
ARTIFICIAL SATELLITES – Vol. 52, No. 1 – 2017  

  DOI: 10.1515/arsa-2017-0002 

 EVALUATION OF QUAD-CONSTELLATION GNSS PRECISE POINT 

POSITIONING IN EGYPT  

Emad El Manaily
1
, Mahmoud Abd Rabbou

2
, Adel El-Shazly

3
 and Moustafa Baraka

4

                     Ph.D. Candidates in Geomatic Engineering - Cairo University
1

Assistant Prof. of Surveying and Geodesy, Faculty of Engineering - Cairo University
2

Prof. of Surveying and Geodesy, Faculty of Engineering - Cairo University
3

Prof. of Surveying and Geodesy, the German University in Cairo (GUC)
4

ABSTRACT: 

Commonly, relative GPS positioning technique is used in Egypt for precise positioning 

applications. However, the requirement of a reference station is usually problematic for some 

applications as it limits the operational range of the system and increases the system cost and 

complexity On the other hand; the single point positioning is traditionally used for low 

accuracy applications such as land vehicle navigation with positioning accuracy up to 10 

meters in some scenarios which caused navigation problems especially in downtown areas. 

Recently, high positioning accuracy can be obtained through Precise Point Positioning (PPP) 

technique in which only once GNSS receiver is used. However, the major drawback of PPP is 

the long convergence time to reach to the surveying grade accuracy compared to the existing 

relative techniques. Moreover, the PPP accuracy is significantly degraded due to shortage in 

satellite availability in urban areas. To overcome these limitations, the quad constellation 

GNSS systems namely; GPS.GLONASS, Galileo and BeiDou can be combined to increase 

the satellite availability and enhance the satellite geometry which in turn reduces the 

convergence time.  In Egypt, at the moment, the signals of both Galileo and BeiDou could be 

logged with limited number of satellites up to four and six satellites for both Systems 

respectively. In this paper, we investigated the performance of the Quad-GNSS positioning in 

both dual- and single-frequency ionosphere free PPP modes for both high accurate and low 

cost navigation application, respectively. The performance of the developed PPP models will 

be investigated through GNSS data sets collected at three Egyptian cities namely, Cairo, 

Alexandria and Aswan.
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1. INTRODUCTION 

In Egypt, although Real Time Kinematic (RTK) GPS positioning technique is used mainly in 

surveying applications which are required high positioning accuracy, the hardware cost due 

to the fact that at least two receivers are required becomes a major concern in practice. In 

addition, the radio or cellular communication is also necessary which is in some cases 

especially in downtown areas become problematic due to poor link connections. In order to 

reduce these operational complexities and cost, a precise point positioning (PPP) technique 

proposed by Zumberge et al. (1997) without needs for separate base stations and 
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communication links can be used currently in Egypt replacing the existence positioning 

techniques. Compared to differential GPS (DGPS) and RTK system, PPP has several 

advantages: a PPP client is completely independent, since no base station or network of base 

stations is necessary. Therefore PPP can save time, resources and data volumes which have to 

be usually transferred between reference and rover. There is no need for simultaneous 

observations and no tight limit in range thanks to globally precise correction products. Thus, 

it is imaginable that in the near future PPP will be able to substitute not only post-processing 

of network solutions but also real-time differential GPS or even RTK in many applications. 

Nowadays, PPP is used in the agricultural industry for precision farming, disaster monitoring, 

in hydrography and deformation monitoring (Geng et al, 2013 and Xu et al, 2013). Further 

PPP applications are sensor positioning in seafloor mapping and marine construction as well 

as airborne mapping (Bisnath et. al., 2009). 

The achieved accuracy of PPP depends mainly on the proper modeling of GNSS errors 

and bias and satellite availability. While the first order ionospheric effect is canceled out by 

using the un-differenced ionosphere free linear combination of GNSS code and phase 

measurements, IGS precise orbital and clock products is used to account for the satellite 

orbits and clock errors. Moreover, the tropospheric error component can be modeled 

sufficiently by using number of empirical models such as Saastamoinen and Hopfield models 

or can be eliminated by using regional tropospheric correction models such as the 

NOAATrop model (Gutman et. al., 2003). Other errors and bias such as the effects of ocean 

loading, earth tide, carrier-phase windup, sagnac, relativity, and satellite antenna phase-center 

variations can be rigorously modeled (Kouba et. al., 2009). On the other side, the major 

drawback of PPP is the long convergence time to reach to centimeter positioning accuracy 

due to the satellite geometry. The satellite geometry can be enhanced by adding the newly 

constellation satellites. The additional observations can enhance the satellite geometry and 

reduce the convergence time of the PPP (Rabbou et. al., 2015 and Li et. al., 2015). However, 

using the newly constellation satellites which uses different references systems, produces 

what is called  inter-system biases, which can be considered as additional unknown in 

addition to the receiver clock bias. The positioning accuracy of a Precise Point Positioning is 

mainly depending on the ability to mitigate errors and biases which affect GNSS 

observations. These errors and biases include the satellite/receiver clock errors, 

satellite/receiver hardware delays, ionospheric and tropospheric delays, and multipath. 

