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Abstract 

This paper evaluates the performance of several 
reduced-rank, adaptive matched jield processing (AMFP) 
algorithms for  passive sonar detection in a shallow-water 
environment. Effective rank reduction improves the stability 
oladaptive beamformer weight calculation when the num- 
ber of available snapshots is limited. Here, rank-reduction 
technique? with various criteria f o r  subspace selection are 
evaluuted within a common framework and compared to 
the full-rank conventional and minimum-variance (MVDR) 
beanlformers. Results from real data demonstrate that rank 
reduction, properly upplied, can impmve AMFP detection 
pelformanee in practical system implementations. 

1 Background 

Matched field processing (MFP) has been widely pro- 
posed as an array processing technique for passive sonar 
detection and localization with vertical line arrays in lit- 
toral environments. MFP exploits the coherent multipath 
of signals propagating in the ocean waveguide by incorpo- 
rating propagation physics into the computation of "replica" 
(steering) vectors from which beamformer weights are de- 
rived, resulting in accurate source localization in range, 
depth, and bearing. 

In the results presented here, an adiabatic approximation 
is used to compute range-dependent replica vectors using 
output lrom the KRAKEN normal mode propagation model 
[8]. For an array with N elements, each N x 1 replica vector 
I7 is normalized such that v"i7 = N .  The MFF' weight 
vector iij is derived from the replica vector 17, and the MFP 
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output power is then computed as 

PMFp(6) = dH(8)Kd(e), ( 1  1 

where 8 represents the parameters of the MFP search space, 
usually range and depth, and where 

is the sample covariance matrix, computed as a summation 
of N x 1 data snapshots 21. The spatial variable 0 will be 
omitted for ease of notation in the development below, but 
it is always assumed implicitly. 

The conventional, or Bartlett, MFP processor (CMFP) 
computes a weight vector that is a scaled version of the 
replica vector. GC = G / N ,  where the scaling ensurcs the 
unity gain constraint. 2o"G = 1 .  CMFP detects strong 
sources well and is robust to mismatch, but it suffers from 
high sidelobes that can obscure detection and degrade local- 
ization accuracy, especially in  the presence of strong inter- 
ferers. 

The standard adaptive MFP (AMFP) processor, called 
minimum-variance, distortionless response (MVDR), 
computes a data-dependent weight vector that is a function 
of both the replica vector and the sample covariance matrix: 

The MVDR output is then computed as 

-1  
PMVDR = G~KG,,,  = { 1 7 ~ i c - 1 1 7 )  . (4) 

Compared to CMFP, MVDR provides significant interfer- 
ence rejection and sidelobe suppression and thus much bet- 
ter source localization, with comparable detection perfor- 
mance in the absence of mismatch. However, computation 
of the MVDR weights Gm is very sensitive to signal mis- 
match because of the dependence on K, which may contain 
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small eigenvalues that disproportionately affect the MVDR 
output (4). 

One method of improving the robustness of MVDR pro- 
cessing is to apply diagonal loading to the weight compu- 
tation: 

where the load level U: is chosen to satisfy some white 
noise gain constraint [3]. The diagonally-loaded MVDR 
output is then computed as in (4), with I&,,,,' replacing &. 

Rank reduction is another technique for improving 
MVDR robustness. Under the assumption of Gaussian 
statistics for K, Reed er al. [9] showed that the SINR power 
loss p incurred by using the sample covariance matrix K to 
compute the MVDR output instead of the true data covari- 
ance matrix K has expected value 

( 6 )  

where L and N are defined as above. In practice, the num- 
ber of snapshots L available to compute K is limited by 
nonstationarity in the data (e.g., due to source motion, time- 
varying b:ckground noise, etc.); however, SINR losses of 3 
dB or more are incurred in (6) if L < 2 N .  Rank reduction 
addresses this "limited snapshot" problem by replacing K 
with a rank-P approximation KR ( P  <( N )  in (3), effec- 
tively rcplacing N with P in (6).  In the following, several 
algorithms for deterniining the reduced-rank approximation 
KR are detailed, and the resulting reduced-rank MFP algo- 
rithms are evaluated for a common data set, with the full- 
rank CMF" and MVDR serving as performance baselines. 

