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A B S T R A C T   

In this study, the performance of two types of source apportionment models was evaluated by assessing the 
results provided by 40 different groups in the framework of an intercomparison organised by FAIRMODE WG3 
(Forum for air quality modelling in Europe, Working Group 3). The evaluation was based on two performance 
indicators: z-scores and the root mean square error weighted by the reference uncertainty (RMSEu), with pre- 
established acceptability criteria. By involving models based on completely different and independent input 
data, such as receptor models (RMs) and chemical transport models (CTMs), the intercomparison provided a 
unique opportunity for their cross-validation. In addition, comparing the CTM chemical profiles with those 
measured directly at the source contributed to corroborate the consistency of the tested model results. The most 
commonly used RM was the US EPA- PMF version 5. RMs showed very good performance for the overall dataset 
(91% of z-scores accepted) while more difficulties were observed with the source contribution time series (72% 
of RMSEu accepted). Industrial activities proved to be the most difficult sources to be quantified by RMs, with 
high variability in the estimated contributions. In the CTMs, the sum of computed source contributions was lower 
than the measured gravimetric PM10 mass concentrations. The performance tests pointed out the differences 
between the two CTM approaches used for source apportionment in this study: brute force (or emission reduction 
impact) and tagged species methods. The sources meeting the z-score and RMSEu acceptability criteria tests were 
50% and 86%, respectively. The CTM source contributions to PM10 were in the majority of cases lower than the 
RM averages for the corresponding source. The CTMs and RMs source contributions for the overall dataset were 
more comparable (83% of the z-scores accepted) than their time series (successful RMSEu in the range 25% - 
34%). The comparability between CTMs and RMs varied depending on the source: traffic/exhaust and industry 
were the source categories with the best results in the RMSEu tests while the most critical ones were soil dust and 
road dust. The differences between RMs and CTMs source reconstructions confirmed the importance of cross 
validating the results of these two families of models.   

1. Introduction 

Source Apportionment (SA) encompasses the modelling techniques 
used to relate the emissions from pollutions sources to the concentra-
tions of such pollutants in ambient air. Applications of SA techniques 
have been reported to (a) determine the causes of pollution levels 
exceeding legislation thresholds, (b) support the design of air quality 
plans and action plans, (c) assess the effectiveness of remediation 
measures, (d) quantify the contribution from different areas within a 
country, (e) quantify transboundary pollution, (f) quantify natural 
sources and road salting, and (g) refine emission inventories (Belis et al., 
2017). 

The abovementioned definition of SA accommodates a wide range of 
techniques to obtain information about the actual influence that one or 
more sources have on a specific area over a specific time window. Such 
techniques may be based on the measured concentrations of pollutants 
and their components (receptor-oriented models or, more simply, re-
ceptor models, RMs) or on chemistry, transport and dispersion models 
(also known as source-oriented models, SMs). Among the RMs it is 
possible to distinguish between (a) explorative methods, that rely on 
empirical coefficients or ratios between species, and (b) receptor models 

based on multivariate analysis of all the chemical data at once (Watson 
et al., 2008; Hopke, 2016). SM techniques are based on air quality 
models, the most commonly used are Eulerian, Gaussian and Lagrangian 
ones (Fragkou et al., 2012). Gaussian models are used to describe only 
the dispersion of a pollutant near the source in a stationary way, while 
Lagrangian models describe it in a 3D dynamic way. With both types, the 
chemistry is assumed to be simple and linear or negligible, while 
Eulerian models (commonly referred to as Chemical Transport Models, 
CTMs) yield a description of pollutants in terms of motion, transport and 
dispersion, chemistry and other physical processes, accounting for all 
sources that are present in a given domain (emission inventories), as 
well as the influence from more distant sources (boundary conditions). 

SA studies aim at quantifying the relationship between the emission 
from human activities or natural processes (referred to as activity sectors 
or macrosectors in the emission inventories) and the concentrations of a 
given pollutant (sectorial source apportionment). Specific SA techniques 
are designed to allocate the concentration of a pollutant to the 
geographic areas where it or its precursors were emitted (spatial source 
apportionment). The present study focuses on the first type of SA output 
resulting from either RMs or CTMs. These two families of models were 
selected because a) these are the most used ones in both research studies 
and air quality management applications in support of the EU Directive 
2008/50/EC implementation (Fragkou et al., 2012; Belis et al., 2017), 
and b) these are techniques aimed at simultaneously describing the 
behaviour of all the knowable sources (that can be identified within the 
limitations of each technique). 

RMs are used to perform SA by analysing the chemical and physical 
parameters measured at one or more specific sites (receptors). They are 
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3 Institute of Chemical Engineering Sciences (ICE-HT) Foundation for 
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based on the mass conservation principle and identify sources/factors by 
solving the mass balance equation X ¼ G F þ E, where X is a matrix 
containing ambient measurements of pollutant properties, typically 
chemical concentrations of gases and/or particles that include markers 
for different sources (or source categories), F is a matrix whose vectors 
rows represent the profiles of p sources, G is a matrix whose columns 
represent the contributions of the p sources and E is the residual matrix. 
Those techniques applying weighted least-squares minimisation (or 
other type of minimisation techniques) fit to the ambient measurements 
using measured source profiles to solve the equation are referred to as 
chemical mass balance methods (e.g., CMB), while models which solve 
the equation without using ‘a priori’ information on source composition 
are factor analytical models, the most common of which is positive 
matrix factorisation (PMF). A detailed description of the RMs, is pro-
vided e.g. in Watson et al. (2008), Hopke (2016), Viana et al. (2008), 
and Belis et al. (2013). 

In Table 1 are briefly presented the approaches used to apportion a 
pollutant to its sources with CTMs: a) brute force (BF) (a terminology 
widely used in the literature e.g. Pillon et al., 2011; Burr and Zhang, 
2011; Baker et al., 2013; Lin and Wen, 2015; Wang et al., 2015) also 

referred to by Thunis et al. (2019) as emission reduction impact (ERI), 
and b) tagged species (TS). 

In the TS approach, a specific module, executed during the model run 
(online), earmarks the mass of chemical species to track the atmospheric 
fate of every source category or region (or a combination of both). Since 
the tagged species (also known as “reactive tracers”) can undergo 
chemical transformations, the module is also able to track the sources of 
secondary pollutants. The TS approach fulfils a mass balance equation 
ensuring the sum of all the source contributions equals the total con-
centration of the pollutant. TS algorithms are implemented in several 
CTM systems, such as, CAMx-PSAT (Yarwood et al., 2004; Wagstrom 
et al., 2008; ENVIRON, 2014), CMAQ-TSSA (Wang et al., 2009), 
CMAQ-ISAM (Byun and Schere, 2006; Foley et al., 2010; Napelenok 
et al., 2014), DEHM (Brandt et al., 2013) and LOTOS-EUROS (Hendriks 
et al., 2013; Kranenburg et al., 2013). 

The BF/ERI approach estimates the concentration changes (delta) 
attributable to a source by subtracting from the run where all the source 
emissions are present (the base case) a run where the emission source to 
be analysed has been modified (normally reduced) by a given percent-
age (e.g. Burr and Zhang, 2011; Wang et al., 2015; Uranishi et al., 2017). 
In this approach, an independent run is necessary for every source. 
Unlike TS, there are no specific model modules to execute the BF/ERI 
approach. It can be applied with any CTM in a post-processing step. In 
nonlinear situations, the sum of the concentrations allocated to the 
single sources can differ from the concentration of the pollutant in the 
base run. This problem may be dealt with in different ways. The more 
straightforward one is to re-normalise the mass of the sources to the total 
mass of the pollutant in the base case applying, for instance, multilinear 
regression or a similar method. A more appropriate technique from the 
mathematical point of view is to quantify such non-linearities by 
attributing a mass to all the possible interactions between sources. This 
is accomplished by computing additional simulations where two or 
more sources (all the possible combinations) are reduced at once and 
subsequently applying a factor decomposition (Stein and Alpert, 1993; 
Clappier et al., 2017). However, such elaboration requires a consider-
able number (N) of simulations; where N ¼ 2s-1 and s denotes the 
number of sources. Another characteristic of the BF/ERI approach is that 
the mass attributed to the sources depends on the applied emission 
reduction factor (Clappier et al., 2017). 

In summary, RMs and CTM-TS approach quantify the mass that is 
transferred from the source to the receptor. Therefore, they can be 
grouped under the category mass-transfer (MT) source apportionment. 
On the contrary, the CTM-BF/ERI approach is actually a sensitivity 
analysis method that estimates the changes in concentration that would 
result from a change in emissions and, hence, it should be placed under a 
different category. Since the results obtained with MT and BF/ERI may 
differ, we propose to call the output of the former “contribution” and the 
one of the latter “impact”. 

SA techniques have been used for many air pollutants such as NO2, 
O3, VOC (e.g. Baudic et al., 2016; Dunker et al., 2015). However, most of 
the studies focus on particulate matter (PM). Considering the higher 
experience of SA on this pollutant and the high number of exceedances 
in Europe (EEA, 2018) and in many areas of the world (Karagulian et al., 
2015), this study is focused on SA of PM10. 

Assessing the performance of SA model applications is essential to 
guarantee reliable and harmonised information on the influence of 
sources on pollution levels. To that end, a series of intercomparisons 
were performed in the framework of FAIRMODE (Forum on Air Quality 
Modelling) focused on RMs (Belis et al., 2015a and 2015b). Moreover, as 
highlighted in a recent study combining PMF and CAMX-PSAT, a 
reference methodology to comparing the results of RMs and CTMs is 
missing (Bove et al., 2014). In this paper, we introduce a comprehensive 
approach for the assessment of different source apportionment tech-
niques at once as a step towards an integrated assessment and validation 
methodology for SA models. The objectives of this study are: 

Table 1 
Description of CTM source apportionment approaches: tagged species and brute 
force or emission reduction impact.  

Approach Tagged Species (TS) Brute force (BF) or Emission 
reduction impact (ERI) 

Description A specific module tags 
chemical species to track the 
contributions of sources in 
every grid cell to both primary 
and secondary compounds 
(reactive tracers). 

Estimate the contribution of 
each source by subtracting 
from a run with all the sources 
(base case) a run where the 
emissions of the investigated 
source have been reduced by a 
given percentage. 

Kind of 
approach 

Static 
Depicts the situation 
corresponding to the input 
dataset. 

Dynamic 
It is actually a sensitivity 
analysis. Estimations are 
obtained by introducing 
changes in the emissions to 
make inferences on situations 
different than those of the 
input dataset. 

Underlying 
question 

What is the actual mass 
transferred from a pollutant 
source to its concentration in a 
given location and period? 

What would be the reduction 
in the pollutant concentrations 
corresponding to a given 
reduction in the emissions of 
its precursors? 

Runs Apportion all the sources in 
one single run. 

Requires a number of runs 
equal to the number of sources 
to apportion plus the run with 
all sources (base case). 

Mass 
conservation 

The sum of the contributions of 
the sources equals the total 
mass (concentration) of the 
apportioned pollutant (by 
definition). 

The mass allocated to the 
sources is obtained from 
independent runs. Therefore, 
the sum of source 
contributions may not match 
the total pollutant mass 
obtained in the base case (non- 
linear behaviour). 