Moreover, using multi-constellations satellite systems, with different references frames 

introduces additional errors such as time offset between systems, due to the fact that each 

system uses a different time frame. The GPS system uses the GPS time system (GPST), 

which is referenced to coordinated universal time (UTC) as maintained by the US Naval 

Observatory (USNO). The GLONASS time is closely related to the UTC but has a constant 

offset of three hours reflecting the difference between Moscow time and Greenwich time. 

This relation implies leap seconds for the GLONASS time. Apart from the constant offset, 

the difference between GLONASS time and UTC shall be within 1 millisecond arising from 

the keeping of the time scales by different clocks. On the other hand, the Galileo satellite 

system has its own time frame, namely the Galileo system time (GST), which is a continuous 

atomic time scale with a nominal constant offset with respect to the international atomic time 

(TAI). However, BeiDou Time (BDT), related to UTC through UTC (NTSC – National Time 

Service Center of Chinese Academy of Science). BDT offset will respect to UTC is 

controlled within 100 ns (modulo 1 second).  

In this paper, both single and dual frequency based PPP models are assessed. A single 

frequency PPP model combines the observations of current GNSS constellations, including 

GPS, GLONASS, Galileo and Beidou. The MGEX IGS final precise products are utilized to 
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account for the orbital and clock errors. The GNSS inter-system biases are treated as 

additional unknowns in the estimation process. The contribution of the additional GNSS 

observations to the single-frequency PPP is assessed through solution comparison with the 

traditional GPS-only counterpart. Various GNSS combinations are considered in the 

assessment, including GPS/GLONASS, GPS/Galileo, GPS/BeiDou and Quad-GNSS. While, 

a traditional dual frequency PPP observation model that uses ionosphere-free linear 

combinations between code observations  

2. MULTI-CONSTELLATION GNSS PPP MATHEMATICAL MODELS 

Assuming that the observations are taking simultaneously from a multi-GNSS receiver, 

which uses GPS time as a reference, the dual-frequency GNSS ionosphere-free observation 

equations can be written as (Abd Rabbou, 2015):

3
r s

G G r G G G GP = �  + c [ d t + B ] - c [ d t ] + T + e                                                     (1) 

3
r s

J J r G G J J JP = �  + c [ d t + B ] - c [ d t ] + T + c [ D I S B ] + e                            (2) 

G

r s r s
3G G r G G G G� =�  +c[d t +B ] -c[d t ] +T +( �N+� B +� B ) +�                   (3) 

r s r s
3J J r G G J J J J� =�  +c[dt +B ] -c[d t ]+T +c[DISB ]+(�N+�B -�B ) +�        (4) 

where G and J refer to GPS, other GNSS systems observations, respectively; DISB is the 

dual-frequency inter-system bias;  ��, �� are ionosphere-free differential code biases for 

receiver and satellites, respectively   ��� is the difference between receiver differential code 

and phase biases; ��� is the difference between satellite differential code and phase biases. 

As can be seen from Equations (3) and (4), the un-calibrated biases such as ���and ��� are 

lumped with the ambiguity parameters.  

For single frequency PPP model, the mathematical model of the quad constellation GNSS 

PP can be written as (Abd Rabbou and El-Rabbany, 2015) 

s s
G G r G G G G G GP = �  + c ( d t + d ) - c d t - c ( F ) + T + I + e �� �                                     (5) 

s s
J J r G J J J J J JP = �  + c ( d t + d ) - c d t - c ( F ) + c [ S I S B ] + T + I + e ��                         (6) 

s s s s
GG G r G G G G G G G G G G� =�  +c(dt +d )-cd t -c(F )+T -I +[ N +c( -d )-c( -d )]+� � � � ��������(7)���

s s s s
J J r G J J J J J J J J J J J� =�  +c(dt +d )-cdt -c(F )+c[SISB ]+T -I +[ N +c( -d )-c( -d )]+� � � � ����(8)�

Where d���� is the satellite clock error lumped with the ionosphere-free differential code bias, 

which can be obtained from the IGS-MGEX; F is a bias term representing the combined 

effect of differential code bias of the satellite obtained from The IGS-MGEX archive (Abd 

Rabbou and El-Rabbany, 2016); SISB is single-frequency the inter-system biases.  The GPS 

receiver hardware delay 	
 is lumped to the receiver clock error and the combined receiver 

clock bias is considered as a single unknown in our estimation filter. �

The Extended Kalman filter is used to process the raw GNSS pseudorange and phase 

measurements to produce estimates state vector unknown parameters as presented in Jekeli 