& ( p )  = ( L  - N + 2 ) / ( L  + 1 )  , 

2 Rank Reduction Algorithms 

The first three rank reduction algorithms examined here 
can be loosely classified as eigenvector (EV) filtering algo- 
rithms. To upderstand them, first let the eigenvector decom- 
position of K be given as 

N 
K = UCUH = CG+iilq , (7) 

where U = [ 21 C2 . . . GN ] is an orthogonal matrix 
whose columns are comprised of the eigenvectors ii, of K 
(GrGi = 1 V i )  and I= = diag(a:, 022 , . . . , U; )  is a diag- 
onal matrix whose diagonal elements are comprised of the 
eigenvalues a; of K (usually ordered such that a; 2 U; 2 

The eigenvector filtering algorithms approximate K with 

i= l  

. . . 2 U S ) .  

a rank-P approximation KR, where 

P 

and E R  = diag(cril , c r i 2  , . . . , a i p ,  0 , .  . . , 0) . Note that 
N - P eigenvalues have been "zeroed out" (filtered) and the 
remaining P eigenvalues have been re-indexed to be the first 
P eigenvalues of ER (so that there is an implicit reordering 
of the columns of U in (8) as well). 

The three eigenvector filtering algorithms ark distin- 
guished by the criterion used to select which eigen- 
value/eigenvector pairs to keep for KR. The reduced 
minimum variance (RMV) algorithm [2, 71 retains the P 
largest eigenvalues (and corresponding eigenvectors) of K. 
The signal coherence (SC) algorithm [5] selects the etgen- 
vectors (and corresponding eigenvalues) that have large 
enough correlation with the replica vector 8, i.e., 

(9) 

where y is some scalar constant; setting y = 0.5, for cxam- 
ple, retains those eigenvectors whose correlation is within 
3 dB of the maximum. If, for a given replica vector, no 
eigenvectors satisfy (9), the SC algorithm uses the full-rank 
MVDR output (4). Note that the criterion (9) is such that 
both the reduced-rank subspace and the dimension P of the 
subspace will vary with spatial parameters 0 in the SC algo- 
rithm. The direct form (DF) algorithm [ 101 retains the P 
eigenvalue/eigenvector pairs that maximize, for each G, the 
ratio 

The DF criterion again is such that the reduced-rank sub- 
space varies with spatial parameters 8, although the di- 
mension P is fixed for all 8. The DF criterion sclects 
the subspace that minimizes MVDR output power over all 
P-dimensional eigenvector bases, which should maximize 
output SINR under ideal conditions. Practically, however, 
the DF criterion needs to be applied in conjuction with diag- 
onal loading to reduce the sensitivity of (10) to small eigen- 
values during subspace selection. 

Once KR is determined, thc reduced-rank MVDR 
weight vector IZR is computed as 

and the reduced-rank MVDR output is computed as 

pMVDRRR = @KGR.  (12) 

Note that the reduced-rank covariance KR is used only for 
the weight computation in (1 1) and the original (full-rank) 
sample covariance K is still used in (12). However, tor the 
EV filtering algorithms, the expression in (12) reduces to 

P M V D R ~ ~  = { z"Ki'v'}-' (13) 
I D  \ - 1  

i=l  
(8) 
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A fourth eigenvector-based algorithm that takes a dif- 
ferent approach to rank reduction is the dominant mode 
rejection (DMR) algorithm [6].  In the DMR algo- 
rithm, KR constructed by retaining the largest P eigen- 
values of K (much like the RMV algorithm), but the 
remaining N-P small eigenvalues are averaged instead 
o f j l r e red .  Thus, KR = U C R U ~ ,  where C R  = 
dzag(a:, U:, . . . , a;, a ,  a,. . . ,a)  and 

The reduced-rank MVDR weight vector U ~ R  is then com- 
puted as in  ( I  1 )  and the reduced-rank MVDR output 
P M V D R ~ ~  as in (12); however, simplification to (14) is not 
possible because DMR is not a reduced-dimension algo- 
rithm. The DMR algorithm is such that adaptive nulling 
still occurs in (1 1) in the directions of the dominant eigen- 
vectors (thus the name of the algorithm) while nulling is 
reduced in other directions. 

