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Abstract

The recent proliferation of XML-based standards and

technologies for managing data on the Web demonstrates

the need for effective and efficient management of tree-

structured data. Querying tree-structured data is a chal-

lenging issue due to the diversity of the structural aspect in

the same or in different trees. In this paper, we show how to

evaluate queries on tree-structured data, called value trees.

The formulation of these queries does not depend on the

structure of a particular value tree. Our approach exploits

semantic information provided by dimension graphs. Di-

mension graphs are semantically rich constructs that ab-

stract the structural information of the value trees. We show

how dimension graphs can be used to query efficiently value

trees in the presence of structural differences and irregu-

larities. Value trees and their dimension graphs are repre-

sented as XML documents. We present a method for trans-

forming queries to XPath expressions to be evaluated on the

XML documents. We also provide conditions for identify-

ing strongly and weakly unsatisfiable queries. Finally, we

conducted various experiments to compare our method for

evaluating queries with one that does not exploit dimension

graphs. Our results demonstrate the superiority of our ap-

proach.

1. Introduction

The recent proliferation of XML-based standards and

technologies for managing data on the Web demonstrates
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the need for effective and efficient management of tree-

structured data. Examples of tree-structured data include

XML-based repositories, e-commerce product catalogs,

taxonomies of thematic categories, concept hierarchies, etc.

Even if data is not stored natively in tree structures, export

mechanisms make data publicly available in tree structures

to enable its automatic processing by programs, scripts, and

agents on the Web [1]. The XML language [2] is nowa-

days the standard data exchange format on the Web for tree-

structured data.

Querying capabilities on tree-structured data are pro-

vided mainly using queries based on path expressions. A

path expression allows the user to navigate through tree-

structured data, bind nodes to variables, and identify the part

of the tree that satisfies her information need. XPath [3] is a

language that uses path expressions to navigate through the

tree structure of an XML document. XPath lies at the core

of W3C language proposals for XML querying and trans-

formation (e.g. XQuery [4]).

Querying tree-structured data is a challenging issue due

to the diversity of the structural aspect in the same or in

different trees. For example, querying data sources that

use tree structures to organize their data usually need to

resolve, besides name mismatches, structural differences

and structural irregularities. These can occur in tree struc-

tures even for a single knowledge domain. Name mis-

matches appear because tree structures lack semantic in-

formation. For example, palmtop devices in one prod-

uct catalog might be referred to as handheld in an-

other catalog. In this paper, we do not focus on this is-

sue and we assume that it is resolved using well-known

schema matching techniques [5]. Structural differences

and, far more important, structural irregularities appear be-

cause of the different possible ways of organizing the same

data in tree structures. For example, a structural differ-



ence exists when a category appears in a product cata-

log but does not appear in another. A structural irreg-

ularity appears when, for instance, a product catalog for

notebooks classifies new, SONY notebooks with 10in dis-

play in the path /notebooks/new/Sony/10in, while

another catalog classifies the same products in the path

/Sony/notebooks/10in/new. Similar problems ap-

pear when querying tree-structured data from a single data

source. For example, a single XML document may include

the element sequence condition (e.g. new), brand
(e.g. Sony), pc type (e.g. notebooks) in one part, but

pc type, brand, condition in another part. Such

irregularities raise difficulties for querying tree-structured

data since query formulation is strictly dependent on the

structure. For instance, the user cannot easily form a query

to retrieve data without explicitly specifying a sequence for

elements condition, brand and pc type.

A naive approach to cope with these difficulties when

querying tree-structured data is to generate different ver-

sions of the initial query, by considering different subsets

of nodes involved in its path expressions and their different

orderings. Clearly, this is not an efficient approach due to

the large number of queries that need to be generated, most

of which would probably return an empty answer.

In [6], we proposed a method to query tree-structured

data, called value trees, by exploiting semantic informa-

tion. We introduced dimensions which are sets of seman-

tically related nodes in tree structures. Based on dimen-

sions, we defined dimension graphs. Dimension graphs are

not schemas but semantically rich constructs that abstract

the structural information of the value trees. Dimension

graphs can be automatically extracted from value trees and

support the formulation of the queries and their evaluation.