(2001). For both single and dual-PPP models, the UNB3 tropospheric model, consisting of 

the Saastamoinen vertical propagation delay model and Niell mapping function, is used to 

account for the dry tropospheric component (Leandro et al. 2008). As The effects of ocean 
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loading, Earth tide, carrier-phase windup, sagnac, relativity, and satellite antenna phase-

center variations are rigorously modeled as detailed in Kouba (2009). The estimation state 

vector consists of the three GNSS receiver positions mainly latitude, longitude, and altitude, 

receiver clock, the troposphere wet component, GPS/GLONASS, GPS/Galileo and 

GPS/BeiDou inter-system biases, and the float ambiguity parameters. The complete state 

vector for the developed model can be written as;

1[ ]r w R E C nx , , h , c d t , T , c I S B , c I S B , c I S B , A , . . A� � � � � �� ����������(9)

where �  , �� and �h are a three-dimensional vector representing the positioning errors in 

latitude, longitude and altitude;�	��� is the GPS receiver clock bias. ����,����� and�����
are GPS/GLONASS, GPS/Galileo and GPS/BeiDou inter-system biases, respectively in 

meters. A is the float ambiguity in meters as described in both PPP models.  

r s
dualA �N+�B -�B� ���������������������������������������������������������(10)�

s s
sin gle J J J J JA = N +c( -d )-c( -d )� � �                                       (11) 

Except the ambiguity parameters, the state vector corresponding errors are stochastically 

defined as random walk process with spectrum densities ���������� for positioning 

parameters,  ���������� for the receiver clock bias,  ����������  for the troposphere wet 

component and �����������  for GNSS inter-system biases for both dual and single modes. 

The ambiguity parameters are defined stochastically as constant values. The GNSS 

observations are assumed to be uncorrelated and followed the Gaussian distribution with zero 

mean. As a result, the variance-covariance matrix takes the form of a diagonal matrix with a 

100 times ratio between the GNSS code and phase observation precision. The GPS and 

GLONASS code and phase observation precision is set to be 0.1 and 0.001 m, respectively.  

According to� Steigenberger et al, (2015), the clock and orbital products for Galileo and 

BeiDou are less accurate compared with GPS clock and orbital products.  As a result, the 

Galileo and BeiDou code and phase observations are weighted by ¼ with a precision taken as 

0.2 and 0.002 m, respectively 

3. GNSS STATIC DATA PROCESS  

The datasets collected at three selected stations in Egypt at different latitudes to cover the 

country namely: Cairo, Alexandria and Aswan on two consecutive days, i.e. July 14–15, 

2015, are used for numerical analysis as appeared in figure 1. 

Fig.1. The three selected GNSS stations namely at Cairo, Alexandria and Aswan 

Figure 2 shows the GNSS availability and GDOP for the quad constellation at Cairo for the 

first day of our numerical analysis. It is obvious that maximum of four satellites of Galileo 
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Table 2 shows the comparison between the mean convergence times for the different GNSS 

PPP combinations. The convergence times clarified in Table 2 are computed using the 

average of the convergence times in the three positioning directions, namely, X, Y and Z, 

respectively, for each data sets. It can be noticed that the additional GLONASS observations 

reduces the positioning convergence by 7 minutes compared with GPS PPP which represent 

38% in convergence time improvement. While the additional BeiDou and Galileo 

observations fail to reduce the convergence time when they added to the GPS/GLONASS 

PPP. However, compared with the GPS PPP, the additional BeiDou observations reduces the 

convergence time by three minutes which represent 16% in convergence time improvement.  

As seen in Table 3, Both GPS and GPS/Galileo present identical average convergence time 

due to the limited number of Galileo satellites. 

Table 2. The convergence time for different GNSS combinations using dual frequency PPP 

model

Poisoning�

Combination�

CT�(min)�

GPS� 19.5�

GLONASS� 34.5�

GPS/GLONASS� 12�

GPS/BeiDou� 17�

GPS/Galileo� 19�

GNSS� 12�

For single frequency PPP model, Figure 4 shows the GNSS satellite availability and 

positioning errors with time for the various GNSS constellation combinations at stations 

Aswan, respectively, It can be seen that the major contribution to the Single frequency PPP 

solution enhancement is due to the additional GLONASS observations. This is due to the 

good availability of GLONASS compared with the other constellation, which significantly 

affects the overall satellite geometry. On the other hand, because of their limited number of 

visible satellites, the addition of Galileo and BeiDou systems has a marginal effect on the 

positioning accuracy, in comparison with the GPS/GLONASS PPP Positioning accuracy. 
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compared with the standard GPS PPP convergence time. Moreover, the additional BeiDou 

observations enhanced the positioning accuracy by 5 cm, compared with GPS only 

positioning accuracy while the additional Galileo satellite was found to be insignificant when 

its observations were added to the GPS observations. Compared with GPS PPP, the GNSS 

PPP enhanced the positioning accuracy by 8 cm. However, the positioning improvements are 

mainly attributed to the additional GLONASS observations. For single-frequency PPP model, 

the contribution of the additional GNSS observations to the PPP solution was assessed 

through comparison with the traditional GPS-only counterpart. It was shown that the 

contribution of the additional GLONASS observations is significant, while the contribution 

of both Galileo and BeiDou can be consider marginal due to their limited satellite 

availability. 
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