Advantages Provides a picture of the 
contributions referred to the 
specific emission inventory and 
meteorological fields used as 
input. 
Useful to attribute the actual 
impacts of sources on health 
and vegetation. 

Useful to evaluate the impact 
of abatement measures. 
Can be used with any model. 

Disadvantages Requires additional coding 
effort. 
For non-linear pollutants, the 
source contributions cannot be 
extrapolated to situations 
different than the modelled 
case. 

Requires many runs. 
The mass is not always 
conserved (see above). 
The mass allocated to a source 
depends on the emission 
reduction level.  

C.A. Belis et al.                                                                                                                                                                                                                                  



Atmospheric Environment: X 5 (2020) 100053

4

� To assess the differences in the SA results between RMs, between the 
TS and BF/ERI CTM approaches, and between RMs and CTMs;  

� To characterise the performance of SA model applications using pre- 
established criteria for deciding whether results are comparable or 
not; 

� To assess whether the CTM SA performance is influenced by differ-
ences between sites;  

� To test the impact of different spatial resolutions and vertical mixing 
coefficients on the CTM SA performance. 

To achieve the abovementioned objectives, a consolidated assess-
ment methodology already applied to RMs was adopted. 

2. Methodology 

The assessment of the SA models followed multiple steps to evaluate 
the different aspects of a SA result (see Appendix sections A1 and A2). 
The focus of this article is on the performance tests used to evaluate 
every source category separately. Considering that the actual contribu-
tion/impact of sources in a given area is unknown, the reference for the 
performance test is derived from the participants’ average and standard 
deviation. The advantage of this methodology is that every test is 
associated with acceptability thresholds based on widely recognised 
indicators that have been tested and used in previous FAIRMODE SA 
intercomparisons. For a detailed description of the methodology refer to 
Belis et al. (2015a, 2015b). The same approach was used to evaluate the 
performances of RMs and CTMs separately. The RMs were assessed, only 
at the reference site of Lens (see next section for details), while a set of 
10 different sites (Fig. 1) was used in the comparison between CTMs. In 
addition, a cross comparison between RMs and SMs was accomplished 
for the Lens site, setting the RMs as the reference for methodological 
reasons without any “a priori” implication about the reliability of the 
different methods. 

This study involved 40 groups, 33 of which delivered 38 RM results 

and the remaining seven reported 11 CTM results. The participants 
delivered results consisting of a set of candidate sources (hereon, can-
didates) with the estimation of their contributions or impacts (hereon, 
source contribution or impact estimates, SCIEs) expressed as μg/m3. In 
section A3 of the Appendix are listed the most commonly used 
abbreviations. 

2.1. Set up of the RMs intercomparison 

The reference site of Lens (France), located in a densely populated 
area (>500 inhabitants/km2), is part of the official monitoring network 
and is classified as an urban background monitoring station (Fig. 1). 
According to the EU legislation (2008/50/EC), such locations are places 
in urban areas where levels are representative of the exposure of the 
general urban population. 

The dataset of measurements used for the RM intercomparison was 
produced in the framework of the CARA project directed by the French 
reference laboratory for air-quality monitoring (LCSQA). This dataset 
contained 116 PM10 daily concentrations collected every third day be-
tween March 2011 and March 2012. The concentration of 98 chemical 
species and their uncertainties were provided for every sample 
including: ions, organic and elemental carbon (OC/EC), trace elements, 
polycyclic aromatic hydrocarbons (PAHs), anhydrosugars, hopanes, n- 
alkanes, primary organic aerosol (POA) markers, and the total PM10 
gravimetric mass concentrations (Table A2 of the Appendix). Details on 
the analytical techniques can be found in Waked et al. (2014) and Golly 
et al. (2015). The average PM10 concentration and composition in the 
dataset is shown in Table S1 of the supplementary material. In order to 
harmonise the nomenclature, the candidates reported by participants 
were encoded in conformity with the SPECIEUROPE database source 
categories (Pernigotti et al., 2016). The source chemical profiles from 
this database are also referred to as ‘reference’ profiles (Table 2). 

In this study the fuel oil source is the combustion of residual (heavy) 
oil that normally takes place in power plants. Since this fuel is also used 

Fig. 1. Map of the Lens domain with indication of the receptors selected for reporting SA results (circles). The receptor colour represents the type of site. FAIRMODE- 
LENS domain (green dots); WRF-FAIRMODE domains (light blue dots). The lower resolution domains FAIRMODE-EU and WRF-EU domains are also visible in the 
background (red and blue dots). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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in maritime transport, ship emissions in seaports may contribute up to 
10% of the primary PM10 (Amato et al., 2016; Bove et al., 2018). 
However, due to the considerable distance of the study site from the 
closest harbour (75–80 km), the influence of this source on the primary 
PM10 is expected to be small. In this exercise, very few results (11%) 
univocally identified shipping as a source. This is in line with a study on 
PM10 sources using receptor models by Waked et al. (2014) in the same 
location which allocated a 4% of primary PM10 to oil combustion 
associated with land activities (power generation and industrial emis-
sions) excluding the influence of ship emissions (section 3.1.1). 

2.2. Set up of the CTM intercomparison 

2.2.1. Domains and time window 
CTMs were run over two nested computational domains with 

different spatial grid resolutions: one covering the whole of Europe and a 
smaller one around the reference site area (Lens). The FAIRMODE-EU 
domain lat/long grid (Table S2, supplementary material) was set to be 
compatible with the spatial resolution of the emission inventory and to 
avoid any interpolation of the emission data (section 2.2.2). The domain 
extension was defined to provide suitable regional boundary conditions 
for the reference area simulations. It includes a portion of North Africa to 
account for dust emissions, while the northern boundary was set around 
latitude 65.0 to minimise the spatial distortions at high latitudes when 
using a lat/long grid. The grid step corresponds to roughly 18–20 km. 

The FAIRMODE-LENS domain (Fig. 1) was defined as a subset of the 
emission inventory grid as well as of EU grid, once again to avoid any 
interpolation of emission data. The domain is centred over Lens, but it is 
large enough to allow a reasonable description of the PM fate in the 
atmosphere, limiting the influence of boundary conditions. The grid step 
corresponds to roughly 6–7 km. 

Two three-month periods for CTM modelling were defined: 1/6 to 
31/8/2011 and 15/11/2011 to 15/2/2012. Such time windows were 
selected to be representative of both the warm and cold seasons and long 
enough to include both high pollution episodes and low concentration 
situations. Moreover, because PM chemical composition data were 
available at Lens only every third day, three-months simulations were 

needed to pair at least 30 daily SA results of RMs and CTMs. 

2.2.2. Input datasets 

Emissions. The anthropogenic emissions used for this intercomparison 
were derived from the TNO_MACC-III emission data, which is an update 
of the TNO_MACC-II emission inventory (Kuenen et al., 2014). The in-
ventory is structured according to the Selected Nomenclature for sources 
of Air Pollution (SNAP, EEA, 1996; EEA, 2000) and is combined with 
fuel use information by country and by sector derived from the literature 
and country data. This emission inventory included an enhanced source 
classification according to fuels for SNAP macrosectors 2 and 7 (Tables 3 
and Table A3). Particularly, emissions due to combustion from the res-
idential and small commercial combustion sectors were split between 
fossil fuels (coal, light liquid, medium liquid, heavy liquid and gas) and 
solid biomass. Emissions from the road transport sector were split ac-
cording to three main fuels (gasoline, diesel and LPG/natural gas), while 
non-exhaust sources included evaporation and tyre and road wear. 
Among non-road transport emissions, international shipping was spe-
cifically accounted for. The reconstruction of the natural emissions (dust 
resuspension, sea salt and biogenic VOCs) was left to the modelling 
groups, because in most cases such emission modules were embedded in 
the modelling chain. 

Meteorological fields. Meteorological fields were obtained by applying 
the WRF model in a nested (one way) configuration in order to provide 
fields for both the EU and LENS domains. The WRF simulations were 
performed over a Lambert conformal domain. This choice implied a pre- 
processing phase of the meteorological fields in order to feed CTMs, 
however, it should be considered that: (a) most of the CTM model chains 
needed meteorological fields pre-processing anyhow (e.g. to compute 
turbulence and other additional parameters), and (b) the use of a lat/ 
long grid over northern Europe may lead to considerable distortion 
effects. 

Both WRF domains covered the corresponding CTM/output domains 
leaving also a border area. To limit the degradation of the meteorolog-
ical information during the interpolation phase the WRF domains 

Table 2 
Source categories reported in the RM results with the corresponding SPECIEUROPE code. In SPECIEUROPE there are general categories that include others, this is 
indicated in the hierarchy of categories.  

SPECIEUROPE 
Code 

Source 
categories 

Description Abbr. in 
graphs 

Hierarchy of categories 
(low to high) 

n. of reference 
profiles 

n. of candidate sources reported 
by participants 

1 traffic all vehicle emissions tra 1 286 34 
2 exhaust vehicle exhaust only exh 2_1 130 20 
3 diesel diesel vehicle exhaust die 3_2_1 49 2 
4 gasoline gasoline vehicle exhaust gas 4_2_1 10 3 
5 road (dust) traffic resuspension and wear (e.g. 

tyres, brakes) 
roa 5_1 154 16 

7 brake brake wear bra 7_5_1 2 3 
10 soil (dust) natural dust soi 10 235 34 
12 marine fresh sea salt ss 12  39 
20 industry unspecified industrial emissions ind 20 433 24 
30 fuel oil combustion of residual oil (mainly 

power plants) 
fue 30 88 31 

31 coal combustion of coal coa 31 47 8 
37 ship emissions from vessels shi 37 14 9 
40 biomass biomass burning bib 40 139 39 
41 wood wood burning woo 41_40 96 8 
60 SIA secondary inorganic aerosol 

(61 þ 62) 
sia 60  20 

61 ammonium 
nitrate 

secondary inorganic aerosol amn 61_60 1 20 

62 ammonium 
sulphate 

secondary inorganic aerosol ams 62_60 1 21 

69 metallurgy metallurgic industry met 69_20 43 2 
70 POA primary organic aerosol poa 70  33 
71 aged sea secondary sea aerosol as 71 1 21 
72 agriculture all agricultural emissions agr 72 20 2  
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adopted the same grid step as the CTM domain (18 km and 6 km, 
respectively). The WRF physical configuration is provided in Table S3 of 
the supplementary material. The LOTOS-EUROS was the only model run 
with its own ECMWF meteorology. 

Boundary conditions. Boundary conditions were derived from the MACC 
global model using the same approach that has been adopted in other 
European initiatives like EURODELTA-III and AQMEII-3 (http://aqmeii. 
jrc.ec.europa.eu/). 

