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RESEARCH ARTICLE Open Access

Evaluation of rate law approximations in
bottom-up kinetic models of metabolism
Bin Du1, Daniel C. Zielinski1, Erol S. Kavvas1, Andreas Dräger1,2, Justin Tan1, Zhen Zhang1, Kayla E. Ruggiero1,

Garri A. Arzumanyan1 and Bernhard O. Palsson1,3,4*

Abstract

Background: The mechanistic description of enzyme kinetics in a dynamic model of metabolism requires specifying

the numerical values of a large number of kinetic parameters. The parameterization challenge is often addressed

through the use of simplifying approximations to form reaction rate laws with reduced numbers of parameters.

Whether such simplified models can reproduce dynamic characteristics of the full system is an important question.

Results: In this work, we compared the local transient response properties of dynamic models constructed using

rate laws with varying levels of approximation. These approximate rate laws were: 1) a Michaelis-Menten rate law

with measured enzyme parameters, 2) a Michaelis-Menten rate law with approximated parameters, using the

convenience kinetics convention, 3) a thermodynamic rate law resulting from a metabolite saturation assumption,

and 4) a pure chemical reaction mass action rate law that removes the role of the enzyme from the reaction kinetics.

We utilized in vivo data for the human red blood cell to compare the effect of rate law choices against the backdrop

of physiological flux and concentration differences. We found that the Michaelis-Menten rate law with measured

enzyme parameters yields an excellent approximation of the full system dynamics, while other assumptions

cause greater discrepancies in system dynamic behavior. However, iteratively replacing mechanistic rate laws

with approximations resulted in a model that retains a high correlation with the true model behavior. Investigating this

consistency, we determined that the order of magnitude differences among fluxes and concentrations in the network

were greatly influential on the network dynamics. We further identified reaction features such as thermodynamic

reversibility, high substrate concentration, and lack of allosteric regulation, which make certain reactions more

suitable for rate law approximations.

Conclusions: Overall, our work generally supports the use of approximate rate laws when building large scale

kinetic models, due to the key role that physiologically meaningful flux and concentration ranges play in determining

network dynamics. However, we also showed that detailed mechanistic models show a clear benefit in prediction

accuracy when data is available. The work here should help to provide guidance to future kinetic modeling

efforts on the choice of rate law and parameterization approaches.

Keywords: Metabolic modeling, Kinetic modeling, Approximate rate laws, Michaelis-Menten kinetics, Mass

action kinetics
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Background
Kinetic models of biochemical networks continue to grow

in scope and scale [1–7]. The promise of these models is to

serve as in silico platforms for prediction of complex sys-

tem behavior and corroboration of experimental results.

Specifically within metabolism, kinetic models have the po-

tential to elucidate the control mechanisms underlying

metabolic homeostasis and regulatory responses [8–10], as

well as to identify ‘flux bottlenecks’ impeding optimal per-

formance of production strains [11]. To date, these models

have been used to study such problems as the systemic

effect of enzyme mutations [12, 13], metabolic bistability

[10], and the coupling of signaling between metabolism

and transcriptional regulation [3].

The primary challenge in kinetic modeling of metabolism

is dealing with the frequent cases where data to construct

detailed kinetic models is lacking [14]. This challenge is

commonly addressed in part by selecting kinetic rate laws

with particular approximations that reduce the number of

parameters to be specified [15, 16]. If the assumptions

made are valid across the conditions of interest, a consist-

ent and predictive system should be obtainable by fitting

parameters to available data [17]. Established examples of

kinetic assumptions applied to enzyme reactions [5] in-

clude the quasi-steady state assumption utilized in

Michaelis-Menten-type rate laws [4, 6, 18] and the lin-log

approximation [2, 19] rooted in thermodynamic intuition.

The degree to which these types of approximated systems

represent the true system is a primary concern when

choosing a modeling approach.

Here, we construct a set of kinetic models of red blood

cell (RBC) metabolism using various approximate rate

laws, such that their parameters are equivalent to those

of the fully-described enzyme mechanistic model. We

choose the red blood cell due to the large amount of

available data, enabling us to use physiological enzyme

kinetic parameters, reaction fluxes, metabolite concen-

trations, and reaction equilibrium constants. Thus, we

can examine the practical importance of rate law ap-

proximations against the backdrop of a realistic system.

We utilize these models to study the effect of simpli-

fying assumptions to the rate laws on system dynamics

through simulating the network response to small tran-

sient perturbations. We additionally discuss theoretical

differences in the kinetic behavior of these rate laws.

Finally, we iteratively replace approximate rate laws

with mechanistic enzyme kinetics to examine whether

we can anticipate general dynamic effects of certain

types of approximations. We purposefully chose a sim-

ple perturbation approach with mathematical response

properties as output metrics, as opposed to physio-

logical prediction accuracy, in order to simplify the

task of understanding any observed correlations or lack

of correlations.

Results
Assumptions underlying rate law approximations

In preparation for investigating rate law effects through

model simulation, we first discuss the assumptions

underlying the different approximate rate laws. Perhaps

the most well-known kinetic assumption is the QSS as-

sumption, normally associated with Michaelis-Menten

kinetics but originated by Briggs and Haldane [20]. This

assumption states that all intermediate enzyme forms do

not change concentrations over time (Fig. 1a middle).

Michaelis-Menten kinetics normally require Michaelis-

Menten constants (Kms) and catalytic constants (kcats) to

parameterize the system, as well as metabolomics data,

Keqs of biochemical reactions, and enzyme concentra-

tions. The conditions for validity of the assumptions

underlying this rate law have been examined in great

detail [21–27].

If sufficient kinetic data is lacking, but reproducing en-

zyme saturation behavior is desired, an additional assump-

tion can be made to approximate the Km values. Previously

it has been shown experimentally that enzyme Km values

tend to be similar to the in vivo concentrations of corre-

sponding metabolites [28]. To determine whether this

trend can be exploited to fill in unknown parameters, we

examined the dynamic effect of using a Km = x assumption

to parameterize rate laws. If we additionally lack of know-

ledge about the enzyme reaction mechanism as well, the

form of the QSS rate law equation into which parameters

will be inserted is unclear. To deal with this, we can add a

further assumption that the reaction follows a rapid equi-

librium random order mechanism [29], following the previ-

ously suggested “convenience kinetics” formalism. We term

this rate law with assumed rather than measured enzyme

parameters as a Michaelis-Menten rate law with approxi-

mated properties (Fig. 1a bottom right).