We also designed in [6] a query language which is not re-

stricted by the structure of the value trees. The user can

optionally specify parent-child and/or ancestor-descendent

relationships between dimensions in a query.

Contribution. In this paper, we focus on the evaluation of

queries on value trees using dimension graphs. Value trees

and dimensions are encoded as XML documents. We show

how dimension graphs can be used to query efficiently value

trees in the presence of structural differences and irregulari-

ties. The main contributions of this paper are the following:

• We show how value trees and dimensions can be encoded

as XML documents. Queries are not cast on the struc-

ture of a specific value tree, since they are issued on its

dimensions described in the XML document.

• We present a method for transforming queries to XPath

expressions to be evaluated on the XML documents.

The XPath expressions are generated using a dimension

graph to determine orderings of dimensions that can pos-

sibly generate non-empty answers.

• We introduce the concepts of strong and weak query

unsatisfiability to identify queries that always produce

empty answers. Strong unsatisfiability is detected before

the generation of XPath expressions from the dimension

graph and prevents the execution of a query. Weak un-

satisfiability is detected during the generation of XPath

expressions from the dimension graph. This avoids ac-

cessing the value tree, which is usually much larger than

its dimension graph.

• We present a prototype system that implements our ap-

proach. Our system is built on top of an XQuery engine,

thus potentially taking advantage of the optimization

techniques under development for XQuery language.

• Finally, using our prototype system, we carry out several

experiments to compare our approach to one that does

not exploit dimension graphs in the evaluation of queries

on value trees. Our results demonstrate the superiority of

our approach.

Outline. The rest of the paper is organized as follows.

The next section discusses related work. In Section 3, we

present the notions of value trees and dimension graphs, and

the query language. Section 4 shows how queries are eval-

uated by generating XPath expressions on XML documents

encoding value trees and dimensions. It also provides con-

ditions for checking both type of query unsatisfiability. In

Section 5 we describe the architecture of our system. Sec-

tion 6 presents the experimental evaluation of our approach.

We conclude in Section7 and suggest future work.

2. Related Work

Schema-based descriptions for data with little or no ap-

parent structure have also been suggested for semistructured

databases. For example, dataguides, which are structural

summaries for semistructured data, are introduced in [7].

Statistical synopses for graph-structured XML databases

are suggested in [8]. In [9], graph schemas are introduced to

formulate, optimize and decompose queries for semistruc-

tured data. These approaches are purely syntactic. In con-

trast to our approach, they do not exploit semantic informa-

tion. Query formulation is strictly dependent on the knowl-

edge of structural irregularities in tree-structured data. In

our approach, queries are not restricted by the structure of

data.

Relevant to our work are also techniques where schema

descriptions are automatically extracted from local data

sources [10, 11]. Contrary to our approach, these papers

do not deal with query evaluation.

Query relaxation can also be exploited to search for an-

swers in structrured data. Instead of reformulating the initial

query, relaxing techniques can be used to change its form.

Tree pattern relaxation methods are presented, for example,

in [12]. However, such approaches return approximate and

not exact answers.



Finally, many systems support query evaluation on tree-

structured data using a predefined global structure and

defining mapping rules between this structure and the local

structures used in the sources [13, 14, 15, 16]. Our approach

can support integration of tree-structured data through the

formulation of queries on dimensions spanning all the local

value trees. Therefore, it does not require the manual defi-

nition of hard-coded mapping rules between the virtual tree

structure and the local structures.

3. Data Model and Query Language

In this section we briefly present our data model for tree-

structured data and our query language initially introduced

in [6].

3.1. Value Trees and Dimensions Graphs

We assume a set of values V that includes a special value

r. A dimension set over V is a partition D of V that includes

a set whose single element is value r. Each element of D is

called dimension of D. The dimensions in D are assigned

distinct names. In particular, the dimension {r} is named

R. Intuitively, a dimension is a set of semantically related

values. For instance, Brand can be a dimension that in-

cludes values IBM, HP, and Mac. Since the names of the

dimensions are distinct we use them to identity the dimen-

sions of D. For the needs of this paper, we assume a single

fixed dimension set D.

Definition 3.1 A value tree is a rooted node-labeled tree

T , such that:

(a) Each node label in T belongs to V .