2.2.3. Definition of common sources for RMs and CTMs and CTM receptor 
sites 

RM sources are determined by their chemical fingerprints and time 
trends, while CTM sources reflect the nomenclature of the emission in-
ventory used as input. In addition, CTMs allocate both primary and 
secondary PM to its sources, the latter being attributed to the sources of 
its gaseous precursors. Due to the different definition of their sources, 
comparing the SA output of RMs and CTMs is not straightforward. 
Table 3 shows the correspondence between RMs and CTMs sources 
established in this study to compare their outputs. To that end, the SNAP 
source classification commonly used in the emission inventories 
(Table A3) is compared at the macrosector level with the SPECIEUROPE 
source categories. Since RMs did not provide SCIEs comparable with 
SNAP macrosectors 5 (extraction and distribution of fossil fuels), 6 
(product use), and 9 (waste treatment), the mass apportioned by CTM to 
these macrosectors was pooled under a generic non-apportioned mass 
category (99 OTH). For the remaining source categories, two sets with 
different degree of detail for macrosectors 2 (residential and commercial 
combustion), 7 (road transport) and 11 (natural sources) were defined 
(Table 3). The mandatory (MDT) set consisted of 7 sources plus one 
corresponding to the non-apportioned mass (99 OTH). The more 
comprehensive optional set (OPT) encompassed 13 sources plus the non- 
apportioned category. 

To assess the spatial variability of the CTM SA performances, a set of 
receptor sites representing different types of locations (urban, suburban 
and rural) among the AIRBASE European monitoring network (EEA, 
2015) were selected (Table 4). In addition, the site of Ghent was 

included because of the availability of detailed PM10 chemical compo-
sition from the CHEMKAR PM10 study (VMM, 2013). 

2.3. CTM model performance evaluation (MPE) 

Each modelling group performed its own model performance eval-
uation (MPE) by comparing CTM results against observed data for the 
main chemical species (i.e. sulphate, nitrate, ammonium, elemental 
carbon and organic aerosol). In order to support the interpretation of the 
SA performance, a centralised MPE was also accomplished for PM10 and 
its main chemical components on all the model base case results (Annex 
1, supplementary material). The objective was to assess whether the 
ability of models to reproduce the PM mass and main chemical com-
ponents influences the model SA output. To that end the modelled mass 
of PM and main chemical components were compared with measure-
ments. The centralised MPE was performed using a subset of sites 
selected to cover the different meteorological and emissive features of 
the Lens domain: Lens (reference site), London and Paris (megacities), 
Ghent (middle-sized city), Le Havre and Calais (coastal areas), and the 
rural background station Vredepeel-Vredeweg. Model results were 
evaluated by means of a few statistical indicators: the mean bias (MB), 
the normalised mean bias (NMB), the root mean square error (RMSE) 
and the Pearson correlation. 

2.4. CTM source chemical profiles 

The differences between CTM SA results were assessed using a sim-
ilarity test discussed in section 3.2.2. It was accomplished by comparing 
the chemical profiles of the sources reported by participants (CTM 
chemical profiles) among each other (ff tests) and with a set of 1160 
external (measured and derived) source profiles (fr tests) deriving from 
the SPECIEUROPE database developed at JRC (Pernigotti et al., 2016) 
and the SPECIATE database of the US EPA (Hsu et al., 2014). 

Table 3 
Correspondence of source nomenclature between CTMs and RMs for both the mandatory and 
optional sets. A more detailed description of the SNAP macrosectors is given in Table A3. 
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3. Results and discussion 

3.1. Receptor models 

A total of 38 different RM results were delivered by 33 participants. 
The majority of the RM results (31) were obtained using the US-EPA 
version 5 of the positive matrix factorisation tool (EPA-PMF5; Norris 
et al., 2014). ME-2 (multilinear engine 2; Paatero, 1999) scripts were 
used in two cases. Only one result was reported with the following tools: 
RCMB (robotic chemical mass balance; Argyropoulos and Samara, 

2011), MLPCA-MCR-ALS (MLPCA, maximum likelihood principal com-
ponents analysis-multivariate curve resolution-alternating least squares, 
Izadmanesh et al., 2017), PMF version 2 (PMF2; Paatero and Tapper, 
1993; Paatero, 1997), EPA-PMF version 3 (PMF3; Norris et al., 2008) 
and EPA-PMF version 4 (PMF4). The RM results were labelled with 
letters from A to Z and then from *A to *L. In Figs. 2 and 3, the sources 
are labelled in conformity with the corresponding SPECIEUROPE data-
base source categories (Pernigotti et al., 2016). 

Table 4 
Receptor sites used to assess the spatial variability of the CTM SA performances.  

Station Code Station Name Country Station Type Area Type LONG LAT 
LENS Lens-CARA France Background urban 2.83 50.44 
CALAIS Sangatte France Background suburban 1.77 50.95 
LE HAVRE Le Havre Henri Fabre France Background urban 0.11 49.52 
PARIS Paris 6eme France Background urban 2.34 48.85 
LONDON London N. Kensington United Kingdom Background urban -0.21 51.52 
BRUSSELS Uccle Belgium Background suburban 4.36 50.80 
GHENT Ghent Belgium Background urban 3.73 51.06 
SUBU BKGD Menen Belgium Background suburban 3.11 50.79 
RUR BKGD1 Revin France Background rural 4.63 49.91 
RUR BKGD2 Vredepeel-Vredeweg The Netherlands Background rural 5.85 51.54  

Fig. 2. z-scores performance indicator values arranged by participant (a) and by source category (b). The areas of acceptance and warning are indicated with green 
and orange background, respectively. Only candidates with warning or bad scores are annotated in the plots (letter: result; sequential number: candidate). In (a) the 
used RM is indicated under each participant (red for models different than PMF5). The source category codes are given in Table 2. The scores of result Q are not 
shown because out-of-scale. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

C.A. Belis et al.                                                                                                                                                                                                                                  



Atmospheric Environment: X 5 (2020) 100053

8

3.1.1. Performance tests 
The z-scores evaluate the performance of the SCIE for the overall 

studied time window (one year in this study). In Table 5 are shown the 
reference SCIE for the sources reported in more than three SA results 
(diesel, gasoline, brake, metallurgy and agriculture are excluded) with 
their uncertainty. The time series of the reference and the scatter plots 
between candidates and references are shown in Figs. S1 and S2 of the 
supplementary material. If we consider the consensus between partici-
pants as an indicator of the relevance of the sources those reported in 
less than 25% of the results (coal, and ship) could be regarded as non- 
robust ones (Pernigotti and Belis, 2018). Although biomass burning 
and wood burning have a slightly different connotation (the former is 
more inclusive than the latter), in this study the two expressions have 
apparently been used by participants to represent the same source. The 
SCIE of a nine source solution reported by Waked et al. (2014) in the 
same site (Table 5, last two columns) fall within the uncertainty range of 
the reference (except one). The main differences of the French study 
with the references of the present study are the absence of industry, the 

lack of detail within the traffic source (exhaust, road dust) and the lower 
contribution of the fuel oil source. 

In the performance tests, 91% of the z-scores of RM candidates 
(Fig. 2) fall within the area of acceptability (green) indicating a general 
good agreement between the reported results and the reference values 
with a tolerance of 50% (Fig. 2a). The results Q, B, H, *I and *L are those 
with the higher number of candidates out of the acceptability zone. The 
result Q was obtained with the recently developed MLPCA-MRC-ALS 
technique. It is similar to PMF with the difference that it solves the 
mass balance equation using the alternating least squares algorithm 
(Tauler et al., 2009). The out-of-scale z-score of this result have been 
attributed to a misinterpretation on how to report the average SCIE. This 
interpretation was confirmed by the analysis of the time series where the 
RMSEu are of the same order of magnitude of as the other participants 
and in some cases passed the test (see below in this section). 

Most of the overestimated SCIEs are in the industry source category 
(20 ind) while some others are in traffic, soil, biomass burning and coal 
combustion source categories (1 tra, 10 soi, 30 fuel and 31 coa; Fig. 2b). 

Fig. 3. Target plots of the RMSEu performance indicator for all the candidate sources (a). The letter of the alphanumeric codes denotes the result while the number is 
a sequential identifier of the candidates in every result. The scores of selected sources are depicted schematically: (b) industry; (c) fuel-oil; (d) soil; (e) road; (f) 
biomass burning; (g) primary organic aerosol (poa); (h) ship and (i) coal. Scores inside the green circle (<1) are acceptable. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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Conversely, underestimated SCIEs are observed mainly in the exhaust, 
biomass burning, and primary organic aerosol, source categories (2 exh, 
40 bib and 70 poa). 

The RMSEu scores of the candidates are displayed in target plots 
(Fig. 3) where the abscissa represents the uncertainty-weighted centred 
root mean square error (CRMSE/u) and the ordinate the uncertainty- 
weighted bias (BIAS/u). The green circle delimits the acceptability 
area while the dotted and solid lines correspond to the 0.5 and 1.0 levels, 
respectively. The candidates are indicated with the same codes as used 
in Fig. 2. 

In the RMSEu test, 72% of the candidates fall in the acceptability area 
(Fig. 3a). The areas with scores of sources showing a high share of 
rejected candidates are schematically represented in Fig. 3 b – i. Those 
are: industry (3b), fuel oil (3c), soil (3d), road (3e), biomass burning 
(3f), primary organic aerosol (3g), ship (3h) and coal (3i). The source 
categories showing the highest percentage of candidates with poor 
scores in this test are ship (75%), coal burning (71%), and fuel oil (60%). 
The first two are likely not well identified sources, considering that they 
were reported in less than 25% of the results. The low or non-detectable 
contribution of coal burning is explained by the low share (<5%) in 
2011-2012 of this fuel in the French energy mix (https://www.iea.org) 
while contributions from primary ship emissions are unlikely, consid-
ering the distance of the site to harbours. Although fuel oil was reported 
in the majority of the results and the average SCIEs are coherent with the 
reference (as indicated by the z-score test), the time series of this source 
in the different results are divergent. In this source, the rejected RMSEu 
scores are distributed in different quadrants of the target plot. However, 
those with higher deviations are located in the top right quadrant sug-
gesting overestimation and higher amplitude than the reference. A 
similar situation is observed in the time series of the industry source 
category where a 30% of the candidates presented both positive bias and 
amplitude problems with respect to the reference (i.e. fall in the top right 
quadrant of the target plot, Fig. 3b). The RMSEu confirms the indications 
of the z-score test for the industry and coal combustion. 

Positive bias is also observed in some candidates of soil and traffic 
while biomass burning and primary organic aerosols (70 poa) present 
either positive or negative biases. Extreme cases of variance higher than 
the reference are candidates H5 (industry, fuel oil), *E9 (fuel oil) and B4 
(soil). On the contrary, the rejected candidates of the ship source cate-
gory (37 shi) are mainly located in the lower quadrants suggesting a 
tendency to underestimate the reference SCIE time series. In a number of 
sources, the bad scores are distributed in all the quadrants of the target 

plot (Fig. 3), therefore, the lack of coherence between them and the 
reference is probably depending on random variability determined by a 
combination of factors. 

Additionally, the frequency of the candidates in every source cate-
gory (Table 2) is an indicator of robustness of the source identification 
(Pernigotti and Belis, 2018). The better identified source categories from 
this point of view are: biomass burning, marine, traffic, soil, primary 
organic aerosol, fuel oil, industry, aged sea salt, and the secondary 
inorganic aerosol (SIA, ammonium nitrate and ammonium sulphate). 

3.1.2. Conditions influencing the performance of RM 
Although RMSEu and z-score (without sign) are correlated to a 

certain extent (R2 
¼ 0.43; Fig. S3), they evaluate different aspects of the 

SA results. As observed in previous intercomparisons (Belis et al., 
2015b), the RMSEu test is stricter because, in addition to the bias, it 
assesses the phase and amplitude of the time series curves (Jolliff et al., 
2009). Moreover, this finding is coherent with the concept that the 
dispersion of the result’s average SCIEs around the overall mean (z 
score) is lower than the one of the single samples’ SCIEs in all the results 
(RMSEu). 