Another way to address cases where enzyme-specific

data is lacking is to combine the QSS assumption with a

different assumption that substrates are saturated relative

to their binding constants, while products and inhibitors

are of negligible concentration (i.e., Km < < x for substrates

and activators while Km > > x for products and inhibitors).

This assumption effectively removes enzyme-specific pa-

rameters from the rate law and leads to a thermodynamics-

driven rate law similar to what has been termed Q-linear

kinetics (Fig. 1a bottom left) [30]. However, we note that

Q-linear kinetics treats the mass action ratio Q as a

thermodynamic variable while we treat the involved metab-

olites as separate variables. This Q-linear kinetics-like rate

law is fully specified using only metabolomics, fluxomics,

and Keq data.

Finally, another method to remove the need for

enzyme-specific parameters is to simply ignore the role

of the enzyme and assume that the reaction behaves by

simple mass action principles, and the resulting rate law
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is conventionally termed mass action kinetics [5, 31].

This form effectively assumes that the reaction behaves

as a pure chemical reaction with a single transition state

(Fig. 1b). As with Q-linear kinetics, mass action kinetics

requires relatively few parameters to describe the system,

namely metabolomics, fluxomics, and Keq data.

The benefit of requiring fewer parameters is the

major motivation for applying these simplified rate

laws; however, before using them, we carefully exam-

ine whether they are able to accurately capture the

dynamics of a model constructed of detailed enzyme

modules. We might expect two general cases where

rate law approximations should be successful. First, in

cases where the underlying assumptions are valid, the

rate law approximations should show accurate behav-

ior provided that the assumptions are not violated

substantially throughout the simulation. Second, if the

rate laws are not the most important factor determin-

ing the dynamic behavior of the network, we would

expect the use of an approximation to have little

negative effect. For example, some of the rate laws

may behave similarly near to equilibrium. In the

course of this investigation, we will seek to identify

both the degree to which approximate rate laws can

reproduce the behavior of the true model, as well as

the causes of this agreement or lack thereof.

Differences in mathematical behavior between rate laws

To place the subsequent results of simulating the vari-

ous kinetic models in theoretical context, we briefly dis-

cuss differences between the analytical structures of the

various rate laws. We focus on two key points: 1) the

ability of the rate law to exhibit the ‘saturation’ behavior

that is characteristic of enzyme kinetics, and 2) the prop-

erties of the first derivative of the rate law, which defines

the local dynamic behavior of the system.

Each rate law exhibits different behavior as metabolite

concentrations approach infinity. For example, the

Michaelis-Menten kinetics with measured properties

exhibit the well-known saturation behavior due to the

hyperbolic form, such that v = vmax as x approaches infinity.

A mass action enzyme module exhibits the same behavior

due to the constant total enzyme, placing a constraining re-

lationship between the fluxes of individual reaction steps.

The manner in which saturation is achieved between a full

mass action enzyme module and the Michaelis-Menten

kinetics is thus mathematically different.

In contrast to Michaelis-Menten kinetics with mea-

sured properties and enzyme module of mass action rate

laws, the non-module mass action and Q-linear rate laws

do not exhibit saturation behavior. Mass action kinetics

will approach positive or negative infinity as substrate or

product concentrations, respectively, approach infinity.

Fig. 1 Comparison of rate laws and their resulting first derivatives. a Formulation of Michaelis-Menten kinetics with measured properties, Q-linear

kinetics and Michaelis-Menten kinetics with approximated properties from the enzyme module with different layers of assumptions [42]. b Formulation

of mass action kinetics based on the law of mass action for a pure chemical reaction. c First derivatives (reaction sensitivities) calculated from the four

approximate rate laws. Ks and Kp are the Michaelis-Menten constants for the substrate and product. Γ is denoted as the mass-action ratio, which is the

ratio of product concentrations over reactant concentrations in a steady state raised to the exponent of their stoichiometric coefficients. Keq is the

equilibrium constant of the reaction. kcat
+ is the enzyme turnover rate constant. k+, as defined in MASS models, is the pseudo-elementary

rate constant in the forward direction

Du et al. BMC Systems Biology  (2016) 10:40 Page 3 of 15



Meanwhile, Q-linear kinetics exhibit asymmetrical satur-

ation properties. The flux v will correctly have a maximum

of vmax if the substrate concentration is maximized, but

will incorrectly have a minimum of negative infinity if the

product concentration is maximized. This asymmetry is

known and proponents of the rate law suggest that the

rate law only be used in a range near equilibrium [19],

which is not possible to guarantee in real perturbations.

For this reason, it is expected that the Q-linear kinetics

and mass action kinetics will exhibit large deviations from

the true mass action module system when perturbation of

the saturation state of the enzyme is an important feature

of the dynamic response.

Examining the first derivatives of the reactions is a

straightforward analytical approach to anticipating dy-

namic differences between the rate laws (Fig. 1c). From the

analytical form of the rate law first derivatives, it is clear

that the local dynamics between each type of rate law will

be potentially substantially different, with numerical values

dominated by different parameters in each case. The

expressions for gradients obtained from the Michaelis-

Menten kinetics with measured properties are complicated

and multiple parameters play a role in affecting the numer-

ical gradient values. The Michaelis-Menten kinetics with

approximated properties and Q-linear kinetics rate laws

have almost the same composition of their first derivatives,

determined by enzyme turnover rate constant, the equilib-

rium constant and substrate and product concentrations.

On the other hand, the local dynamic gradient in mass ac-

tion kinetics is determined by the pseudo-elementary rate

constants and equilibrium constant.