Cox and Pitre [4] showed that for DMR applied in com- 
bination with diagonal loading, the reduced-rank MVDR 
weight veotor is givcn by 

P 

i=l  
P 

i= 1 

5 -  /3a(zi~qlii 
> (16) ZUR = 

N - pi III?CI* 

where pi = (0: - C Y ) / ( U ?  + U:) and 02 is the diagonal 
load level. The same authors also suggest a modification 
for misinatch protection, so that off-boresight mainlobe sig- 
nals are not suppressed. This is implemented by imposing 
the SC constraint (9) and deleting the eigenvectors having 
large correlations with the replica vector from the weight 
computation in (16). 

The fifth rank-reduction algorithm examined in this pa- 
per is the modal decomposition (MD) algorithm [ l l ] .  
Here, both data and replica vectors are transformed from 
phone space into mode space: 

C,, = T,v’ (17) 
K,, = T,KT$, (18) 

where V;, is the “mode replica” vector, K, is the modal 
covariance matrix, and T,, = (QHQ)-’QH is the modal 
transformation matrix derived from the mode space ma- 
trix Q ,  whose columns are mode functions sampled at the 
depths of the vertical line array, with array tilt taken into 
account. 

Mode filtering then takes place in the mode domain, with 
KR computed by retaining P rows and columns of K, and 
“zeroing” the other N-P rows and columns. The advantage 

of transforming into mode domain is that the mode t’unc- 
tions have an easily understood physical meaning. For ex- 
ample, retaining the P low-order modes filters out most sur- 
face energy, because only higher-order modes are excited 
near the surface. Once KR has been computed, the reduced- 
rank MVDR weight vector is computed in the mode domain 
as 

- 7 - 1  - 

and reduced-rank “matched mode” power is given by 

(20) P M O D E ~ ~  = w , , , , K m ~ m n  . 

Note that the mode functions in Q are not orthogonal unless 
the vertical line array spans the water column. Thus, the 
mode transformation T, may not be orthogonal, and this 
needs to be accounted for in comparing matched modc out- 
put in (20) to matched field output in (1). For the data pre- 
sented here, however, the vertical line arrays span most of 
the water column and the modes vectors are approximately 
orthogonal. 

-H 

3 Comparison of Reduced-Rank AMFP Al- 
gorithms for Real Data 

The data analyzed here was collected during the Santa 
Barbara Channel Experiment (SBCX), conducted in April 
1998 in the 100 to 300m-deep waters of the Santa Barbara 
channel. During SBCX, data was collected using ;I 150- 
hydrophone “full-field processing” (FFP) array comprised 
of five vertical line arrays (VLAs) of 30 phones each. with 
each VLA moored at the vertices of a 200m-diameter pen- 
tagon. The volumetric nature of the FFP array enabled ac- 
curate source detection and accurate localization in range, 
depth, and bearing. 

One of the acoustic sources deployed during SBCX was 
a J15-3 transducer that was towed by a research vessel, the 
Acoustic Explorer (AX). The transducer was used 10 gener- 
ate a comb signal of 12 tones at approximately IS9 dB re 
1 pPa/Hz source level. The results shown here were pener- 
ated from 100s of time series data (during which the comb 
signal was on), passed through an FFT with a nonouerlap- 
ping, I s  Hanning window and processed at the comb fre- 
quency of 235 Hz. Beamforming was done using one VLA 
of 30 phones (N=30).  Note that L=lOO snapshots were 
available for time-averaged covariance estimation if al I 100s 
of data were used; however, the range of the AX during this 
data segment was less than 2km, so MFP processing using 
all 100s of data was affected by mismatch due to the motion 
of the AX. 

In Example 1, all 100s of data were processed. The mean 
position of the AX during this time was 1.7km range and 
28m depth. Input signal level was 99.8 dB, computed by 
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taking an average of the FFT bin corresponding to 235 Hz 
over the 100s time interval. The input noise level was 91.8 
dB, measured from neighboring frequency bins in the FlT. 
Thus, the input SNR was m8 dB. Figure 1 shows the range- 
depth ambiguity surfaces of eight MFP processors for Ex- 
ample 1: full-rank CMFP; full-rank MVDR with diagonal 
loading (MVDR-DL); RMV with P=IO; SC with y=0.5; 
D F  with P=10 and diagonal loading (DF-DL); DMR with 
P=lO, diagonal loading, and mismatch protection (y=0.5); 
and MD with P=10 and P=15 low-order modes retained. 
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Figure 1. MFP ambiguity surfaces from 100s 
of data. Gray scale units are dB re 1 pPalHz. 