The high number of RM results evaluated in this study (38) gives a 
unique opportunity to analyse the conditions that influence the perfor-
mance of the results. To that aim, their RMSEu and z-scores were 
compared with the self-declared experience of the RM practitioners and 
the number of candidates in the reported results as shown in Fig. S4 of 
the supplementary material. 

In Fig. S4a, the performance of results delivered by practitioners that 
have conducted 10 or less studies (intermediates) is quite variable while 
practitioners declaring to have conducted more than 10 studies (expe-
rienced; 24% of the total number of participants) always show good 
performances (low scores). The Mann-Whitney non-parametric test 
(Palisade StatTools 7.6) confirms that experienced practitioners have 
significantly better RMSEu performance than intermediate ones 
(p¼0.0267) and the Wilcoxon Signed-Rank non-parametric test (Pali-
sade StatTools 7.6) proves that the experienced practitioners have 
RMSEu lower than 1 (p¼0.001) while this hypothesis is rejected for in-
termediate ones (p¼0.7378). The difference between experienced and 
intermediates is less evident for the z-scores. Results (solutions) with a 
number of candidate sources (factors) close to the average (9) present 
better z-scores than those with a difference of 3 or more sources 
(Fig. S4b). This relationship is less evident for RMSEu suggesting that 
failing to retrieve the optimal number of sources impacts mainly on the 
bias of the result. In multivariate analysis including redundant variables, 
chemical species with high covariance may degrade the quality of the 
results and lead to poor model output diagnostics. For that reason, 
variables that are highly correlated with others may be removed because 
they do not add meaningful information to the analysis. This is very 
often the case for families of organic species (PAHs, alkanes, hopanes) in 
which many or all of the members show very similar time trends. In such 
cases, replacing them either by one representative of the family or by the 
sum of all the members of that family leads to better model diagnostics 
and more physically meaningful results. In this study, it was up to the 
practitioners to establish the optimal set up of chemical species for their 
runs. A variable number of the 98 species present in the input dataset 
were used by practitioners to obtain the reported results. Only seven of 
them were obtained with more than 80 species while the majority used 
less than 40 species. Such a low number of species is due to the exclusion 
of some of them (after selecting the most robust ones) or to the practice 
of pooling the members of some organic species families (PAHs, 
hopanes, n-alkanes) and treating them as one single species. The com-
parison between the number of species and the performance indicators 
(not shown) did not present any clear relationship between these two 
parameters. 

Constraints were applied in only eight of the RM results (21%): five 
of those were obtained with EPA-PMF5, two with ME-2 and one with 
RCMB. No significant influence of using constraints on the SA 

Table 5 
Overall SCIEs and uncertainties of the reference sources used for the RM z-score 
tests.  

SOURCE ID results 
with this 
source (%) 

reference 
SCIE 

uncertainty Waked et al. 
(2014) 

(μg/ 
m3) 

(%) (μg/m3) (μg/ 
m3) 

(%) 

traffic 1 89 2.7 10 1.8 1.5 7 
exhaust 2 53 3.8 15 2.4   
road 5 42 4 15 2.9   
soil 10 89 2.6 10 1.1 2.8 14 
marine 12 100 1.7 7 0.8 1.2 6 
industry 20 63 1 4 1.1   
fuel oil 30 82 2.2 9 1.1 0.7 4 
coal 31 21 1.4 5 1.3   
ship 37 24 3.8 15 0.5   
biomass 40 100 2.8 11 0.7 3.0 15 
wood 41 21 2.6 10 0.9   
SIA 60 53 5.5 21 1.3   
ammonium 

nitrate 
61 53 4 15 1.2 4.2 20 

ammonium 
sulphate 

62 55 3.5 13 1.4 3.2 16 

POA 70 87 2.6 10 1.2 1.2 6 
aged sea 71 55 2.9 11 0.8 2.7 13  
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performance was observed. 

3.2. Chemical transport models 

A total of eleven CTM results were reported by seven groups using 
five different models, as described in section 2.2. These results were 
encoded with the prefix “c” (to distinguish them from the RM results) 
and a capital letter corresponding to each model: CAMX-PSAT (Yarwood 
et al., 2004; A), FARM (Gariazzo et al., 2007; B), LOTOS-EUROS (Kra-
nenburg et al., 2013; D), EURAD (Strunk et al., 2010; E) and CHIMERE 
(Menut et al., 2013; F). All the groups reported results apportioning the 
mandatory set of sources, while the optional set of sources (denoted with 
the suffix “o”) was reported for only three models (A, B, and D). All the 
models applied specific parameterisation to quantify the PM 
attributable to dust resuspension while EURAD and LOTOS-EUROS 
estimated also the road dust. The latter was the only model which 
quantified the dust resuspension attributable to agriculture. Parame-
terisation was also used by CAMX-PSAT, FARM and LOTOS-EUROS to 
compute the PM deriving from sea salt while the former two and EURAD 
modelled the fraction deriving from biogenic VOCs. Different versions of 
the BF/ERI approach were used in this study. FARM adopted a 20% 
emission reduction while EURAD implemented a 100% emission vari-
ation. In both cases, the impacts were normalised to correct the effects of 
non-linearity. The base case total PM mass was used for normalisation in 
EURAD while FARM adopted the sum of all source deltas for the same 
purpose. Since nitrate and ammonium were not apportioned in the 
CHIMERE result, this model result was used to assess whether the testing 
methodology was able to detect significant differences between the 
sources where these species are dominant (e.g. road transport and 
agriculture). In addition to the performance assessment, three sensitivity 
runs were executed with CAMX-PSAT to analyse the influence of the 
spatial resolution and the vertical diffusion coefficient on the model SA 
performance (section 3.2.6). 

3.2.1. CTM model performance evaluation 
The temporal evolution of the PM10 concentration during the winter 

period was mainly driven by regional scale processes. Therefore, the 
selected modelling approach adopting a 7 km horizontal resolution was 
adequate to reproduce it, as well as to perform the SA analysis. Ac-
cording to the MPE, CTM underestimations were more frequent at high 
concentrations, suggesting that the overall source contributions deriving 
from this SA analysis are likely more robust than those of the exceedance 
days that were poorly reproduced by models. The observed strong un-
derestimation of the organic aerosol may have influenced the reliability 
of the SCIEs, particularly concerning domestic heating during winter, 
biogenic sources during summer, and road transport for both seasons. 
The only exception is EURAD that presented a moderate overestimation 
of OA in summer. This model also showed a marked overestimation of 
EC. In this MPE, it was observed that FARM, LOTOS-EUROS and EURAD 
(only summer) models underestimated sulphate and this could have had 
an influence on the reconstruction of the source contribution from 
sources where sulphur is an important component (e.g. energy pro-
duction and shipping). In summer, the overestimation of nitrate 
observed in CAMX-PSAT, EURAD and partially CHIMERE models gave 
rise to a corresponding overestimation of the ammonium concentration 
that may have influenced the estimation of contributions from 
agriculture. 

3.2.2. Chemical profiles of the CTM sources 
In CTMs the PM total mass is reconstructed by processing a set of 

simplified chemical components some of which are pure substances 
(nitrate, sulphate, ammonium) while others encompass a relatively wide 
range of species (organic carbon, elemental carbon and other primary 
aerosol). The concentration of these simplified chemical components in 
the different sources were reported in the results. Such chemical profiles 
of the CTM sources (CTM chemical profiles) were assessed by comparing 

them among each other (ff tests; in Fig. S5 of the supplementary mate-
rial) and with the reference profiles of SPECIATE-SPECIEUROPE (fr 
tests; in Fig. S5). Fig. S5 shows that the CTM chemical profiles of the 
sources in the different results were in general quite comparable among 
each other (ff tests). This holds for most of the anthropogenic sources 
(such as road transport, industry and energy production), because they 
were reconstructed by all models on the basis of the same emission in-
ventory and speciation profiles. Lower comparability among results was 
observed for dust, sea salt (not shown in Fig. S5 because in the optional 
set only) and agriculture. Dust and sea salt are among the sources not 
included in the emission inventory that were estimated with a different 
approach in every model. 

The similarity with the SPECIATE/SPECIEUROPE reference profiles 
(fr tests) was relatively good for biomass burning while it was limited for 
agriculture, dust, industry and energy production. For the latter three 
sources, this is probably due to the limited number of species in the CTM 
chemical profiles and the consequent lack of specific markers. Moreover, 
for point sources such as power plants or factories, it is unlikely that all 
the reference profiles are coherent with the specific sources affecting a 
given receptor site. In Fig. S5, a high variability in agriculture with a 
considerable share of scores in the rejection area is observed in both fr 
and ff tests. To explain this behaviour, a more detailed investigation of 
its source profiles including the six considered chemical species was 
performed (Fig. 4). In this plot, the differences between the CTM ap-
proaches become evident. In the TS approach (CAMX-PSAT, LOTOS- 
EUROS), the profile is dominated by ammonium with a variable 
contribution of other organic primary anthropogenic aerosol (OPA). 
This species consists of trace elements and debris resuspension, the latter 
being an additional emission term present only in the LOTOS-EUROS 
model. In the BF/ERI approach (FARM, EURAD), the dominant com-
ponents are nitrate and ammonium. The differences in the CTM chem-
ical profiles depend on the way the two approaches attribute mass to the 
sources. The TS approach keeps track of the source from which every 
chemical component derives. When ammonia from agriculture reacts 
with nitric acid deriving from NOx emitted by combustion processes (e. 
g. traffic), the TS approach attributes the mass of ammonium to agri-
culture and the one of nitrate to the respective combustion source. In 
contrast, the BF/ERI approach attributes the mass by computing the 
difference between the base case and a simulation where the emissions 
of the relevant source are modified. Since changing agricultural emis-
sions of ammonia leads to a variation in the concentration of ammonium 
nitrate with respect to the base case, both ammonium (NH4þ) and ni-
trate (NO3-) are attributed to agriculture with this method. 

This analysis of the agriculture CTM chemical profiles evidenced the 
potential differences in the mass attributed to the sources that may 
derive from the application of different CTM SA approaches. To evaluate 
the relevance of those differences, the CTM performance tests were 
performed distinguishing the TS and BF/ERI results. 

3.2.3. Performance tests 
In order to test the differences between BF/ERI and TS approaches in 

the apportionment of PM10, the performance tests were calculated using 
only the results obtained with CTM TS models (i.e. CAMX-PSAT and 
LOTOS-EUROS) for the construction of the ensemble reference. This 
approach was chosen in this analysis because its output is comparable 
with the one of RM (both are classified as MT source apportionment and 
their outputs are contributions, see section 1). Another advantage of 
using CTM TS for the reference is that they provide the same values for 
comparable sources in the optional and mandatory sets. However, the 
methodological choice of setting one of the CTM approaches as refer-
ence is not to be intended as recognition of a higher quality or hierarchy. 
Therefore, the performance of each model in the different tests has to be 
intended as a quantitative measure of the distance among the different 
results. The reference SCIEs for the sources reported in the CTM results 
for the MDT and OPT set of sources are shown in Table 6. The time series 
of the references and the comparison between candidates and references 
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(scatter plots) are shown in Figs. S6 and S7 of the Supplementary Ma-
terial, respectively. 