Construction and general properties of mass action

modules for ten enzymes

We first constructed enzyme ‘modules,’ consisting of full

mass action descriptions of enzymatic reaction mecha-

nisms, for ten key enzymes in RBC central metabolism

utilizing measured data for these enzymes (Fig. 2,

Table 1). An enzyme module consists of mass action rate

laws for all known reaction steps such as substrate

Fig. 2 Schematic of the enzyme modules incorporated into the RBC metabolic network [33]. The ten modules constructed were primarily located

in glycolysis and the pentose phosphate pathway. Other pathways were included as Q-linear kinetics approximations
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binding, catalytic conversion, and product release, as

well as any activator or inhibitor binding (Fig. 1a top).

An enzyme module describes the detailed mechanism of

enzyme catalysis and characterizes the dynamics of the

enzymatic reaction subject only to certain basic assump-

tions such as deterministic behavior and a well-mixed so-

lution [32]. The enzyme module requires a large number

of parameters, including metabolomics data, equilibrium

constants (Keqs), enzyme concentrations, and rate con-

stants of individual enzymatic reaction steps, to fully de-

scribe the dynamics of the system. We used these ten

enzyme modules as a ‘gold standard’ for later comparison

with approximate rate laws.

Construction of approximate rate laws

In this study, we examined four approximate rate laws

to compare to the fully-described enzyme modules.

Those four rate laws are: 1) Michaelis-Menten kinetics

based on the quasi-steady state (QSS) assumption for

the true enzyme module with measured enzyme param-

eters, 2) an assumed rapid-equilibrium random-order

Michaelis-Menten rate law ignoring regulation and

with Km values being approximated as equal to the

concentrations of corresponding metabolites, to simu-

late the effect of unknown data, mechanisms, and regu-

lation, 3) a rate law previously, termed Q-linear kinetics

[30], containing only thermodynamic effects that results

from a further metabolite saturation assumption, and 4)

a rate law based on the mechanism of chemical mass

action that effectively ignores the role of the enzyme in

the reaction [5].

Construction of an approximate rate law scaffold model

We first constructed a cell-scale model of RBC metabol-

ism using approximate Q-linear rate laws to serve as a

scaffold model for analysis. Our approach was to insert

the ten constructed enzyme modules into this scaffold,

and compare this model behavior to that of models gener-

ated with different approximate rate laws substituted into

those same ten reactions. The model was constructed

using steady-state metabolite levels from plasma and

intracellular erythrocyte metabolomics data from a fasting

state [33]. The model contains 169 metabolites and 143

reactions, covering glycolysis, the pentose phosphate

pathway, amino acid metabolism, and other pathways

(Additional file 1). Detailed information of the kinetic

model can be found in Additional file 1: Figure S1.

Designing a simulation-based kinetic analysis workflow

A straightforward way to estimate the similarity of

behavior between different rate laws is to simulate the

response of each model to perturbation. A perturbation

in this case denotes the change of certain metabolite

concentrations at time t = 0, after which the system is

allowed to simulate through a long enough time such

that the original steady state is once again reached. For

example, we perturbed the concentrations of ATP, ADP

and Pi at the same time to simulate the hydrolysis of

ATP in the system.

Two key decisions in such an analysis are the choice

of perturbation and the choice of output variable to

observe. In this study, we perturbed both metabolites

directly involved in as well as distant from the con-

structed enzyme modules. The list of perturbations can

be found in Fig. 3. To define output variables of interest,

we created two metrics, the maximum perturbation

(MP) and the relaxation time (RT). The MP is largest

percent change in concentration compared to the steady

state concentration that occurred during the simulation.

Then, to calculate the RT of a metabolite, we identify

the last time point at which the deviation from the

steady state concentration is at least 5 % of the MP.

One final decision in the simulation workflow is the

size of the perturbation to use. As mentioned previ-

ously, the rate laws chosen differ in both saturation

properties, which are non-linear features of the rate

laws, and local dynamic properties, which are linear

features of the rate law. It appeared to be a trivial result

that saturating and non-saturating rate laws will exhibit

very different behavior for large deviations where non-

linear effects play a significant role. However, under-

standing the origin and nuances of such deviations is

complex, and we sought to achieve a simpler goal as a

baseline investigation. To avoid such obvious effects

dominating our findings, we intentionally chose small

perturbations to minimize saturation effects and instead

Table 1 General description of the constructed enzyme

modules

Enzyme name Module size
(metabolites
× reactions)

Regulators
(mechanism
of action)

Phosphogluconate dehydrogenase
(GND)

13 × 9 NADPH (PI)

Lactate dehydrogenase (LDH) 10 × 6 N/A

Glucose-6-phosphate dehydrogenase
(G6PDH)

12 × 7 ATP (CI), NADPH
(PI)

Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH)

27 × 27 3PG (AI), G3P (AI)

Hexokinase (HEX1) 10 × 6 23DPG (CI)

Pyruvate kinase (PK) 30 × 34 FDP (AA), ATP
(PI, AI)

Phosphofructokinase (PFK) 40 × 44 ADP (PI), ATP (AI),
AMP (AA)

Phosphoglycerate kinase (PGK) 13 × 9 ATP (PI), 3PG (PI),
23DPG (CI)

Adenylate kinase (ADK) 8 × 5 N/A

Glucose-6-phosphate isomerase (PGI) 5 × 3 N/A

PI product inhibitor, AI allosteric inhibitor, AA allosteric activator, CI

competitive inhibitor
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focus on determining the importance of the linear/local

differences between rate laws.

Numerical comparison of rate laws

The final workflow was to perform nine different small

perturbations on the system with different rate laws and

characterized the response of metabolites in terms of RT

and MP (Fig. 3a–b). Calculating the Spearman correl-

ation for MP and RT of module metabolites between

rate laws, we found that the Michaelis-Menten kinetics

with measured properties behaved substantially better

on both metrics compared to other rate laws. Median

percent errors for MP and RT of module metabolites

confirmed this trend (Fig. 3c–d). Additionally, we found

that the Michaelis-Menten rate law with approximated

properties performed no better than the Q-linear kin-

etics and mass action kinetics. This indicates that the

Km = x assumption (x being the concentration of the

corresponding ligand) is not sufficiently correct to capture

the dynamics of the original enzyme module. Notably we

did not include known regulation of these enzymes in this

approximate rate law, and further investigation of the be-

havior of models with the addition of these regulatory

events with an analogous Kd = x assumption may be

warranted. We note that these conclusions regarding the

suitability of approximate rate laws are not due to the

choice of model underlying the analyses.