(b) Value r labels only the root of T .

(c) There are no two nodes on a path in T labeled by values

that belong to the same dimension in D.

(d) There are no two sibling nodes in T labeled by the same

value. ¤

Figure 1 shows an example value tree T of a site that

sells computers on-line. The same value may label differ-

ent nodes in a value tree. For instance, value New, a value

of dimension condition, labels two different nodes in

T . Figure 1 also shows the grouping of values into differ-

ent dimensions, e.g. pc type, condition, brand,

etc. The partitioning of values in T into dimensions is

shown by closed dotted lines labeled by dimensions. The

same dimension might label multiple closed dotted lines

in T . In this case, this dimension comprises all the nodes

surrounded by these closed dotted lines. For instance, the

values Dell, Sony, HP, IBM and Mac belong to the

same dimension brand. From a structural point of view,

the information in T is organized differently under nodes

Notebooks, Desktops, and PDAs.

The values of some dimension may not be children or de-

scendents of any value of some other dimension in a value

tree. For instance, no value of dimension pc type in the

value tree T of Figure 1 is a child or descendent of a value

of any of the other dimensions in T except R. We use the

concept of dimension graph to capture this type of relation-

ship between dimensions in a value tree.

Definition 3.2 Let T be a value tree over D. A dimension

graph of T is a graph (N,E), where N is a set of nodes and

E is a set of edges defined as follows:

(a) There is a node D in N if and only if there is a value in

T that belongs to dimension D.

(b) There is a directed edge in E from node Di to node Dj

if and only if there are nodes ni and nj in T labeled by

values vi ∈ Di and vj ∈ Dj , respectively, such that nj

is a child node of ni in T .

If G is a dimension graph of a value tree T , we say that T
underlies G. ¤

The dimension graph of a value tree may have cycles.

Note that cycles may also trivially involve only two dimen-

sions in a dimension graph.

Figure 2 shows the dimension graph of the value tree

T of Figure 1. A trivial cycle is shown in Figure 2

Figure 2. Dimension graph G of value tree T .

with a double headed edge (the edge between dimensions

condition and brand).

Dimension graphs can be automatically extracted from

value trees and abstract their structural information. As we

show in subsequent sections, they support the formulation

of the queries, and they help the evaluation of queries on

value trees and the detection of unsatisfiable queries.

3.2. Queries and Query Answers

Roughly speaking, a user poses a query by annotating

some dimensions in a dimension graph with permissible

sets of values. The answer comprises root-to-leaf paths on

the underlying value tree that involve one value from each

of these value sets. An central feature of the language is that

the user has the choice of not specifying or partially specify-

ing parent-child and ancestor-descendant relationships be-

tween the annotated dimensions in a query.



Figure 1. Value tree T

Definition 3.3 Let D be a dimension set. A query Q on D
is a pair (A,P), where:

(a) A is a set of expressions of the from Di = Ai, where

Di is a dimension in G different than R, and Ai is a set

of values of dimension Di or a question mark (“?”). If

Di = Ai belongs to A we say that Di is annotated in

Q, and Ai is called annotation of Di in Q. Without ex-

plicitly mention it in A, dimension R is assumed to be

annotated with the singleton {r}. A dimension can be

annotated only once in a query.

(b) P is a set of precedence relationships which are expres-

sions of the form Di → Dj or Di ⇒ Dj , where Di and

Dj are annotated dimensions of Q.

Sets A and P can be empty. ¤

When a dimension graph G is given, we can graphically rep-

resent a query Q = (A,P) on G by labeling its nodes by

their annotations in A and by adding to it a single (resp.

double) arrow from node Di to node Dj for every prece-

dence relationship Di → Dj (resp. Di ⇒ Dj) in P . Note

that arrows are different than directed edges. The unquali-

fied word “arrow” refers indiscreetly to a single or double

arrow.

Consider, for instance, the dimension graph G of Fig-

ure 2. Figure 3 shows the graphical representation

of query Q1 = (A,P), where A = {pc type =?,
brand = {Sony, IBM}, condition = {used}} and P =
{pc type ⇒ brand}. Annotated nodes are shown in the

figures with black circles. Precedence relationships are

shown with single or double arrows from one node to an-

other. For instance, the double arrow from node pc type
to node brand denotes the precedence relationship in P .