As shown in Fig. 5a, b for the reference site of Lens, the majority of 
the candidates (80% and 87%, respectively) passed the z-score test in the 
mandatory and optional sets, indicating that the average mass attributed 
to sources by models was in most cases comparable to the TS reference 
with a tolerance of 50%. A more detailed evaluation highlighted that 
candidates of the CHIMERE (cF) result in the power plants, agriculture 
and ship categories were underestimated. This is explained by the non- 
apportioned nitrate and ammonium in this result, as discussed above. 
The biomass burning, dust, and biogenic SOA masses obtained with 

FARM (cB) were in the area of overestimation, while the dust source 
contribution reported by CAMX-PSAT (cA) and the biogenic SOA pro-
duced with LOTOS-EUROS (cD) were underestimated with respect to the 
reference. The explanation is that dust and biogenic aerosol were not 
present in the common emission inventory and were, therefore, treated 
differently by every model. In addition, biogenic SOA was not computed 
by LOTOS-EUROS. 

The RMSEu test criteria at the site of Lens were fulfilled by 51% of the 
candidates of the MDT set and 77% of the OPT set (Fig. 5 c, d). In this 
test, the distinction between the CTM approaches was very clear. All the 
candidates obtained with the TS approach were in the area of accept-
ability and all the candidates outside the target area were produced with 
the BF/ERI approach. In the MDT set only the candidates for industry 
and ship of the cB result (FARM) passed the RMSEu test, while the cE 
(EURAD) and cF (CHIMERE) results presented only one candidate in the 
target each: industry and biomass burning, respectively (Fig. 5c). A 
similar situation was observed in the OPT set of sources (Fig. 5d). In this 
case, the cBo (FARM) were in the target for the ship, industry, diesel and 
road dust sources. 

The results of the performance tests indicate that the differences 
between the CTM approaches were more evident for the daily SCIE time 
series (target plots) than for the SCIE averages (z-scores). In order to 
explore the results more in detail, in Fig. 6 are only shown the scores 
with the highest differences between TS and BF/ERI (scores outside the 
target) and the possible causes of the discrepancy are indicated. 

In Fig. 6a and b the sources with the highest share of z-scores outside 
the acceptability area are flagged: dust, biogenic aerosol and biomass. 
The explanation for the first two sources is that they were treated 
differently by every model because not present in the common emission 
inventory (section 2.2.2). In the case of biomass burning, the over-
estimation of its contribution could be related to the corresponding EC 
and OC overestimation showed by EURAD when compared against ob-
servations and the other models. The analysis of Fig. 6a and b suggests 
that the differences between the CTM approaches in the average SCIEs 
(z-scores) are mainly attributable to the different model parameter-
isation. In the target plots of Fig. 6c and d are shown only the candidates 
with scores outside the target. Such plots confirm the bias for dust, 
biomass burning and biogenic aerosol highlighted by the z-score test. 
Moreover, in these target plots other (anthropogenic) sources obtained 
with BF/ERI methods appear outside the target: traffic, energy pro-
duction and agriculture. These three sources are well-known emitters of 
gaseous precursors (nitrogen oxides, sulphur dioxide and ammonia, 
respectively), that react in the atmosphere to produce secondary inor-
ganic aerosol (SIA). As already explained in sections 1 and 3.2.2, the two 
CTM approaches (TS and BF/ERI) allocate SIA in a different way. The 

Fig. 4. CTM chemical profiles of the agriculture source reported by the different models expressed as the relative abundance of a species with respect to the source 
contribution of the source. (a) average of all sites; (b) Lens site. 

Table 6 
Overall SCIEs and uncertainties of the reference sources (μg/m3) in the site of 
Lens used for the z-score tests of the mandatory (MDT) and optional (OPT) set of 
sources.  

source code mandatory optional 
reference 
μg/m3 

uncertainty 
μg/m3 

reference 
μg/m3 

uncertainty 
μg/m3 

Energy industry 01 
ENI 

0.74 0.21 0.74 0.21 

Res. & Com. 
combustion, 
biomass 

02 
BIO 

0.73 0.29 0.73 0.29 

Res. & Com. 
combustion, 
fossil 

02 
OTH   

0.34 0.08 

Industry 34 
IND 

1.20 0.56 1.20 0.56 

Road transport, 
exhaust, 
gasoline 

71 
RTG   

0.10 0.03 

Road transport, 
exhaust, diesel 

72 
RTD   

1.26 0.32 

Road transport, 
non-exhaust 
wear 

75 
RTW   

0.46 0.21 

Road transport, 
other 

07 
RTR 

1.83 0.35 0.005 0.002 

International 
shipping 

08 
SHP 

0.83 0.27 0.83 0.27 

Agriculture 10 
AGR 

1.77 0.51 1.77 0.51 

Dust 11 
DST 

0.08 0.07 0.08 0.07 

Sea salt 11 
SLT   

2.37 0.68 

Biogenic SOA 11 
BSO   

0.04 n. a.  
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discrepancy between the mass apportioned by TS and BF/ERI to these 
sources of secondary aerosol suggest that the nonlinearities are not 
negligible (Clappier et al., 2017). Besides, biomass burning emits, as any 
combustion process, nitrogen oxides. For that reason, it cannot be 
excluded that the differences pointed out by the test for this source could 
be in part attributable to the emission of precursors that are involved in 
secondary processes. The results of the performance test highlighted in 
Fig. 6 suggest that the non-linearities causing the differences between TS 
and BF/ERI are stronger when dealing with SCIEs for short time in-
tervals (daily averages, RMSEu) than with long-term SCIE averages (six 
months representing the warm and the cold seasons, z-scores). Another 
possible explanation for the effect of time resolution on the model SA 
performance could be the underestimation of CTMs observed during the 
exceedance days (section 3.2.1). 

3.2.4. The case of agriculture 
The differences in the CTM chemical profiles of the agriculture PM10 

sources detected in the preliminary analysis of the data pointed out a 
clear influence of the adopted CTM SA approach on the mass attributed 
to this source (section 3.2.2), highlighting the need for a more thorough 
analysis. The mass attributed to this source and its time trend varied 
considerably among the different models. The highest estimation (ob-
tained with CAMX-PSAT; 1.8 μg/m3) was three times higher than the 
lowest one (EURAD; 0.6 μg/m3) and was associated with the over-
estimation of NH4 by CAMx and the effect of normalisation in BF/ERI 
models. Furthermore, FARM presented the highest levels in the warm 
period while LOTOS-EUROS and CAMX-PSAT, that presented the most 
correlated time trends (R¼0.6), showed the highest contributions in the 
cold period (Fig. 7 left). 

In the target plot (Fig. 7 right), the TS models (CAMX-PSAT and 

LOTOS-EUROS) scored in the acceptability area, while all the BF/ERI 
models did not. Hence, the RMSEu test confirms that the results obtained 
with the two CTM approaches for the agriculture source are not com-
parable as hypothesised in section 3.2.2. 

3.2.5. Inter site variability in the CTM SA 
In Fig. 8, the relative average SCIEs for PM10 at every site are dis-

played for the eight CTM results evaluated in the performance tests. The 
results of three models (CAMX-PSAT, FARM and LOTOS-EUROS) were 
available for both the MDT and the OPT sets of sources while for EURAD 
and CHIMERE results were available only for MDT. 

According to the share of sources four groups of sites were identified: 
the megacities (London and Paris), the medium-sized cities (Brussels, 
Ghent, Lens), the coastal sites (Calais and Le Havre), and the background 
sites (Rural backgd 1 and 2, and suburban bkgd). The only exception is 
EURAD where all the sites presented exactly the same relative split of 
sources. Therefore, in this result the difference between sites was only 
modulated by the different PM concentrations. In the megacities, the 
predominant source was traffic. At the coastal sites, the dominant source 
was sea-salt (present only in OPT), which was also significant at the 
other types of sites. In the medium-sized cities, traffic was sometimes 
dominant (FARM, LOTOS-EUROS) and sometimes was comparable to 
the other sources. On the contrary, at the background sites there was no 
clearly dominant source. Traffic, domestic combustion, biomass 
burning, shipping and industry all contributed in variable but still 
relatively comparable proportions. The resemblance in the share of 
sources between medium-sized cities and background sites suggests that 
due to the high density of urban areas in the domain, the contribution of 
sources attributed by the models within the cities and outside did not 
differ significantly. However, this could be also due to limitations in the 

Fig. 5. Performance tests for the CTM apportionment of PM10 at the site of Lens. z-scores for the (a) mandatory (MDT) and (b) optional (OPT) sets arranged by results 
and target plots for the (c) MDT and (d) OPT sets. The encoding of the candidates is explained in the text (section 3.2). Green background: acceptability area. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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emission inventory and to the spatial resolution of the simulations that 
curbed the identification of hot spots associated with local sources. 

In the OPT results, it is possible to observe the split between the 
different components of the traffic. Diesel exhaust is pointed out as the 
most important component by FARM and CAMX-PSAT while road dust is 
put forward by LOTOS-EUROS. In the latter model, however, the OPT 
traffic source (sum of 7.1, 2, 3, 4 and 5; Table 3) did not match the total 
traffic obtained by the MDT set. This difference could be due to the 

specific approach used in this model to estimate the road dust compo-
nent that may have been set up differently in the OPT and the MDT runs. 
As mentioned in section 3.2, the low values of CHIMERE are due to the 
non-apportioned nitrate and ammonium mass. This model attributes the 
highest share to dust, while CAMX-PSAT and EURAD apportioned very 
little or no mass to this source. 

Fig. 6. Performance tests for the CTM apportionment of PM10 at the site of Lens. The sources of the MDT (a) and OPT (b) sets with high share of z-scores out of the 
acceptability area are flagged (border). Target plots for the MDT (c) and OPT (d) sets display only the candidates outside the target. The icons next to the sources 
indicate the possible causes of discrepancy. BF/ERI ¼ brute-force/emission reduction impact. Green background: acceptability area. Correspondence between 
SPECIEUROPE (Table 2) and SNAP nomenclatures (Table 3) is indicated. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 

Fig. 7. Time trend of the agriculture SCIEs for PM10 reported by every model and their corresponding RMSEu scores in the target plot. In the target plot the names of 
some models are abbreviated: LOTOS E: LOTOS-EUROS, CAMX: CAMX-PSAT and CAMXs: sensitivity run of CAMX-PSAT. Green background: acceptability area. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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3.2.6. CTM sensitivity analysis 
Three configurations were set up to perform a sensitivity analysis 

using the TS approach model CAMX-PSAT: the base case and two 
additional runs. The first sensitivity run (VD) included computations of 
the vertical diffusion coefficients used in the CMAQ scheme (Byun, 
1999) which are different from the YSU scheme (Hong et al., 2006), 
adopted in the base case. The second sensitivity run (DSR) was per-
formed switching off the Lens inner domain (7 km grid step), thus 
running CAMX-PSAT only over the EU wide domain at 20 km grid step. 
The goal of the first run was to assess the how vertical diffusion may 
impact on the ability of the model to quantify different sources (e.g. local 
sources versus long range transport) while the second run focused on the 
influence of horizontal resolution on the SCIEs of local sources. 