We repeated these analyses on a previously published

model of the red blood cell, smaller scale but composed

entirely of mechanistic enzyme mechanisms [34]. We

Fig. 3 Simulation comparison of four simplified rate laws against a reference module containing detailed enzyme mechanism kinetics (enzyme

modules). The responses of metabolites under different perturbations were compared between four simplified rate laws and the enzyme module.

a Correlation of metabolite relaxation time. b Correlation of metabolite maximum perturbation. c Median percent errors of metabolite relaxation

time. d Median percent errors of metabolite maximum perturbation. Nine different perturbations labeled from 1 to 9 were performed. 1, ATP, ADP and Pi
perturbation; 2, NAD and NADH perturbation; 3, 23DPG perturbation; 4, 3PG perturbation; 5, PYR perturbation; 6, FDP perturbation; 7, PRPP perturbation;

8, MAN6P perturbation; 9, R5P perturbation. Spearman’s rho: Spearman’s rank correlation coefficient. The simulations were performed on the whole-cell

kinetic model of erythrocyte constructed by Bordbar et al [33]
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iteratively substituted in different approximate rate laws

and verified the identified trends, where Michaelis-Menten

with measured properties performs substantially better than

the other approximations but all approximations retain

positive correlation to the true model (Additional file 1:

Figure S2). We also verified the results using larger pertur-

bations, suggesting that non-linearity of the perturbation

response does not strongly affect the trends (Additional file

1: Figures S3-4). However, as an exception to the general

trends, we did identify rare perturbations where Michaelis-

Menten rate laws with measured enzyme properties per-

formed noticeably worse than more approximated rate laws

(Additional file 1: Figures S3-4). We attribute these cases to

slow internal dynamics within the enzyme module, causing

the quasi-steady state assumption to become invalid. How-

ever, these effects were difficult to isolate and we did not

investigate these cases further due to their infrequency.

One key control in the study is to determine whether un-

certainty in parameters significantly impacts the conclu-

sions of analyses. To address this, we conducted Markov

chain Monte Carlo (MCMC) convex sampling of steady-

state fluxes given physiological ranges on metabolite up-

takes and secretions [33]. Similarly, we conducted MCMC

sampling of metabolite concentrations subject to a con-

straint on the feasibility of the concentrations with respect

to the 2nd law of thermodynamics [35]. We then combined

sampled fluxes and concentrations and calculated rate con-

stants for mass action rate laws for each reaction. The

resulting rate constants are shown in Additional file 1:

Figure S5A. It is seen that the variation in rate constants

due to flux and concentration uncertainty is small

compared to the variation between rate constants of differ-

ent reactions in the majority of cases. We also performed

several simulations on models with these sampled rate

constants, and found little variation in the RT or MP of

metabolites across sampled models (Additional file 1:

Figures S6-9). Thus, it appears that experimental uncer-

tainty in fluxes and concentrations, and the resulting un-

certainty on estimated rate constants for simplified rate

laws, is not a major concern in making claims about the

dynamics of the network.

Since the simplified rate laws introduces noticeable

discrepancies in dynamic behavior, we wanted to deter-

mine whether these discrepancies would continue to

increase as simplified rate laws are applied to more reac-

tions until the correlation completely disappears, or

whether the approximate model behavior would stabilize

at some positive correlation to the true model. Based on

the previous observation that Michaelis-Menten kinetics

with measured properties closely resembled the true

model, we set up a simple test case with as many reac-

tions specified with Michaelis-Menten kinetics as pos-

sible (38 out of 168 reactions [33]) and then iteratively

replaced them with mass action kinetics. We compared

the RT and MP of the substrates and products of these

reactions when a random set of reactions had their rate

laws changed from Michaelis-Menten to mass action

kinetics. We found that the correlation of RT and MP of

metabolites between Michaelis-Menten and mass action

kinetics stabilized as more reactions had their rate laws

substituted (Fig. 4). Since the discrepancy ceases to grow

after a certain point, it appears likely that models with

Fig. 4 Iterative replacement of Michaelis-Menten kinetics with measured properties by mass action kinetics. An increasing number of Michaelis-Menten

kinetics rate laws with measured parameters were replaced by mass action kinetics, and the RT and MP of affected metabolites were calculated. The

correlation of metabolite RT and MP between Michaelis-Menten kinetics and mass action kinetics fluctuated initially but gradually stabilized as

more reactions were replaced with mass action kinetics. The black line is the average correlation of all nine perturbations performed. a Correlation of

metabolite RTs between Michaelis-Menten and mass action model. b Correlation of metabolite MPs between Michaelis-Menten and mass action

model. Spearman’s rho: Spearman’s rank correlation coefficient. The simulations were performed on the whole-cell kinetic model of erythrocyte

constructed by Bordbar et al [33]
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constructed entirely of simplified rate laws still be use-

ful approximations of the real system, at least for small

perturbations.

Effects of flux and concentration steady-state on network

dynamics

We then investigated the source of the positive correl-

ation between fully approximate models and the true

model. As both models share the same initial steady

state, in terms of reaction fluxes, metabolite concentra-

tions, and reaction equilibrium constants, we sought to

determine whether these values were essential to the

dynamic consistency we observed across rate laws. The

flux and concentration state of the cell play a role in

determining the dynamic structure of the network. For

example, large metabolite pools will be changed slowly

by small fluxes, and vice versa, giving some expectation

of fast and slow dynamics within the network. We

wanted to investigate the degree to which network dy-

namics are determined by the initial flux and concentra-

tion state, as opposed to the choice of rate law. To this

end, we sampled reaction fluxes and metabolite concen-

tration within physiological ranges, and then in wider

ranges. In contrast to changing rate laws, we found that

widening the sampling range on fluxes and concentra-

tions greatly impacted the dynamic response of metabol-

ite throughout the network. For example, metabolite MP

and RT subject to ATP hydrolysis perturbation showed

weaker correlations within models sampled with wider

concentration and flux ranges compared to those from

models sampled with physiological concentration and

flux ranges (Fig. 5a–b). We also found that the distribu-

tion of metabolite RT and MP under ATP hydrolysis

perturbation spanned a much larger range for models

sampled with wider concentration and flux ranges

(Fig. 5c–d). Thus, it appears that the origin of the dy-

namic consistency across rate laws does indeed lie within

the order of magnitude differences across reaction fluxes

and metabolite concentrations throughout the network.