In the following we often identify a query with its graphical

representation.

The answer of a query on a value tree T is a set of root-

to-leaf paths in T compactly represented as a subtree of T .

Definition 3.4 Let G be a dimension graph of a value tree T
over a dimension set D, and Q be a query on G. The answer

Figure 3. Graphical Representation of Query
Q1

of Q on T is the maximal1 subtree T ′ of T such that:

(a) T ′ and T have the same root r.

(b) Every leaf node of T ′ is a leaf node of T .

(c) Every path from the root to a leaf node in T ′ includes

one value from every value set annotating a node in Q.

(d) Every path from the root to a leaf node in T ′ includes one

value from every dimension annotated with a question

mark in Q.

Therefore, for every annotated node (with a value set or

a question mark) in Q, there is one value for the cor-

responding dimension appearing in every path from the

root to a leaf node in T ′.

(e) For every path p from the root to a leaf node in T ′, and

for every precedence relationship Di → Dj (resp. Di ⇒
Dj) in Q, the value for Dj is a child (resp. descendent)

of the value for Di in p.

If there is no such a subtree T ′, we say that the answer of Q
on T is empty. ¤

Annotating a node with a “?” in a query is different

than not annotating this node at all. In contrast to a non-

annotated node, a node that is annotated with a “?” places a

1Maximality is meant with respect to the number of nodes or edges.



value of the corresponding dimension in every root-to-leaf

path in the answer of the query.

Consider the query Q1 graphically shown in Figure 3 on

the dimension graph G of Figure 2, Consider also the value

tree T of Figure 1 that underlies G. Figure 4 shows the

answer T ′ of Q1 on T . It also shows the dimensions of the

values in T ′ (which are not part of the answer).

Used

r

brand

Sony

condition

R

Notebooks Desktops

pc_type

Used

Multimedia

pc_category

brand
IBM

Figure 4. The answer of query Q1 on value
tree T and the dimensions of its values.

4. Query evaluation

In this section we deal with the evaluation of the queries.

A query is evaluated on a value tree by generating (possibly

several) simple path expressions. These simple path expres-

sions are in turn evaluated on the value trees and their results

are composed to form the answer of the query. We use the

syntax of XPath for simple path expressions. Thus, we first

show, in this section, how XPath expressions are generated.

We also introduce two types of unsatisfiability for queries, a

strong and a weak one, and we provide necessary and suffi-

cient conditions for a query to be unsatisfiable with respect

to each of the two types of unsatisfiability. Detecting the un-

satisfiability of a query stops its evaluation at an early stage

or before even it starts, and saves accessing the value tree to

compute an empty answer.

4.1. XPath expression generation

The generation of XPath expressions is based on the con-

cept of answer path of a query on a dimension graph.

Definition 4.1 Let Q be a query and G be a dimension

graph on a dimension set D. An answer path of Q on G
is a path p in G from the root of G such that:

(a) All the annotated dimensions in Q are on p, and p ends

on an annotated dimension of Q.

(b) If there is a precedence relationship Di → Dj (resp.

Di ⇒ Dj) in Q, then Dj is a child (resp. descendent) of

Di in p. ¤

Consider, for instance, the query Q1 shown in Figure 3

and the dimension graph G of Figure 2. The answer paths

of Q1 on G are:

R, pc type, condition, brand
R, pc type, condition, pc category, brand
R, pc type, pc category, brand, condition

The answer paths of a query on a dimension graph do not

depend on the actual annotations of the nodes in the query,

but do depend on the annotated nodes. The presence of an

annotated dimension in a query, even if it is annotated by a

?, forces all the answer paths of the query on the dimension

graph to include this annotated dimension.

There are two common approaches for implementing

membership of values to dimensions: by maintaining a

mapping from dimensions to sets of values, or by maintain-

ing a mapping from values to dimensions. We chose the

second one in order to support the efficient evaluation of

predicates of the form D = ? (the node is labeled by some

value of dimension D) at a node of the value tree. Thus, we

assume that the dimension of the label of a node is stored

with the label or is directly available at the node in a value

tree.