The analysis was performed at three receptor sites: Lens, Paris, and 
RUR BKGD2. Lens was the reference site, while Paris and RUR BKGD2 
were selected because they were influenced by very different emission 
strengths. Paris is a megacity, where the influence of local emissions (e. 
g. transport and domestic heating) are higher than in the rural site which 
is mainly subject to the influence of agriculture and secondary pollution. 
The results presented here concern only the OPT set. The VD run was 
performed only for the winter period because it is characterised by a 
stronger influence of vertical diffusion processes on pollutant 

concentrations. 
The increased model grid cell dimension in an area close to localised 

primary emissions (traffic) like the Paris site caused a reduction in the 
concentrations of primary pollutants associated with that source (Fig. 9, 
left). A PM10 concentration decrease (-4 μg/m3) for DSR matched a 
decrease of -32% in elemental carbon (EC), -38% in primary organic 
aerosol (POA), and -29% in other primary anthropogenic aerosol in the 
PM10 fraction (OPA-10) compared to the base case. 

When comparing the performances of CAMX-PSAT using two 
different grid steps (with all models in the reference), it was also 
observed that the contribution of traffic was underestimated when using 
a lower spatial resolution (Fig. 9, right). No significant changes were 
observed in the other tested sources (industry, energy production, 
biomass burning and agriculture). 

CAMX-PSAT proved to be less sensitive to the variation of vertical 
diffusion coefficients. The CMAQ algorithm used in the VD run gives rise 
to stronger vertical diffusivity with respect to YSU scheme used in the 
base case, thus inducing a decrease in ground level concentrations. In 
the VD run, the most relevant variations took place in the primary 
species at Paris. The concentration reductions were, however, modest: 
PM10 - 0.5 μg/m3, OPA-10 - 3%, EC - 7%, and POA - 4% (Fig. 9, left). 

Fig. 8. Relative average SCIEs for all the PM10 sources at every site reported in the eight CTM results used for the performance evaluation. The mass of the “non- 
apportioned” source (99 OTH) is not shown. 
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3.3. CTMs vs RMs 

The comparison between the two families of models (RMs and CTMs) 
was accomplished only for the reference site of Lens. For the interpre-
tation of the results, it was necessary to consider that the estimation for 
RMs refers to the specific site where the dataset of measured PM10 was 
collected, while the CTMs provide an average estimation for the grid 
cell, roughly corresponding to a 6–7 km grid step, containing the 
monitoring site. According to our understanding, the representativeness 
of the site (background) is coherent with the dimension of the grid cell. It 
is also worth mentioning that RMs output time resolution is that of the 
samples (daily in our case with samples collected every third day), while 
CTMs generate results with an hourly time resolution, which were 
averaged to match the RM data. 

Another aspect to consider when comparing RMs and CTMs is the 
different level of detail about the chemical composition of the PM 
managed in the two families of models. While RMs are based on a 
relatively detailed information about the chemical composition (in 
general, 20 or more species derived from chemical analyses), there is a 
limited number of chemical families in the CTMs (typically 6 or 7), 
depending also on the completeness of the emission inventories. 

Finally, when matching the two series of sources, it should be 
considered that most of the inorganic ions, ammonium, sulphate and 
nitrate are attributed by RMs to one (SIA) or two secondary aerosol 
categories (ammonium nitrate and ammonium sulphate), while the 
CTMs allocate these chemical species to the corresponding precursor 
sources. To account for the different way in which these inorganic ions 
are handled by the two families of models the comparison between them 
was first accomplished subtracting these inorganic ions from the CTMs 
categories and allocating them in a fictitious CTM category named SIA. 
This correction was discarded for two main reasons. Firstly, despite RMs 
allocate most of the ammonium, sulphate and nitrate to the SIA category 
or subcategories, these ions are also present in many other sources. 
Secondly, when subtracting these ions from the CTM original sources, 
the contributions of a number of them fell down to values near zero or 
even negative in some BF/ERI results, as a consequence of the non- 
linearity problem (see section 1; Table 1). For instance, when applying 
this correction to the CTM category energy industry, its SCIEs decreased 
on average by 97% and 100% in the MDT and OPT sets, respectively. 
Other heavily altered categories were ship (-89%, -93%), exhaust 
(-87%), agriculture (-79%, -77%) and industry (-58%, -52%). To avoid 
introducing distortions, the comparison between RM and CTM was then 
performed on the SCIEs as reported by participants and the different 
handling of secondary inorganic ions by the two families of models 

considered in the interpretation of the results. 
In Fig. 10 the average source contributions estimated by RMs and 

CTMs using both TS (CAMX-PSAT, LOTOS-EUROS) and BF/ERI (FARM, 
EURAD) approaches for the MDT and OPT sets of sources are compared. 
To support the interpretation of results, in Fig. 10 are also plotted 
sources for which the comparison was not possible: agriculture (only 
CTMs), primary organic (only RMs) and secondary inorganic aerosol 
(ammonium nitrate and ammonium sulphate, RMs). 

The primary sources with the highest SCIEs in RMs are: exhaust, soil 
(dust), ship, road dust and biomass burning. The coefficient of variation 
for the RMs varied between 16% and 77% with the exception of industry 
where it reached 107%. This latter source has been identified as the most 
critical one in the evaluation of RMs due to the dispersion of the reported 
SCIEs (see section 3.1.1) Traffic, agriculture, industry and biomass 
burning are the most important sources in the CTM MDT set while 
marine, agriculture, exhaust, biomass burning and industry show the 
highest PM shares in the CTM OPT set. 

The CTM SCIEs are in the majority of cases lower than the RM av-
erages for the corresponding source (Fig. 10). Nevertheless, there are 
cases where CTMs are comparable to or even higher than RMs. In the 
MDT set the SCIE of traffic reported with EURAD was 40% above the one 
of the RM average while the other models were 40% to 60% below such 
reference. Similarly, in industry and biomass burning there was one 
CTM result reporting SCIEs within 10% of the RMs average (CAMX- 
PSAT and FARM, respectively) while the others reported much lower 
values. In the OPT set, the marine source is the one where the CTM SCIEs 
are the closest to the RM average. FARM and CAMX-PSAT were less than 
15% from the RM average, likely due to their parameterisation based on 
observations. On the contrary, LOTOS-EUROS presented values 70% 
higher than RMs, probably due to a parameterisation based on obser-
vations in areas where the contribution of this source is different than in 
Lens. 

An explanation for the high levels of EURAD compared to the other 
CTMs and RMs in traffic PM may be the overestimation of EC and 
organic aerosol in the base case. However, another possible explanation 
is associated with the used BF/ERI approach. As explained in section 1, 
the non-linear behaviour of sources leads to inconsistencies between the 
base case PM mass and the sum of the masses of all the sources. Such 
inconsistencies increase with the percentage of emission variation used 
to compute the impact of the sources (Thunis et al., 2018). In the BF/ERI 
results reported for this study, the impact of the single sources was 
normalised to reconcile their sum with the total PM10 mass. However, 
this method does not correct the relative influence of the sources 
because they are affected by non-linearity to different extents. The high 

Fig. 9. Variation in concentrations of primary chemical species (left) between the base case (BC) and the sensitivity runs VD (vertical diffusion) and DSR (decreased 
spatial resolution). The impact of the spatial resolution on the model performance is also shown (right). Green background: acceptability area. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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level of emission variation (100%) and the limited effectiveness of the 
normalisation may explain the high traffic SCIEs of EURAD compared 
with the other models (also observed in the 99 OTH category). The same 
could be argued for the biomass burning SCIEs of FARM. In this model, 
however, the non-linearity is expected to be lower because the emission 
variation was only 20%. In addition, its average SCIE is the only one 
comparable with those of RMs. The higher TS shares of agriculture with 
respect to those of BF/ERI models may be partially explained by the 
normalisation that did not correct the effects of non-linearity and by the 
overestimation of NH4 by CAMX-PSAT. In addition, the TS models have 
allocated higher mass of OC and in one case (LOTOS-EUROS) of OPA 
because the dust resuspension deriving from the agricultural activities 
was allocated to this source (section 3.2.2). 

Although most of the main SIA mass is not allocated by RMs to their 
sources, their SCIEs are higher than those attributed by CTMs even for 
sources where these ions have a dominant contribution, such as energy 
production, shipping and industry. A possible explanation is that the 
CTM underestimation of the gravimetric mass overcompensates the fact 
that they allocate also the secondary inorganic fraction to these sources. 
This hypothesis is coherent with the outcome of the MPE suggesting that 
the PM mass underestimation by CTMs is partly due to problems in 
reconstructing the particulate organic aerosol (section 3.2.1). 

The plots in Fig. 10 provide a preliminary understanding about the 
bias between RMs and CTMs in the different sources. However, to 

establish whether two SCIEs are comparable or not, the plots in Fig. 10 
are not enough and distance indicators with acceptability criteria are 
required. To that end, the comparison between RMs and CTMs was 
performed using the methodology described in sections 2 and A.1 of the 
Appendix. The performance tests were performed setting the CTM 
sources as candidates and the SCIE of the corresponding RM source 
category as reference value. In Fig. S8 of the supplementary material the 
z-score tests for the MDT and OPT sets are displayed. Even though all the 
CTMs tend to underestimate the SCIEs when compared with the RM 
values, the majority of the candidate sources fall in the area of 
acceptance. 

In Fig. S9 of the supplementary material the target plots split by 
source set (MDT and OPT) and by CTM approach (TS and BF/ERI) are 
shown. The dispersion of the sources in the target plot is relatively 
uniform between the two sets of sources (for those present in both of 
them) and between TS and BF/ERI. This is explained by the fact that the 
differences between CTMs and RMs are too large compared to those 
between CTMs. Therefore, in this test where the acceptability criteria 
are dependent on the reference SCIE (RMs in this case) the differences 
between CTMs are less evident. Another aspect to take into consider-
ation is the variability between the CTMs within each approach as 
shown in Fig. 10. 

In the z-score tests (both MDT and OPT sets), 83% of the candidates 
rank in the acceptability area while in the RMSEu test only 34% and 25% 

Fig. 10. Average SCIEs of the sources reported in the present intercomparison obtained with RMs compared with those deriving from CTMs for both the MDT (top) 
and OPT (bottom) sets of sources. The sources are encoded according to both the SPECIEUROPE (Table 2) and SNAP (Table 3) nomenclatures. The error bars indicate 
the standard deviation of the RM SCIEs. 
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of the candidates of the MDT and OPT sets, respectively, pass the test. To 
summarise the main findings of the performance tests, a synthesis of the 
comparison between RMs and CTMs for both MDT and OPT sets is 
presented in Fig. 11. 