Dependence of the effect of rate laws approximations on

reaction properties

We have showed that, while models constructed with ap-

proximate rate laws still hold valuable dynamic informa-

tion due to the constraining effects of physiological flux

and concentration differences, there is still a substantial

increase in model accuracy from inclusion of additional

kinetic information such as in a Michaelis-Menten rate

law with measured properties. However, the question is

still open of whether certain reactions are more neces-

sary to model accurately than others. To probe this

question, we began with a fully-defined mechanistic

model [34], substituted each reaction in turn with a

mass action approximation, and determined the effect

on network dynamics. Clear trends emerged. First, re-

actions farther from equilibrium showed a larger effect

from rate law approximation (Fig. 6a). This is intuitive

as irreversible reactions tend to be regulated allosteri-

cally, but the trend existed even for non-regulated en-

zymes. Second, certain reactions with metabolites that

have high concentration tend to show a smaller effect

by substitution of rate law approximation as well. For

example, the enzymes DPGASE and DPGM are thermo-

dynamically in an irreversible state but the high con-

centration of 23DPG creates a large slow moving pool

that causes the dynamics of the network to be insensi-

tive to the choice of rate law for these enzymes (Fig. 6).

However, there remain some unexplained cases, where

reactions have one or both of these properties but rate

law approximations result in effects outside of the gen-

eral trend previously observed. For example, the en-

zymes PGLASE and GSSGR are clear outliers. This

suggests that additional properties exist, such as net-

work context given particular perturbations of interest,

that may provide additional cases where rate law ap-

proximations work well.

Evaluating the consistency of effects of single enzyme

mechanism substitutions throughout the network

One natural question to arise is whether it is possible to

anticipate the changes to dynamic properties that occur

when introducing enzyme mechanisms with particular

features, such as allosteric regulation or a location up-

stream of a metabolite of interest, in place of an approxi-

mate rate law. For example, there exist some rules of

thumb when dealing with small feedback networks, such

as the role of negative feedback in increasing system re-

sponse time, that might be applicable in these networks.

However, we did not find such rules of thumbs to be

reliable in the cases we examined.

In the case of the importance of network localization,

for the nearby enzymes PK and PGK, there was no gen-

eral trend observed in metabolite MPs and RTs under

ATP hydrolysis perturbation following single module

addition of PK or PGK (Additional file 1: Figure S10,

Table S1). For example, the addition of the PGK module

slightly decreased the MP of lactate compared to no

module while the addition of the PK module caused an

increase in the MP of lactate, while from a structural

standpoint we might expect the lactate node to have

similar responses to the introduction of either enzyme

mechanism. Along the same lines, the RT of 23DPG

increased when adding the PGK module but decreased

when adding the PK module. In addition to looking at

the effect of different enzyme substitutions for a particu-

lar perturbation, we also looked across different pertur-

bations for the same enzyme substitution. Specifically,

we characterized the response of metabolite PYR under
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different perturbations upon the addition of the PK mod-

ule and did not observe any general trend in the change of

response (Additional file 1: Figure S11, Table S2).

As a case study for the effect of adding allosteric regu-

lation, we chose the HEX1 enzyme module, which con-

tains 23DPG as a feedback inhibitor. We performed

multiple perturbations on HEX1 module with and with-

out regulation and characterized the change in the dy-

namic response of the substrates and products of the

enzyme. We found that G6P showed an increase in RT

following addition of the feedback inhibitor, indicating

that G6P relaxes more slowly following the addition of the

inhibitor. The increase was also observed in metabolites

downstream of the module. Meanwhile, G6P and F6P spe-

cifically showed an increase in MP with the addition of

feedback inhibition (Additional file 1: Figure S12A-B).

These observations appear contrary to the effect of feed-

back inhibition in simple feedback loops, where RT and

MP decrease due to the effect of the inhibition [36]. This

contradiction might be due to other interactions within

the model, where metabolic reactions are usually nonlin-

ear due to metabolites shared across multiple reactions.

We performed the same analysis on the GAPDH module

with 3PG as a feedback inhibitor. However, in this case we

Fig. 5 Kinetic properties of models sampled with models sampled with physiological concentrations and fluxes compared to models sampled in

wider ranges of concentrations and fluxes. First, 63 models were built with metabolite concentrations and fluxes sampled from physiologically

relevant range. Then, 23 models were constructed with a wider range of metabolite concentrations (10−8 to 105 mM) and fluxes. ATP hydrolysis

was chosen as a reference perturbation as the perturbation on all models and RT and MP of the metabolites was calculated. a Distribution of

pair-wise Pearson correlation coefficients of metabolite RTs for models sampled with wider concentration and flux ranges and models sampled

with physiologically relevant ranges. b Distribution of pair-wise Pearson correlation coefficients of metabolite MPs for models sampled with wider

concentration and flux ranges and models sampled with physiologically relevant ranges. c Distribution of metabolite RTs for models sampled with

wider concentration and flux ranges. d Distribution of metabolite MPs for models sampled with wider concentration and flux ranges. The sampling

and simulations were performed on the whole-cell kinetic model of erythrocyte constructed by Bordbar et al [33]
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found a decrease in RT on FDP and G3P when the feed-

back inhibition was added, as well as a decrease in MP on

3PG and PEP (Additional file 1: Figure S12C-D). The two

case studies above showed that the feedback inhibition

can cause quite different responses in different modules

and the effect of regulatory mechanisms should be care-

fully considered on a case by case basis.