In order to enable the use of XPath we introduce an

XML document representation of value trees and their di-

mensions. There is a one-to-one correspondence between

the nodes of a value tree and the elements of its correspond-

ing XML document: a node v of dimension D in the value

tree corresponds to an element D of the XML document

whose text is v. The structure of the value tree is preserved

in the XML document. Figure 5 illustrates part of the XML

document for the value tree of Figure 1.

<R> r
<pc type> Notebooks

<condition> New
<brand> Sony </brand>
<brand> HP </brand>

<brand> Mac </brand>
</condition>
<condition> Used

<brand> Mac </brand>
<brand> Sony </brand>

</condition>
<pc type> Desktops

<pc categoty> Servers
<brand> HP </brand>

. . .

</mobile type>
</R>

Figure 5. Part of the XML document represen
tation for the value tree T and its dimensions



The fragment of XPath that we consider here involves

node tests, the child axis (/), the descendant axis (//), predi-

cates, the symbol ‘.’ that denotes the current node, and the

function text() that returns the text of the current ele-

ment. The predicates are specified between square brack-

ets ‘[’ and ‘]’ following a node test and may involve the

Boolean connective or. We generate one XPath expres-

sion for every answer path of a query on a dimension graph.

This process is described below. Let R,D1, . . . , Dk be an

answer path of a query Q. The corresponding XPath expres-

sion has the form R[. =“r”]/t1/ . . . /tk/text(), where for

i = 1, . . . , k:

ti =























D[. = “v1” or . . . or . = “vm”]
if Di is annotated with the value set {v1, . . . , vm}
D[. = “v1” or . . . or . = “vn”]
if Di is annotated with a “?” or if Di is not annotated,

and {v1, . . . , vn} are all the values of dimension Di.

Consider the answer paths of query Q1 on dimension

graph G shown above. The corresponding XPath expres-

sions are:

R[. = “r”]/pc type/condition[. = “Used”]/
brand[. = “Sony” or . = “IBM”]/text()

R[. = “r”]/pc type/condition[. = “Used”]/
pc category/brand[. = “Sony”or . = “IBM”]/text()

R[. = “r”]/pc type/pc category/brand[. = “Sony”
or . = “IBM”]/condition[. = “Used”]/text()

The result of an XPath expression e on a value tree T is

a (possibly empty) set N of nodes in T . We use XQuery to

compute the maximal2 subtree of T that involves a node in

N in every one of its root-to-leaf paths. This subtree is a

value tree, and we denoted it res(e). Let e1, . . . , ek are the

XPath expressions that correspond to all the answer paths

of Q on the dimension graph of T . The answer of Q on T
is the value tree obtained by merging all the common paths

from the root of the value trees res(ei), i = 1, . . . , k.

4.2. Strongly and Weakly Unsatisfiable Queries

The notion of strong unsatisfiability is independent of the

value trees (and consequently of their dimension graphs) on

which the query is evaluated.

Definition 4.2 A query on a dimension set D is called

strongly unsatisfiable if and only if its answer is empty on

every value tree over D. ¤

Example 4.1 Consider the query Q2 = (A,P),
where A = {brand =?, condition =?,
pc category =?} and P = {condition →
brand, pc category → brand}. Query Q2 is shown in

Figure 6. Graphical Representation of (a)
Query Q2, (b) Query Q3

Figure 6(a). Clearly, no path on any value tree can satisfy

both parent-child precedence relationships of this query.

Therefore, the answer of Q2 is empty on any value tree,

and Q2 is a strongly unsatisfable query. ¤

More generally, we can prove the following proposition

which fully characterizes strong unsatisfiability.

Proposition 4.1 A query Q is strongly unsatisfiable if and

only if one of the following conditions holds:

(a) The arrows (single and/or double) in Q form a directed

cycle.

(b) There are precedence relationships D → Di and D →
Dj or precedence relationships Di → D and Dj → D
in Q (Di 6= Dj). ¤

Based on proposition 4.3, strong unsatisfiability of a

query Q can be detected by simply examining the set of

precedence relationships of Q. Therefore, the evaluation of

a strongly unsatisfiable query stops before it reaches the di-

mension graph of a value tree.