From the z-score plot, three groups of sources can be distinguished 
(Fig. 11, left). The first group includes the sources for which the CTM 
SCIEs are comparable with those of RM (marine and industry) or show 
little underestimation (traffic). Although their CTM SCIEs are lower than 
those of RMs, the second group includes sources whose differences fall 
within the acceptability range of this test (exhaust, energy, ship and 
biomass burning). The third group includes sources with part of the 
SCIEs outside the acceptability area (road dust, dust). These conclusions 
are confirmed and complemented by the RMSEu test, where industry and 
traffic (first group) fall completely inside the acceptability area (Fig. 11, 
right). Despite no observed bias, marine (first group) falls outside the 
acceptability area due to the lower correlation and amplitude of the time 
series with respect to the reference. Exhaust and road dust in this test 
show a lower bias compared to the z-score test, likely due to the effect of 
the relatively high RMs dispersion (the RMSEu scores are normalised by 
the uncertainty of the reference). The remaining sources present, in 
addition to poor correlation with the RM time series, different extents of 
negative biases as already pointed out in the z-score test. In addition, the 
time series of road dust, dust, and biomass burning reported by CTMs 
also present differences of amplitude with respect to the RM. 

The good performances of the industry and exhaust sources could be 
partially due to the relatively high uncertainty of the RM SCIEs for these 
categories. The poor performance of marine in this test is indicative that, 
despite average SCIEs being quite similar in RMs and CTMs, their time 
trends are poorly correlated and have different amplitudes. In this ex-
ercise, dust was handled differently by every CTM model (section 2.2.2) 
because not represented in the emission inventory. This is likely the 
cause of the sizeable bias component between RMs and CTMs. A possible 
explanation for the observed bias in road dust could be an underesti-
mation in the input emission inventory. Moreover, in RMs, this source 
incorporates all the resuspended PM components, including dust 
deposited on the road and abrasion emissions (pavement, tyre and brake 
wear) while the CTM source (75 RTW) represents only the latter. The 
cause of the poor RMSEu values in ship and power plants is likely 
associated with the strong bias already evidenced between the two 
families of models in the previous tests (Figs. 10 and 11 left). In the 
biomass burning source, a problem of amplitude, in addition to a 

moderate bias has been identified. It is well known that this source 
undergoes considerable seasonal variations and episodes take place 
during the cold season. The result of the RMSEu test points out that the 
two families of models reproduce differently both the extent and timing 
of such variability. 

3.4. Influence of the site on the model SA performance 

A summary of the SA performance tests for all the sites is given in 
Fig. 12. In this plot, CTMs are compared with their ensemble reference 
for each site. At the Lens site, the performance of RMs as well as those of 
CTMs compared with RMs is also reported (circles). 

In general, the variation in the model performance between sites is 
less than 10% and 15% for the z-scores and RMSEu, respectively. Such 
homogeneity in the SA model performance suggests that the 
geographical patterns influencing the allocation of sources depend more 
on the variations in the input data (emission inventory and meteoro-
logical fields) than on the differences between models. The results ob-
tained with the OPT set of sources are always better than those of the 
MDT set suggesting that the models are more comparable when 
accomplishing a more detailed apportionment. The overall performance 
of the RMs at the site of Lens is comparable with the one of the CTMs 
with the OPT set of sources. As expected, differences are more evident 
when comparing the two families of models (RMs and CTMs, blue empty 
circles) than when comparing models within each family, which is re-
flected by the lower number of successful candidates in the RMSEu tests 
(Fig. 12 bottom). 

4. Key findings of the intercomparison and discussion 

The RMs applications showed a convergence in the use of the EPA- 
PMF5 tool, in part due to its free availability and user-friendliness and 
in part due to the good performances of EPA-PMF tools in past exercises, 
which led to more comparable results with respect to previous in-
tercomparisons (Belis et al., 2015b). 

It appears that the industry source in RMs needs a better definition 
because it encompasses a wide range of different local emissions with 
different chemical fingerprints that, placed under a common category, 
led to considerable variability between results. More specific allocation 
within this category (e.g. in subcategories), by taking more advantage of 
source profiles repositories for instance, would lead to a better 

Fig. 11. z-scores (left) and target plots (right) for the comparison between RMs and CTMs at Lens. In the target plot, the sources are represented schematically using 
the boundaries of their scores. Green background: acceptability area. The sources are encoded according to both the SPECIEUROPE (Table 2) and SNAP (Table 3) 
nomenclatures. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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identification and consequently to a more accurate quantification of the 
contributions. In this regard, the characterisation of new markers or 
chemical fingerprint remains necessary to better take into account the 
specificity of a wider range of industrial sources. 

In this exercise, the availability of an extended set of organic 
markers, supported the allocation of primary biogenic organic aerosols, 
a category for which more scientific evidence is necessary in order to be 
included in the list of the sources that can be subtracted from the total 
PM for the calculation of the number of exceedances in the framework of 
the Air Quality Legislation (Directive 2008/50/EC; European Commis-
sion -, 2011). 

The high number of RM groups involved in the study made it possible 
to investigate the influence of their experience on the SA performance. 
RM practitioners declaring to have conducted more than 10 studies 
(24%) always showed good performances while the less experienced 
ones presented more variable scores. 

Thanks to the set-up adopted in the CTM performance tests it was 
possible to quantify with real-world data the differences between the 
CTM TS and BF/ERI approaches in the allocation of SIA under non-linear 
situations, confirming previous estimations made with theoretical ex-
amples (Clappier et al., 2017). The most emblematic source from this 
point of view is agriculture, whose ammonia emissions contribute to the 
formation of the most important components of the SIA, ammonium 
nitrate and ammonium sulphate. Considerable differences in the total 
mass attributed to this source and relative CTM chemical profiles were 
observed between BF/ERI and TS approaches. Similarly, differences 
were also identified in the performance tests (RMSEu) in other SIA 
precursor-emitting sources such as road traffic, power plants and to a 
lesser extent biomass burning. 

The abovementioned differences between TS and BF/ERI were 
evident in the CTM performance tests when analysing the SCIE daily 
time averages while they were not detected in test on the overall SCIE 
averages. A possible explanation is that the non-linearity that gives rise 
to discrepancies between models depends on the considered time win-
dow (i.e. daily for z-scores; seasonal, annual for RMSEu). 

The specific emission inventory, including details on the type of fuel, 
and the comparability table for the sources prepared for this exercise, 
made it possible to quantitatively assess the differences between CTMs 
and RMs SA results. However, it should be recalled that the two types of 
models use different source definitions and, therefore, only a subset of 
sources was selected for comparison. 

The comparison of CTM source contributions with the measured 
mass and the RM SCIEs highlights a generalised difficulty of CTMs in 
apportioning all the PM10 mass. This problem has been associated with 
the underestimation of this pollutant concentration in the base case 
model results, especially during high pollution episodes, due to the poor 
organic PM fraction reconstruction and to problems in reproducing the 
dust PM fraction. 

Since traffic (including both exhaust and resuspension components) 
and industry passed both performance tests, they were the most com-
parable sources between CTMs and RMs. Although exhaust (only in 
OPT) also passed these tests, the bias in the z-score was not negligible. 
The marine source obtained good z-scores (little bias) but showed dif-
ferences in the amplitude of the time series between the two families of 
models in the target plot. The good comparability between RMs and 
CTMs for industry may look odd when considering the high variability of 
the RM SCIEs for this source. However, such comparability is clear in 
both (a): the z-score tests, where the RM uncertainty is not considered, 
and (b) the RMSEu tests, where the uncertainties of the RM SCIE are 
accounted for and lead to scores very close to the centre of the target 
plot. A possible explanation is that despite the considerable dispersion of 
the RM SCIEs for this source, their average is not biased. On the con-
trary, the most critical sources in the comparison between CTMs and 
RMs are dust and road dust, likely due to the different way in which the 
former was reconstructed by the different models and a possible un-
derestimation of the latter in the emission inventory because only the 
PM deriving from abrasion is included while the re-suspended dust is not 
considered. These sources are only partially represented in the emission 
inventories because their quantification is not formally required by the 
official reporting schemes in the EU. For example, road dust resus-
pension is considered a re-emission and not a primary PM emission 
source (Denier Van Der Gon et al., 2018). Significant underestimation, 
albeit within the tolerance of the test, is observed for shipping, power 
plants, biomass burning and to a lesser extent, traffic exhaust. 

The differences between TS and BF/ERI were not evident when 
comparing CTMs and RMs. The reason is that the objective of the per-
formance tests is to compute the distance between the reference and 
every candidate and not those between candidates. Consequently, the 
acceptability criteria are set on the basis of the reference SCIE (RMs in 
this case). As shown in Fig. 10, most of the RM-CTM differences are 
much higher than those between TS and BF/ERI and, therefore, the 
latter are less visible in the CTMs-RMs test. It follows that the 

Fig. 12. Synthesis of the intercomparison CTM performance tests (expressed as percentage of successful candidates) for all the studied sites (solid markers). The 
comparison between RMs and between CTMs and RMs, available only for the city of Lens, are also displayed (empty circles). 
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performance tests among CTMs (section 3.2.3) are the most appropriate 
to assess the differences between CTM approaches. 

According to the variation in the CTM share of sources it was possible 
to identify four groups of sites: megacities, medium-sized cities, coastal 
sites and background sites. Although differences among these groups 
were perceptible, the medium-sized cities and background sites pre-
sented a relatively homogeneous share of sources. Such similarity sug-
gests that the contribution of sources attributed by CTM within the cities 
and between them do not differ significantly. This could be due either to 
the high density of urban areas in the studied domain or to the spatial 
resolution of the simulations that limited the analysis of local hot spots. 
The abovementioned homogeneity is also reflected in the CTM SA model 
performance suggesting that the geographical patterns influencing the 
allocation of sources depend more on the variations in the input data 
(emission inventory and meteorological fields) than on the differences 
between models. 

The sensitivity analysis with CAMX model suggests that adopting 
spatial resolutions lower than the one used in this study could lead to the 
concentrations of PM10 and associated primary pollutants (e.g. traffic) 
being underestimated by 20–30%, particularly in urban areas. This 
would affect the ability of the models to apportion the mass to this kind 
of sources properly. More work is necessary to better understand the 
implications of this results. 

Despite the CHIMERE base case was comparable to the other models, 
the methodological choice adopted in this particular application (not 
apportioning nitrate and ammonia to their sources) impacted on the 
comparability with the other models’ results. As a consequence, the 
scores of sources for which these chemical compounds represent a high 
share of the mass (power plants, shipping, agriculture) were identified as 
outliers in the performance tests. 

5. Conclusions 

The high quality of the input data for both RMs and CTMs and the 
considerable number of SA results (49) provided the basis to build up an 
unprecedented database, with key information to support an extensive 
analysis of RMs and CTMs methodologies used in Europe for SA appli-
cations related to PM10 SA. 

The adopted methodology proved to be efficient to compare and 
characterise the SA performances of models of the same family (RM or 
CTM), different approaches within the CTM family, and CTMs vs RMs. 
The differences highlighted in the tests provided evidence to under-
standing the implications that the use of different types of models have 
on the SA output contributing to a better interpretation of the SA results. 
Since this is the first application of this methodology to CTMs and RMs- 
CTMs, further work is needed to create a record of results, including 
different models and input datasets, to tune up the tests’ acceptability 
criteria. 