We also analyzed the effect of feedforward activation as

an additional example of regulation. The example we stud-

ied the PK module with FDP as a feedforward activator.

We found a decrease in RT for PYR in the PK module as

well as a few metabolites upstream of the PK module,

such as G6P, F6P, FDP, G3P and 3PG (Additional file 1:

Figure S13). Those metabolites also had a decrease in the

MP (except 3PG and PYR). Again, this is contrary to the

commonly observed effect of a simple feedforward loop,

where RTand MP subsequently increase following addition

of a feedforward activator [36]. Similar to the feedback in-

hibition, such contradiction may be attributable to more

complex interactions within the metabolic network.

Overall, we showed that module addition can qualita-

tively affect the dynamics of related metabolites, but the

quantitative effect can vary from case to case, possibly due

to associated reaction and network connectivity properties.

Therefore, it is difficult to predict any kind of consistent

change moving from an accurate mechanistic description

of enzyme catalyzed reactions to more approximate rate

laws in specific cases.

Physiological and enzyme activity perturbations

Finally, while results so far were generated using perturba-

tions of largely academic purpose, such as spontaneous in-

ternal metabolite changes, we sought to verify our results

on perturbations of greater physiological meaning. First,

we performed several simulations on decreased enzyme

activity, in the form of a lower enzyme concentration or

lowered catalytic rate constant, for the enzymes G6PDH,

PGK, and PK, and verified the rate law trends identified

thus far (see Methods). For example, the relative metabol-

ite concentrations across different levels of G6PDH activ-

ity were the same between enzyme module and Michaelis-

Menten rate law with measured properties, while other

rate laws showed noticeable differences (Additional file

1: Figure S14). We made similar observations on relative

metabolite level change across PK or PGK activity change,

except that in PGK all rate laws behaved closely to the en-

zyme module (Additional file 1: Figures S15-16). Then, we

mimicked a previous study on an oxygen deprivation per-

turbation [37], and found that Michaelis-Menten rate law

with measured properties was able to match exactly the

dynamics of enzyme module, outperforming other ap-

proximated rate laws. However, none of the models quan-

titatively matched the experimental data well, suggesting

confounding parameterization or model scope issues

(Additional file 1: Figure S17).

Discussion

In this work, we constructed a kinetic model of RBC

metabolism with a mechanistic description of ten en-

zymatic reactions and compared the dynamic properties

of the mechanistic model with those of several com-

monly proposed simplifying assumptions. We found that

the Michaelis-Menten kinetics with measured properties

yields a consistently good approximation of the full sys-

tem, while the Q-linear kinetics and mass action kinetics

can show substantial discrepancies. Furthermore, we

Fig. 6 Reaction properties affecting the impact of reaction rate law approximations. a Enzyme substitution impact (rank) against reaction thermodynamic

irreversibility (Log10). Reaction thermodynamic irreversibility is calculated as (reaction equilibrium constant - mass action ratio)/reaction equilibrium

constant. Lower rank score meant less change in dynamic response when the module is replaced by mass action kinetics. Reactions highlighted

in red indicate presence of regulation. Circled reactions are outliers of the general trends. PGLASE is irreversible but shows low impact upon reaction

rate law approximation. GSSGR has a large substrate concentration, yet still shows significant impact upon reaction rate law approximation. b Enzyme

substitution impact (rank) against largest metabolite concentration in the reaction. Red and circled reactions are the same as in panel (a). The simulations

were performed on the model constructed based on Mulquiney et al [34]
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formulated another Michaelis-Menten-type rate law in

an attempt to simplify the Michaelis-Menten kinetics

given limited data available, based on a Km = xss assump-

tion with a rapid-equilibrium random order binding re-

action scheme. However, this approach failed to show

improved agreement in dynamics with the enzyme mod-

ules over other approximations. We attribute the posi-

tive correlation of even the most approximate rate laws

with the true model as due to the important effect that

reaction flux and metabolite concentration differences

play in the network dynamics.

Obtaining enzyme kinetic parameters continues to be

a core issue hindering the development of practical

large-scale kinetic models of metabolism. Databases such

as BRENDA [38] continue to aggregate studies on the

kinetic properties of enzymes for various organisms.

However, not only are the collections of the most com-

mon kinetic parameters (Kms and kcats) often incomplete

and measured under non-physiological conditions, but

there is a separate issue with the additional parameters

that are required to parameterize a mass action mechan-

istic description of a reaction (which we term an enzyme

module). Full specification of kinetic parameters is ex-

perimentally intensive but theoretically possible, and

some enzymes such as PFK have been characterized in

great detail in particular organisms, including pH and

temperature dependence of parameters. However, the

difficulty in determining these parameters and uncer-

tain immediate value of the data, evidenced by lack of

practical applications of resulting kinetic models, is likely

the main reason these data are not routinely being gener-

ated. In this study, we show both the value of fully-defined

enzyme mechanism as well as rate law approximations,

and thus it appears that the appropriate rate law to use

should continue to be determined by the goals of the

modeler.

On the note of the design of this study, we note that

kinetic models can be analyzed from numerous angles.

Much work thus far has focus on the dynamic control of

metabolic states. This goal is of great importance, but

due to the non-linear and complex nature of such con-

trol, we targeted our investigation on a simpler task of

understanding transient responses to small perturbations

in the metabolic network. Experimentally measuring

such transients, i.e., dynamics of metabolite concentra-

tions, is challenging and fundamentally limited by

sampling frequency and metabolism quenching time.

However, we chose to focus on these perturbations as

they are the most simple to understand mathematically.

Further studies looking at the effect of rate law approxi-

mations on more intricate dynamic properties, such as

the non-linear control of steady-state changes following

enzyme inactivation, are extremely desirable if they can

be conducted in a rigorous way.