A query is defined on a dimension set but it is to be eval-

uated on a value tree which has a dimension graph. There

can be multiple value trees that underlie the same dimen-

sion graph. The weak notion of unsatisfiability is defined

with respect to a dimension graph.

Definition 4.3 Let G be a dimension graph on a dimension

set D. A query on D is weakly unsatisfiable with respect to

G if its answer is empty on every value tree underlying G.

¤

A strongly unsatisfiable query is also weakly unsatis-

fiable with respect to any dimension graph. In contrast,

a weakly unsatisfiable query with respect to a dimension

graph is not necessarily strongly unsatisfiable.

Example 4.2 Consider the query Q3 = (A,P),
where A = {brand =?, condition =?,

2Maximality is meant with respect to the number of nodes or edges



mobile type =?} and P = {condition → brand}.

Query Q3 is shown in Figure 6(b) on the dimension graph

G of Figure 2. This query is not strongly unsatisfiable.

Clearly, there is no root-to-leaf path in G that involves all

the annotated dimensions in Q3 and satisfies the precedence

relationships in Q3. Therefore, Q3 is weakly unsatisfiable

with respect to G. ¤

The following proposition provides necessary and suffi-

cient conditions for a query to be weakly unsatisfiable with

respect to a dimension graph.

Proposition 4.2 Let Q be a query on a dimension set D,

and G be a dimension graph on D. Query Q is weakly un-

satisfiable with respect to G if and only if there is no answer

path of Q on G. ¤

Based on proposition 4.2, weak unsatisfiability of a

query Q on a dimension graph G can be detected when

the query evaluator computes the answer paths of Q on G.

Therefore, the evaluation of a weakly unsatisfiable query

stops before it reaches the value tree underlying the dimen-

sion graph. This saves the big bulk of the workload since

the dimension graph is much smaller than the underlying

value tree.

5. System description

We have implemented a prototype system to study the

effectiveness of our approach for querying tree-structured

data while partially declaring the required structure (see

Figure 7). The Partition Manager takes as input a value tree

Figure 7. System architecture.

and a mapping of values to dimensions. It produces a new

version of the value tree, where all the nodes are annotated

with dimensions, encoded as XML document. Also, the

Partition Manager extracts the dimension graph of a value

tree. The Query Manager assists the user to form queries on

a value tree. It provides the user with the available set of di-

mensions and possibly a dimension graph. The user forms a

query by annotating dimensions and specifying precedence

relationships between annotated dimensions. The module

checks and prevents the formulation of a strongly unsatis-

fiable query. A strongly satisfiable query is subsequently

sent to the Xpath Generator. The XPath Generator takes

as input a strongly satisfiable query and a dimension graph

and produces the answer paths of the query on the dimen-

sion graph and their corresponding XPath expressions. It

thus checks whether the query is weakly unsatisfiable in or-

der to prevent its execution on the value tree and to notify

the user. If the query is satisfiable, this module exploits the

dimension graph of the value tree to produce XPath expres-

sions needed to answer the query. These XPath expressions

are then sent to the XQuery Engine. The XQuery Engine3

evaluates the XPath expressions on the value tree and sends

the answer to the user.

6. Experimental Evaluation

We experimentally evaluated our approach on our proto-

type system4. We used a set of synthetic value trees, and we

measured the execution time for evaluating queries.

To produce the data set of synthetic value trees we ex-

ploited an XML generator5 tuned approprietly to produce

value trees encoded as XML documents. The structure of

value trees generated was determined by DTDs given as

input to the XML generator. Changing randomly the sta-

tus of element descriptions to ‘optional’ in DTD rules, the

XML generator produces value trees with structural differ-

ences and inconsistencies. Ten XML documents were gen-

erated for the experiments. After the construction of the

value trees, we generated random partitions of their values.

Three partitions per value tree (that is 30 dimension graphs)

were created for the experiments.