Despite a considerable dispersion observed in some sources (e.g. 
industry), RMs presented comparable results likely due to the use of the 
same model (EPA-PMF5) in the majority of cases. More effort is needed 
to better define sources by developing the existing repositories of source 
profiles to be used as reference in SA analyses using either RMs or CTMs. 
Differences were measurable between the TS and BF/ERI CTM ap-
proaches, in particular for secondary inorganic aerosol deriving from 
precursors emitted from different sources (energy, traffic, agriculture). 
In general, the RMs presented higher SCIEs than CTMs likely due to the 
underestimation of the total PM10 by the latter, especially during high 
pollution episodes, which has been partly associated with problems in 
reconstructing the PM10 organic fraction. In the case of dust and road 
dust sources, the CTM-RM comparison highlighted areas for improve-
ment in the emission inventories. 

The relevant differences in the comparability between RM and CTM 
and between TS and BF/ERI approaches SCIEs confirmed that the 
evaluation of the CTM results should not be limited to the total con-
centration but also extended to the single emission categories. In this 
regard, more work is needed to establish how this can be achieved in the 
common modelling practice. 

The quantitative evaluation of the RM and CTM SA model applica-
tions using a common methodology achieved in this study is a first step 
towards the joint application of the two families of models to take 
advantage of the strengths of both of them. 
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Appendix 

A1 Evaluation methodology 

The methodology adopted in this study encompasses three types of tests: (a) complementary tests to provide information about the SA result as a 
whole, (b) similarity tests that aim at establishing whether candidate sources belong to a source category on the basis of their chemical composition 
and time series, and (c) the performance tests to assess whether the mass of a pollutant attributed to a source category is coherent with the reference 
value on the basis of pre-established quality criteria (Table A1).  
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Table A1 
Evaluation methodology for source apportionment model results (Belis et al., 2015a)  

Types of test Test description 
1. Complementary tests: provide ancillary information about the 

model output performance 
1a. Mass apportionment: compares the sum of the mass of the candidates of one result with the total PM 
mass. 
1b. Number of candidates: compares the number of candidates with the average number in all the results. 

2. Preliminary tests: evaluate the attribution of candidates to a given 
source category 

2a. Chemical profiles: compare the candidate chemical profiles with those of reference profiles for a given 
category. 
2b. Time series: compare the candidate time trends with those of reference time series for a given category. 
2c. Contribution-to-species: compare the source allocation for every single PM component expressed in 
percentage in the candidate and the reference. 

3. Performance tests: evaluate the candidates SCIEs by comparison 
with a reference value 

3a. z-score (ISO 13528): test the bias of the overall SCIE with respect to a pre-defined uncertainty for 
proficiency test (σp). 
3b. Uncertainty weighted root mean square error (RMSEu): test the bias, amplitude and phase of the SCIE 
time trends.  

The reference SCIE values for the performance tests were obtained from the average of the candidates excluding the outliers identified with the 
similarity tests. The z-score indicator (ISO 13528, 2005) was applied to the average SCIEs over the entire dataset reported by participants. The un-
certainty for proficiency test (σp) was set to 50% of the reference SCIE by analogy with the model quality objectives for PM10 annual mean laid down in 
Directive (2008)/50/EC. The acceptability interval for the z-scores was -1.96 and 3.99 obtained using a synthetic dataset where the SCIEs of the 
sources were known. A kernel distribution (R package ks v. 1.9.2) was fitted to more than 200 unbiased z-scores after removing outliers and extracting 
the 0.005 and 0.995 percentiles to define areas with the same probability density as those used in the abovementioned standard (Belis et al., 2015a). 
Moreover, the SCIE time series for every candidate were evaluated using the root mean square error (RMSEu) normalised by the uncertainty of the 
reference (u) at every time step (Jolliff et al., 2009; Thunis et al., 2012). The uncertainty of the reference was estimated as the standard deviation of the 
SCIE reported by participants. The RMSEu values � 1 are considered indicators of good performance. 

A2 Glossary of source apportionment intercomparison terminology used in this study 

Candidate: PM10 source reported in one source apportionment result. 
Contribution-to-species: mass of each of the PM10 chemical components attributed to each candidate expressed as percentage of the chemical 

species total mass. 
Participant: is a single or group of practitioners who deliver a result in an intercomparison exercise. 
Reference: is the average of the SCIE of the candidates reported by participants for the same source category. 
Result: is the output of a source apportionment model including a list of candidates with the estimation of their contribution or impact to the total 

PM10. 
Root mean square error uncertainty normalised (RMSEu): is the RMSE weighted by the uncertainty of the reference and is used to assess the 

performance of a candidate SCIE time series. 
Source profile: is the relative abundance of every PM10 component of a source expressed as a proportion of the source total mass. It could be 

measured directly at the source (measured source profile) or be the result of a SA analysis (derived source profile). 
Source category: is a set of sources or processes pooled under a single class due to their chemical or temporal affinities. 
Source contribution or impact estimate (SCIE): is the amount of mass attributed to one candidate in one source apportionment result either for 

the single sample (time step) or for the overall average value. 
z-score: is the difference between the candidate and the reference SCIE weighted by the uncertainty for proficiency testing, which is set to 50% of 

the reference. It is used to evaluate the performance of the candidate SCIE overall average. 

A3 Most common abbreviations used in the text (except intercomparison methodology) 

BF brute force approach (CTM) 
CTM chemical transport model 
EEA European Environment Agency 
ERI emission reduction impact approach (CTM) 
MDT mandatory set of sources for CTM 
MPE model performance evaluation 
PMF positive matrix factorisation 
RM receptor model 
OPA other primary aerosol 
OPT optional set of sorce for CTM 
POA primary organic aerosol 
SIA secondary inorganic aerosol 
SNAP Selected Nomenclature for sources of Air Pollution 
SOA secondary organic aerosol 
TS tagged species approach (CTM) 
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Table A2 
List of species contained in the input dataset used for receptor models.  

Chemical group N Species list 
OC, EC 2 Organic carbon (OC), elemental carbon (EC) 
Ions 8 Cl- , NO3- , SO42- , Naþ , NH4þ , Kþ , Mg2þ , Ca2þ

Trace elements 25 As, Ba, Cd, Ce, Co, Cs, Cu, La, Mn, Mo, Ni, Pb, Rb, Sb, Sr, V, Zn, Al , Ca, Fe, K, Mg, Na, S, Ti 
Anhydrosugars 3 Levoglucosan, Mannosan , Galactosan 
PAHs 15 Phenanthrene (Phe), Anthracene (An), Fluoranthene (FlA), Pyrene (Pyr), Retene (Ret), Benzo[a]anthracene (BaA), Chrysene (Chr), Benzo[e]pyrene (BeP), 

Benzo[b]fluoranthene (BbF), Benzo[k]fluoranthene (BkF), Benzo[a]pyrene (BaP), Benzo[ghi]perylene (BghiP), Dibenzo[a,h]anthracene (DBahA), Indeno 
[1,2,3-cd]pyrene (IP), Coronene (COR) 

Hopanes 10 Trisnorneohopane, 17a(H)-Trisnorhopane, 17a(H)-21b(H)-Norhopane, 17a(H)-21b(H)-Hopane, 17a(H)-21b(H)-22S-Homohopane, 17a(H)-21b(H)-22R- 
Homohopane, 17a(H)-21b(H)-22S-Bishomohopane, 17a(H)-21b(H)-22R-Bishomohopane, 17a(H)-21b(H)-22S-Trishomohopane, 17a(H)-21b(H)-22R- 
Trishomohopane 

n-alkanes 29 C12, C13, C14, C15, C16, C17, C18, C19, C20, C21, C22, C23, C24, C25, C26, C27, C28, C29, C30, C31, C32, C33, C34, C35, C36, C37, C38, C39, C40 
POA 3 Arabitol, Sorbitol , Mannitol 
Others 3 Pristane, Phytane, Glucose   

Table A3 
Description of the SNAP macro-sectors used in this study  

# SNAP nomenclature 1 MACC II nomenclature 2 Description 
1 Combustion in energy and 

transformation industries 
Energy industries Combustion processes for large-scale energy production and its transformation including emissions 

of boilers, gas turbines and stationary engines. 
2 Non-industrial combustion plants Residential & commercial 

combustion 
Combustion processes aimed at producing heat (heating) for non-industrial activities: commercial 
and institutional installations, including residential (heating and domestic combustion processes 
such as fireplaces, stoves, etc.). The macro-sector is subdivided according to the used fuel: 2.1 
includes the emissions deriving from combustion of fossil fuels and 2.2 those from the combustion of 
biomass burning. 

3 Combustion in manufacturing industry 3 Industry (combustion) Combustion processes strictly related to industrial activity. Includes all the processes that require 
locally produced energy through combustion: boilers, furnaces, first melting of metals, production of 
gypsum, asphalt, cement, etc. 

4 Production processes 3 Industry (processes) Industrial emissions originated by all processes for the production of a given good or material 
different than combustion. Includes all the processes in the iron and steel, mechanics, organic and 
inorganic chemistry, wood, food production industries, among others. 

5 Extraction and distribution of fossil fuels 
and geothermal energy 

Extraction and distribution 
of fossil fuels 

Land and off-shore emissions deriving from production, distribution, storage of solid, liquid and 
gaseous fuel. It also includes emissions from geothermal energy extraction processes.  

# SNAP nomenclature 1 MACC II nomenclature 2 Description 
6 Solvents and other 

products use 
Product use Emissions from activities that involve the use of products containing solvents, excepting their production (e.g. 

painting and degreasing operations including the domestic use of such products). 
7 Road transport Road transport Emissions due to cars, light and heavy vehicles, motorcycles and other means of transport on the road, 

including both emissions due to exhaust and wear from brakes, wheels and the road. The macro-sector is 
subdivided in five subcategories: 7.1 exhaust gasoline, 7.2 exhaust diesel, 7.3 exhaust natural gas/LPG, 7.4 
non-exhaust evaporation, and 7.5 non-exhaust wear of brakes etc. 

8 Other mobile sources and 
machinery 

Non-road transport and other 
mobile sources 

Emissions from rail transportation, inland navigation, military vehicles, maritime traffic, air traffic and 
mobile non-road internal combustion sources, such as agricultural and forestry vehicles (chainsaws, pruning 
equipment, etc.), those linked to gardening activities (lawn mowers, etc.) and industrial vehicles (bulldozers, 
caterpillars, etc.). In this study only the international shipping emissions are considered. 

9 Waste treatment and 
disposal 

Waste treatment Emissions from waste incineration, spreading, and landfill including waste management related activities 
such as the treatment of waste water, composting, the production of biogas, the spreading of sludge, etc. 

10 Agriculture Agriculture Emissions deriving from all agricultural practices with the exception of the thermal heating groups (included 
in the macro-sector 3) and the motor vehicles (included in the macro-sector 8). Includes emissions from crops 
with and without fertilizers and /or pesticides, pesticides, herbicides, incineration of residues carried out on 
site, emissions due to breeding activities (enteric fermentation, production of organic compounds) and 
nursery production. 

11 Nature and other sources 
and sinks  

It includes all the non-anthropic activities that generate emissions (activity of plants, shrubs and grass, 
lightning, spontaneous emissions of gas, emissions from the soil, volcanoes, natural combustion, etc.) and 
those activities managed by man that are connected to them (managed forests, planting, repopulation, arson 
combustion of forests). In this study are considered only the following subcategories: 11.1 natural dust, 11.2 
sea salt and 11.3 biogenic secondary organic aerosol. 

1EEA, 2000. 
2 adapted from Kuenen et al. (2014). 
3 sectors 3 and 4 are merged. 
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