In our comparison of rate laws, we showed that the

Michaelis-Menten kinetics with measured properties

gives a good approximate of the full system when com-

paring the relaxation time and maximum perturbation

of the metabolites. Thus, discrepancies due to ignoring

dynamics of individual enzyme forms do not appear to

be a significant issue. This success in approximation is

likely due to the combination of the small concentra-

tions of most enzyme forms relative to metabolite con-

centrations, a requirement for the validity of the QSS

assumption [21], as well as the relatively large rate con-

stants for reactions involved in enzyme regulation (ef-

fector binding) and structural transitions. For enzymes

with larger concentrations and slow regulatory enzyme

motions, there would likely be substantial discrepancies

from using a QSS assumption. We also found that add-

itional approximations from assuming saturation or

neglecting enzyme behavior entirely cause substantial

dynamic and structural issues. While these methods are

attractive due to obviating the need for enzyme-specific

parameters, the potential drawbacks may preclude their

use. As an alternative, assumptions about enzyme pa-

rameters can be made in place of assumptions about rate

laws. For example, one study has shown that metabolite

concentrations tend to hover around the Kms for corre-

sponding enzymes [28], which could be a useful assump-

tion for modeling in lieu of sufficient data. However, in

practice, we found this assumption to be insufficient to

recapitulate enzyme kinetic behavior, as deviations of the

real data from this assumption were sufficiently large to

induce substantial differences in behavior.

We showed that adding a module can bring qualitative

effects to the dynamics of related metabolites. However,

the quantitative effects have to be examined in a context

specific manner, possibly due to the associated reaction

property or network connectivity. We also showed that

the addition of regulations, such as feedback inhibition

and feedforward activation, can cause dynamic behavioral

changes different from those of simple genetic circuits.

Taken together, we would advise a detailed mechanistic de-

scription for enzyme catalyzed reaction is likely a necessity

for predicting system dynamics with reasonable accuracy.

There are two additional possible issues associated

with modeling enzyme kinetics using an enzymatic mass

action approach. The first is the estimation of kinetic

parameters within the module. The current available ex-

perimental data on the enzyme include Kms, vmax and

Kds. However, those data are not sufficient to solve for

the rate constants of specific enzymatic steps in the

module. Thus, a good fitting approach is necessary to

obtain a set of rate constants that accurately recapitulate

the existing experimental data. The second problem is

associated with the simulation of the system containing

multiple modules. A possible stiffness issue can occur
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when integrating the ODE equations during dynamic

simulations. This might be due to the large difference in

orders of magnitude between metabolite concentrations

and enzyme intermediate concentrations. In this case, we

would advise normalizing the enzyme concentrations to

the same level as metabolite concentrations and adjust the

corresponding rate constants. However, one needs to be

careful with the magnitude of change in enzyme concen-

trations as we found that different changes can cause dif-

ferent dynamic responses. Looking forward, addressing

these issues will be essential to make progress toward

bottom-up construction of kinetic models of metabolism.

Conclusions

The work here explored the validity of using approximate

rate laws with varying levels of assumptions in the context

of a cell-scale RBC kinetic model. We found that the

Michaelis-Menten rate law based on quasi-steady state as-

sumption was able to recapitulate the dynamic behaviors

of the mechanistic model consistently as long as measured

parameters were used. Rate laws that are derived from

further approximations on Michaelis-Menten kinetics or

ignore the role of the enzyme showed substantial discrep-

ancies in dynamic behaviors compared to the mechanistic

model. However, we found that the errors associated in

these approximate models appeared to stabilize as more

reactions were replaced by approximate rate laws, suggest-

ing that even fully approximate models can contain useful

information. This appears to be due to the dominant ef-

fect that the order of magnitude differences in reaction

fluxes and metabolite concentrations have on the dynamic

structure of the network. Still, we also found that re-

placing approximate models with the detailed mechanistic

enzyme module can bring unpredictable quantitative

effects to the system, suggesting a clear benefit of con-

structing mechanistically detailed enzyme modules

when possible. The work here should aid the choice of

rate laws and parameterization approaches in future

kinetic modeling efforts.

Methods

All work was done in Mathematica. We used the MASS

Toolbox kinetic modeling package (https://github.com/

opencobra/MASS-Toolbox) for model construction and

simulation. The RBC metabolic network with enzyme

modules incorporated is available in Mathematica file

format.

Construction of enzyme modules

The mass action rate law was used for reactions in en-

zyme modules, and the formulation can be found in

Jamshidi et. al. [5].

The steps for constructing enzyme modules are as

follows:

1. Define elementary reactions and obtain their

equilibrium constants from literature

2. Formulate the steady state mass balances for enzyme

forms and solve them symbolically in terms of

parameters of the reactions

3. Substitute the symbolic enzyme forms into the

equation of total enzyme concentration and

approximate the rate constants of the reactions

given a particular flux state

4. Calculate concentrations of individual enzyme forms

given the estimated rate constants

For enzyme module with regulation, an additional en-

zymatic step was added in which the effector molecule (ac-

tivator or inhibitor) is bound to a particular enzyme form.

The data used for module construction can be found

in Additional file 1: Table S3.

Simulation of the network with the incorporated enzyme

modules

The constructed modules were added into the RBC

metabolic network [33] for further analysis. For incorp-

oration of a specific module (e.g., PFK module), all the

reactions in the module were added into the metabolic

network and the original metabolic reaction (PFK reac-

tion) was removed.

Before dynamic simulations, the steady state metabol-

ite concentrations were set as the initial conditions of

the system. For a particular perturbation, a change on

certain metabolite concentrations were applied at time 0

and the subsequent simulation was conducted through

numerical integration of the ODE equations. The system

was allowed to simulate to over 100,000 h to regain the

steady state concentrations.

Calculation of maximum perturbation and relaxation time

Given a concentration profile from simulation, the max-

imum perturbation is the largest percent change in con-

centration compared to the steady state concentration

for a particular metabolite. The relaxation time is de-

fined as the last time point at which the deviation from

the steady state concentration is 5 % of the maximum

perturbation. Specifically, when calculating the relax-

ation time, we traced backwards by starting from the

concentration at a ‘long enough’ time (e.g., 100,000 h)

and calculated the difference between the concentration

at a particular time and the steady state concentration

until the relaxation time was identified.