Queries were generated by randomly annotating dimen-

sions in dimension graphs and adding arrows. If k dimen-

sions need to be annotated, the generator selects randomly

k dimensions and annotates them with ‘?’, one value, or a

set of values with a certain probability given as a parame-

ter. In order to add arrows to the annotated dimension of the

query, the generator first creates a fully connected graph, in-

volving only the annotated dimensions. Then, if n arrows

need to be created, it removes arrows until n are left. The

percentage of single arrows in the total number of arrows in

the query is a system parameter and depends on the exper-

iments. We implemented and compared the following two

query evaluation approaches:

A1 : Queries are formed on dimension graphs. Every query

is checked for satisfiability (strong and weak). If it is sat-

3We used Qexo XQuery engine (http://www.qexo.org/)
4Experiments were made on an AMD Sempron 2600 PC, 512MB

RAM.
5http://www.alphaworks.ibm.com/tech/xmlgenerator



isfiable, it is evaluated on the corresponding value tree.

Otherwise, its evaluation stops and an empty answer is

returned. This is the approach suggested in this paper.

A2 : Queries are formed directly using sets of path ex-

pressions (parent/child and ancestor/descendant relation-

ships) that involve values from value trees. Given these

sets, the system generates all the possible orderings

of the values that respect the parent/child and ances-

tor/descendant relationships specified in the path expres-

sions. Each one of these orderings corresponds to a sin-

gle path expression to be evaluated on a value tree. Note

that the approach A2 does not exploit dimension graphs

for the evaluation of queries.

In order to maintain similar query sets for both ap-

proaches, the system transforms a query that in-

volves dimensions into a set of simple path expres-

sions to be matched by the same path of the value

tree. Consider, for instance, the query (A,P), where

A = {pc type = {Notebooks}, brand = {Sony, IBM},
condition = {Used}} and P = {pc type → brand}.

The set of simple path expressions for approach A2
is {r//Notebooks/(Sony|IBM), r//Used}. The

corresponding path expressions to be evaluated on the

value tree are r//Notebooks/(Sony|IBM)//Used
and r//Used//Notebooks/(Sony|IBM).

6.1. Experiments

We carried out three different types of experiments to

study the differences in the execution time of the two query

evaluation approaches. For every measure point in the x-

axis, 10 queries per partition were generated (that is, a total

of 30 queries per point for each one of the 10 value trees).

The recorded execution time per point is the average execu-

tion time.

Varying the size of the queries. We measured the exe-

cution time varying the percentage of arrows (i.e. prece-

dence relationships) for different numbers of annotated di-

mensions in the queries. The percentage of arrows is the

ratio of the number of arrows to the total number of possi-

ble arrows in the query. Note that a percentage of arrows of

100% means that the arrows and the annotated dimensions

of the query form a fully connected graph. In Figure 8, we

present the results obtained for queries having 2 to 7 an-

notated dimensions, varying the percentage of arrows. The

y-axis is on a logarithmic scale. The number of dimensions

is fixed to 15. In each query, 50% of the arrows were single

(parent/child relationships) and 50% were double (ances-

tor/descendant relationships).

For both approaches, as the percentage of arrows in-

creases, the execution time drops. This is explained by the

fact that, as the number of arrows increases, fewer path ex-

pressions are generated by both approaches to be matched

on the value tree.

As the number of annotated dimensions increases, the

execution time in approach A1 drops. This is expected,

since for a fixed dimension graph, an increase in the num-

ber of annotated dimensions reduces the number of possible

answer paths (recall that an answer path involves all the an-

notated dimensions). Therefore, the number of path expres-

sions generated by approach A1 to match the values tree is

reduced too.

In approach A2, as the number of annotated dimensions

increases, the query execution time raises significantly for

low arrow percentage, but the steepness of the fall of the

curve raises too. The curve hits the x-axis closer to 0 as

the number of annotations raises. This can be explained as

follows. As the number of annotated dimensions increases,

the number of possible value orderings increases exponen-

tially. For a fixed set of arrows, this increase results in an in-

crease on the number of path expressions generated. How-

ever, for a fixed percentage of arrows, the number of arrows

increases too when the number of annotated dimensions in-

creases. As we explained above, increasing the number of

arrows reduces the number of path expressions generated.

For a fixed percentage of arrows, after a certain threshold

number of annotated dimensions, the increase in the num-

ber of arrows dominates and the number of generated path

expressions drops.

