)

, b∗p, U\[k− 1]) and update b∗
(k−1)

= b∗p

22: end if

23: end for

24: Synchronize threads
25: end while

26: Copy the U\ to the diagonal elements of U

27: Update the rest of GSCs based on the procedures and methods presented above
28: procedure DotProduct(v1, v2, buf [Tx]) ⊲ The result is stored in buf at index 0
29: buf [idx] = 0
30: for i = idx to n step i += Tx do buf [idx] += v1i · v2i end for

31: for stride = Tx/2 to stride > 0 step stride >>= 1 do

32: if idx < stride then buf [idx] += buf [idy ][stride + idx] end if

33: end for

34: end procedure

35: procedure SimpleSizeReduction(v1, v2, v3, µ)
36: for i = idx to n step i += Tx do v1i = v2i − µ · v3i end for

37: end procedure

38: procedure SimpleSwap(v1, v2, buf [Tx])
39: for i = idx to n step i += Tx do

40: (i.) buf [idx] = v1i, (ii.) v1i = v2i, (iii.) v2i = buf [idx]
41: end for

42: end procedure
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Algorithm 9 CRAS-LLL OpenMP pseudocode

1: Input: [B1, B2, . . . , BK], [B∗
1

, B∗
2

, . . . , B∗
K

], [U1, U2, . . . , UK], δ
2: Output: [B1, B2, . . . , BK] as LLL reduced basis
3: maxT ← set the maximum number of available OpenMP threads
4: simMat← set the number of matrices processed simultaneously
5: T P M = maxT/simMat ⊲ The number of threads for parallel processing one matrix
6: #pragma omp parallel numthreads(simMat) {
7: grp← set current thread id
8: odd = true, even = true, off = 0, i = grp · (K/simMat)
9: #pragma omp parallel numthreads(T P M) shared(odd, even, off) firstprivate(grp) {

10: while (i < (grp + 1) ·MP G) do

11: while (odd or even) do

12: #pragma omp single {
13: if off == 0 then odd = false, off = 1 else even = false, off = 0 end if

14: }
15: #pragma omp for reduction(‖:odd,even)
16: for k = 2 + off to n step 2 ⊲ Embarrassingly parallel for all k
17: Update GSC µk,k−1 and SimpleSizeReduction(Bi,k,k − 1)
18: if ‖b∗

k‖
2 < (δ − µ2

k,k−1)‖b∗
k−1‖

2 then

19: Perform SimpleSwap(Bi,k)
20: if(off == 0) then even = true else odd = true end if

21: end if

22: end for

23: end while

24: #pragma omp barrier
25: UpdateGSCoefficients of Bi and perform SimpleSizeReduction if necessary ⊲

Highly parallel
26: #pragma omp single {i← i + 1, odd = true, even = true}
27: end while

28: }
29: }
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Appendix B

Conditional quantization codebook:

details of calculations

The distortion in non-reference fading coefficients that is seen in (7.43) can be
calculated by making use of the following results. For the conditional probability
distribution f(r1|r2), ma,b

n is defined as

ma,b
n (rr, ρ) =

∫ b

a

rn
nrf(rnr|rr)drnr =

=

∫ b

a

rn+1
nr

b2
R(1 − |ρ|2)

exp

(
− r2

nr + r2
r |ρ|2

2b2
R(1 − |ρ|2)

)
I0

(
rnrrr|ρ|

b2
R(1 − |ρ|2)

)
drnr (B.1)

=

∫ b

a

rn+1
nr

b2
R(1 − |ρ|2)

exp

(
− r2

nr + r2
r |ρ|2

2b2
R(1 − |ρ|2)

) ∞∑

k=0

(rnrrr|ρ|)2k

(2b2
R(1 − |ρ|2))

2k
(k!)2

drnr,

where the Taylor series expansion around x = 0 of the modified Bessel function of
the first kind with order 0 has been used [286, Sec. 9],

I0(x) =
∞∑

k=0

x2k

22k(k!)2
. (B.2)