Constructing a model full of enzyme modules

We used the scope (Mulquiney et al [34] Scheme 1) and

kinetic data (Mulquiney et al [34] Appendix) to con-

struct a model full of enzyme modules. Specifically, the

model contains 22 modules, mainly falling in glycolysis

Du et al. BMC Systems Biology  (2016) 10:40 Page 12 of 15

https://github.com/opencobra/MASS-Toolbox
https://github.com/opencobra/MASS-Toolbox


and pentose phosphate pathway. The enzyme modules

were constructed based on the method previously de-

scribed. We also added in the enzyme module for

hemoglobin, which can be loaded from MASS Toolbox

kinetic modeling package (https://github.com/opencobra/

MASS-Toolbox). There are extra 13 reactions in the

model that we did not build enzyme modules for. They

are export/import reactions, generic metabolic reaction

without specific reference to an enzyme and reactions

with zero flux. Specifically, they are AMP export reaction,

AMP import reaction, CO2 export reaction, glucose

import reaction, proton export reaction, water export

reaction, lactate export reaction, O2 export reaction,

pyruvate export reaction, ATP hydrolysis reaction,

glutathione redox reaction, NADH redox reaction, ad-

enylate kinase reaction.

Enzyme activity simulation

The metabolic state of the system was simulated with dif-

ferent levels of enzyme activities, for the three enzymes

PK, PGK and G6PDH. To simulate changing activity in

the enzyme module, the total enzyme concentration was

multiplied by a certain fraction. To simulate changing en-

zyme activity in simplified rate laws, the rate law equation

was multiplied by a certain fraction. After changing en-

zyme activities, the new steady state was obtained by

simulating the system for a long enough time. The metab-

olite concentrations and associated metabolic states (e.g.,

inhibited hemoglobin level) were compared across rate

laws and verified against physiological studies. All simula-

tions were performed on the model constructed based on

Mulquiney et al [34].

Iterative substitution of approximate rate laws in place of

enzyme modules

We started with the model constructed based on Mulqui-

ney et al [34] (containing 22 enzyme modules) and itera-

tively replaced the modules with four different simplified

rate laws. We iteratively increased the number of modules

replaced by rate laws, at intervals of 1, 2, 3, 6, 9, 12, 15, 18

and 22. Together with the original model consisting en-

tirely of enzyme modules, we built a total of 37 models

with different rate laws. We then performed 18 different

perturbations on those models. The perturbations fell into

three main categories: local metabolite perturbations

where change of metabolite concentration is less than

10 %, non-linear metabolite perturbations where change

of metabolite concentration is greater than 10 %, pertur-

bations through rate constant where the rate constant of a

particular reaction was altered. The specific perturbation

names can be found in Additional file 1: Figure S3. Models

with replaced rate laws were compared against model

containing all enzyme modules through correlation and

percent error in metabolite RT and MP.

Single module replacement

To test the effect of replacing single module on the net-

work dynamics, we started with the model constructed

based on Mulquiney et al [34] (containing 22 enzyme

modules) and built 22 different models by replacing each

of the enzyme modules with mass action kinetics in a

single model. We then compared those 22 models

against the original model consisting entirely of enzyme

modules through correlation of metabolite RT across 18

different perturbations. We ranked each model based on

its metabolite RT correlation with the original model in

a perturbation. We then summed up the rank scores for

each model across 18 different perturbations to obtain

their final rank score. Lower rank score meant less

change in dynamic response when the module is re-

placed with mass action kinetics. We compared the final

rank against two factors that could determine the impact

of simplified rate law replacing the enzyme module. One

factor is reaction thermodynamic irreversibility, which is

calculated as (reaction equilibrium constant - mass ac-

tion ratio)/reaction equilibrium constant. The other is

the largest metabolite concentration in the reaction.

Parameter sampling

We used the model constructed by Bordbar et al [33] for

parameter sampling. The range of metabolite concentra-

tions were based on the physiologically measured concen-

trations from 24 healthy individuals [33]. For unmeasured

metabolites whose concentrations were taken from litera-

ture, their range was set based on the average standard

error of measured metabolite concentrations. The sam-

pled metabolite concentrations were constrained by the

second law of thermodynamics, where equilibrium con-

stants of the reaction were derived from eQuilibrator

[39, 40]. We then used gpSampler in cobratoolbox to

obtain 1000 sets of metabolite concentrations that fell

in the physiologically relevant range and satisfied the

thermodynamic constraint [35, 41]. The sampled fluxes

of the model were obtained directly from Bordbar et al

[33]. The rate constants of the reactions were then cal-

culated from equilibrium constants, sampled metabolite

concentrations and sampled fluxes. As a result, a total

of 300 models were constructed from the sampled pa-

rameters, concentrations and fluxes.

To compare the dynamic behavior of models with dif-

ferent sets of parameters, concentrations and fluxes, we

performed three different perturbations on the 300 sam-

pled models. The three perturbations were: changing

ATP, ADP, Pi concentrations, changing NAD/NADH

concentrations and changing FDP concentration. It was

worth noting that only 63 models were able to achieve

stable steady states after the perturbations. The RT and MP

of the metabolites in those models were calculated from

the perturbation profiles. We then selected metabolites
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with MP over 5 % and compared the dynamic response

across models.

Physiological simulation

We used the model constructed based on Mulquiney et al

[34] (containing 22 enzyme modules) for physiological

simulation. The physiological condition we chose was the

hypoxia state of erythrocytes, and we simulated such a

state by changing the external concentration of oxygen to

30 % of its original level. Due to the known role of Band

III (BIII) protein in erythrocytes under hypoxia condition,

we added binding reactions of BIII to hemoglobin, PFK,

GAPDH and ALD [37]. We replaced the rest of the mod-

ules with different approximate rate laws, simulated the

models under hypoxia condition for long enough time

until steady state was reached, and compared the time

profiles of metabolites across rate laws.

Additional file

Additional file 1: Additional simulations performed for rate law

comparison and data used for enzyme module construction.

(DOCX 5388 kb)
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