For a low number of annotated dimensions (e.g. 2 or

3), and high percentage of arrows, the approach A2 out-

performs A1. The reason is that the number of possible

orderings of the values is low and the path expressions are

posed directly on the value trees, without the overhead of

generating answer paths and checking for unsatisfiability.

However, for a higher number of annotated dimensions, the

generation of orderings of values is too costly. In this case,

the approach A1 outperforms A2. For an arrow percentage

of 10%, and 6 or 7 annotated dimensions, the approach A1
outperforms A2 by almost 3 orders of magnitude.

Varying the type of arrows in the queries. We measured

the execution time varying the percentage of single arrows

in the total number of arrows in the query for different pairs

of numbers of annotated dimensions and arrows. In Figure

9, we present the results obtained for queries having (a) 6
annotated dimensions and 4 arrows, (b) 7 annotated dimen-

sions and 4 arrows, and (c) 7 annotated dimensions and 5
arrows.

The higher the percentage of single arrows, the lower the

number of possible orderings of values needed for A2. This

is reflected in the diagram, since there is a drop in the ex-

ecution time as the percentage of single arrows increases

for A2. For A1, higher percentage of single arrows means

(a) higher probability for a generated query to be unsatis-

fiable, and (b) less answers paths. The reason is that the
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Figure 8. Execution time varying the percentage of arrows for different numbers of annotated dimen
sions in the query.
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Figure 9. Execution time varying the percentage of single arrows in the total number of arrows in the

query, for different pairs of numbers of annotated dimensions and arrows.
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Figure 10. Execution time varying the percentage of arrows for different numbers of dimensions in
the dimension graphs.

constraints imposed by single arrows are more restrictive

than those of double arrows. This is also reflected in the

diagram, since there is a drop in the execution time as the

percentage of single arrows increases for A1. In any case,

the approach A1 outperforms A2 since it is able to exploit

the dimension graph to detect unsatisfiable queries, and to

reduce the number of path expressions generated. In most

cases, the approach A1 outperforms A2 by three to four or-

ders of magnitude.

Varying the size of dimension graphs. We calculated the

execution time varying the percentage of arrows, for differ-

ent sizes of dimension graphs. The number of annotated



dimensions was fixed for different numbers of dimensions.

In Figure 10, we present the results obtained for dimension

graphs having 12, 14 and 16 dimensions. In each query, the

number of annotated dimensions was fixed to 6 and 50% of

the arrows were single ones.

Before we discuss the results, we explain the way we in-

crease the size of a dimension graph. Starting from a fixed

value tree, its partition and a set of annotated dimensions,

we generate queries by randomly adding arrows between

those annotated dimensions. At the next step, a dimension

is randomly selected to be split, and produces two new di-

mensions. The arrows are re-assigned to the new dimen-

sions that contain the annotated values. When the number

of dimensions increases, their number of values per dimen-

sion decreases on the average. In general, this results in a

sparser graph and reduces the number of answer paths of a

query. This is reflected in the diagram, since there is a drop

in the execution time for A1 as the number of dimensions

increases.

Note that in this experiment, the execution time of the

approach A2 remains unaffected from the increase in the

number of dimensions, since the queries do not change and

the approach A2 does not involve dimensions and dimen-

sion graphs. For an arrow percentage of 10%, the difference

between the execution time of the two approaches changes

from almost three to four orders of magnitude.

7. Conclusion

Dimensions are sets of semantically related nodes in a

type of tree-structured data, called value trees. Dimen-

sion graphs are based on dimensions and are semantically

rich constructs that abstract the structural information of the

value trees. In this context, we considered queries that are

specified on dimensions and are not cast on the structure

of a specific value tree. We presented a method to evalu-

ate queries on value trees. We showed how value trees and

dimensions can be encoded as XML documents. We de-

signed a method for transforming queries to XPath expres-

sions to be evaluated on the XML documents. We provided

conditions for detecting strongly and weakly unsatisfiable

queries. These are queries that always produce empty an-

swers when evaluated with respect to a dimension graph.

We presented a prototype system that implements our ap-

proach on top of an XQuery engine. We carried out experi-

ments to compare our approach to one that does not exploit

dimension graphs in the evaluation of queries on value trees.

Our results demonstrated the superiority of our approach.
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