For the full-rank processors, CMFP has a strong peak at 
the source location but the expected high sidelobes, while 
the adaptive sidelobc cancellation in MVDR-DL results in 
much better localization. However, note that the source 
peak is “smeared” even for MVDR-DL due lo source mo- 
tion during the 100s lime interval. The best source localiza- 
tion of any processor is provided by SC, which works well 
for fairly high SNR’s; setting y = 0.5 in (9) produces a sub- 
space of rank-1 in a local neighborhood of the source and 
rank-0 (with full adaptive cancellation) elsewhere. RMV 
produces results between that of CMFP and MVDR-DL, 
because adaptive cancellation occurs only among the eigen- 
vectors that have been retained, which always correspond 

to the largest 10 eigenvalues; this is a weakness of RMV, 
because the appropriate dimension of the reduced-rank sub- 
space is not necessarily constant across the ambiguity sur- 
face. DF-DL provides the highest output SNR of any pro- 
cessor, at the cost of greater mismatch loss at the source 
(both as a result of the D F  criterion). DMR produces nearly 
the same results as MVDR-DL, with differences due to the 
averaging procedure of (15). Finally, MD provides good 
rejection of surface energy, as intended, but performance 
varies with the number of modes retained. The results are 
summarized in Table 1, which lists output signal level. com- 
puted as the MFP output at range 1.7km and depth 28m; 
output noise, computed as the lower quartile of MFP power 
over the entire ambiguity surface; and output SNR, thc ratio 
of the two. 

I Process 1 )  Signalout I NoiseOut I SNR Oitt I 

Table 1. MFP results for Example 1. Signal 
ln=99.8 dB, Noise ln=91.8 dB, SNR ln=8 dB. 

Example 2 processes 21s of data in the middle of the 
original 100s time segment. For Example 2, the input signal 
was again 99.8 dB and the input noise was computed to be 
89.2 dB, so the input SNR was 10.6 dB. Figure 2 shows the 
range-depth ambiguity surfaces of the eight MFP processors 
for Example 2. 

Note first that with 21 snapshots, the 30 x 30 sample 
covariance K is not full rank, and its inverse (computed 
using SVD-bascd approximation) does not produce accu- 
rate adaptive nulling. Thus, MVDR-DL performs poorly. 
Of the reduced-rank algorithms, RMV and MD still suf- 
fer from potentially poor performance due to improper sub- 
space size. However, the best reduced-rank techniques - 
SC, DF, and DMR - perform even better than in Example 1 ,  
because there is less mismatch loss due to motion and better 
source localization for the shorter time period. Example 2, 
then, demonstrates the full advantage of applying rank re- 
duction to AMFP processing: reduced-rank weight vectors 
are computed accurately with a severely limited number of 
snapshots (L=21), as rank reduction from N=30 to P=10 
(or lower) enables L 2 2P. Table 2 summarizes the results 
for Example 2. 
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Figure 2. MFP ambiguity surfaces from 21s of 
data. Gray scale units are dB re 1 pPalHz. 

4 Discussion 

This paper examined the performance of several 
reduced-rank AMFP algorithms on a common set of data. 
It was demonstrated that the most effective rank-reduction 
techniques - the signal coherence, direct form, and domi- 
nant mode rejection algorithms - improve the stability of 
adaptive weight calculation (and therefore improve AMFP 
detection performance) when the number of available snap- 
shots is limited, a very important scenario for passive sonar 
detection in shallow water. It should be noted that the ex- 
amples processed here had fairly high SNR's (8-10 dB input 
SNR), and i t  remains to be shown how the various rank re- 
duction algorithms will perform in low-SNR environments, 
where distinctions among the algorithms should be more 
apparent. How performance varies with subspace rank is 
also an open question. Finally, analysis of data with strong 
surface interferers is necessary to demonstrate the true util- 
ity of the modal decomposition algorithm, where rank re- 
duction with the physically-based modal basis can be ap- 
plied easily. All of these are topics for further study. 

Process 1 )  Signalout I NoiseOut I SNROut I 

MVDR-DL 

96.5 69.6 26.9 
DF-DL 90.9 57.5 33.4 

Table 2. MFP results for Example 2. Signal 
h 9 9 . 8  dB, Noise ln=89.2 dB, SNR k l 0 . 6  dB. 
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