Defining A = 2b2
R(1 − |ρ|2), C = r2

r |ρ|2 and using a change of variables t = r2
nr/A,

ma,b
n (rr, ρ) can be expressed as

ma,b
n (rr, ρ) =

exp

(−C

A

) ∞∑

k=0

Ck
(

Γ
(

k + n
2 + 1, a2

A

)
− Γ

(
k + n

2 + 1, b2

A

))

Ak− n
2 (k!)2

, (B.3)

189



Chapter B. Conditional quantization codebook: details of calculations

where Γ (s, x) denotes the upper incomplete Gamma function [286, Sec. 6]. When
a = 0 and b → ∞, ma,b

n (rr, ρ) becomes the moment taken about 0, also known as
raw moment, which has been expressed in (7.27).

Equation (B.3) may lead to overflow/underflow problems, since the numerator and
denominator contain very large values such as the Gamma function or the squared
factorial. In order to avoid it, Q(s, x) can be defined as

Q(s, x) =
1

Γ(s)

∫ ∞

x

e−tts−1dt, (B.4)

which is a bounded function between 0 and 1. MATLAB provides the gammainc

function which computes Q(s, x) avoiding overflow. Thus, the upper incomplete
Gamma function can be expressed as Γ(s, x) = Γ(s)Q(s, x), and (B.3) turns into

ma,b
n (rr, ρ) = exp

(−C

A

)
× (B.5)

∞∑

k=0

CkΓ(k + n
2 + 1)

Ak− n
2 (k!)2

(
Γ

(
k +

n

2
+ 1,

a2

A

)
− Γ

(
k +

n

2
+ 1,

b2

A

))
,

Therefore, the overflow/underflow problem is now located in the factor

dk =
CkΓ(k + n

2 + 1)

Ak− n
2 (k!)2

. (B.6)

Since the moments of interest are the 0th, 1st and 2nd, let us focus on these
particular cases.

• n = 0
Considering that Γ(s) = (s − 1)!, (B.6) results into

dk =
Ck

Akk!
. (B.7)

It is interesting to realize that, in order to calculate the dk coefficients
in an efficient way, they can be expressed recursively as

d0 = 1, (B.8)

dk =
C

kA
dk−1, k = 1, 2, 3 . . . (B.9)

n = 1
Considering that

Γ

(
s +

1

2

)
=

(2s)!

4ss!

√
π, (B.10)
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(B.6) results into

dk =
√

A

(
C

A

)k
(2k + 2)!

√
π

4k+1(k!)3(k + 1)

=
√

A

(
C

A

)k √
π
∏k

k′=0(k + 2 + k′)

4k+1(k!)2
. (B.11)

Manipulating the equation, the coefficients dk can be expressed recur-
sively as

d0 =

√
πA

2
, (B.12)

dk =
(2k + 1)C

2k2A
dk−1, k = 1, 2, 3 . . . (B.13)

n = 2
Considering that Γ(s) = (s − 1)!, (B.6) results into

dk = A

(
C

A

)k
k + 1

k!
. (B.14)

In this case, the coefficients dk can be expressed recursively as

d0 = A, (B.15)

dk =
(k + 1)C

k2A
dk−1, k = 1, 2, 3 . . . (B.16)

The following result, which is related to the phase deviation ∆, also appears as
a part of (7.43) and, assuming that −π ≤ ∆p−1 ≤ ∆p < π, the result can be
obtained through an integration by parts:

∫ ∆p

∆p−1

cos(∆ − ∆̂p)f̃∆(∆, ρ)d∆ =

∫ ∆p

∆p−1

cos(∆ − ∆̂p)
exp (−|∆|/bL,n)

2bL,n (1 − exp (−π/bL,n))
d∆ =

1

2(1 − exp(−π/bL,n))(1 + b2
L,n)

[
(sgn(∆p) − sgn(∆p−1)) cos(∆̂p) (B.17)

− exp

(
−|∆p−1|

bL,n

)(
b sin(∆p−1 − ∆̂p) − sgn(∆p−1) cos(∆p−1 − ∆̂p)

)

+ exp

(
−|∆p|
bL,n

)(
b sin(∆p − ∆̂p) − sgn(∆p) cos(∆p − ∆̂p)

) ]
,

where bL,n is given by (7.45).
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