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Evaluation of regional air quality models over Sydney and Australia: Part
1-Meteorological model comparison

Abstract
The ability of meteorological models to accurately characterise regional meteorology plays a crucial role in the
performance of photochemical simulations of air pollution. As part of the research funded by the Australian
government's Department of the Environment Clean Air and Urban Landscape hub, this study set out to
complete an intercomparison of air quality models over the Sydney region. This intercomparison would test
existing modelling capabilities, identify any problems and provide the necessary validation of models in the
region. The first component of the intercomparison study was to assess the ability of the models to reproduce
meteorological observations, since it is a significant driver of air quality. To evaluate the meteorological
component of these air quality modelling systems, seven different simulations based on varying configurations
of inputs, integrations and physical parameterizations of two meteorological models (the Weather Research
and Forecasting (WRF) and Conformal Cubic Atmospheric Model (CCAM)) were examined. The modelling
was conducted for three periods coinciding with comprehensive air quality measurement campaigns (the
Sydney Particle Studies (SPS) 1 and 2 and the Measurement of Urban, Marine and Biogenic Air (MUMBA)).
The analysis focuses on meteorological variables (temperature, mixing ratio of water, wind (via wind speed
and zonal wind components), precipitation and planetary boundary layer height), that are relevant to air
quality. The surface meteorology simulations were evaluated against observations from seven Bureau of
Meteorology (BoM) Automatic Weather Stations through composite diurnal plots, Taylor plots and paired
mean bias plots. Simulated vertical profiles of temperature, mixing ratio of water and wind (via wind speed
and zonal wind components) were assessed through comparison with radiosonde data from the Sydney
Airport BoM site. The statistical comparisons with observations identified systematic overestimations of wind
speeds that were more pronounced overnight. The temperature was well simulated, with biases generally
between ±2 °C and the largest biases seen overnight (up to 4 °C). The models tend to have a drier lower
atmosphere than observed, implying that better representations of soil moisture and surface moisture fluxes
would improve the subsequent air quality simulations. On average the models captured local-scale
meteorological features, like the sea breeze, which is a critical feature driving ozone formation in the Sydney
Basin. The overall performance and model biases were generally within the recommended benchmark values
(e.g., ±1 °C mean bias in temperature, ±1 g/kg mean bias of water vapour mixing ratio and ±1.5 m s-1 mean
bias of wind speed) except at either end of the scale, where the bias tends to be larger. The model biases
reported here are similar to those seen in other model intercomparisons.
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Abstract: The ability of meteorological models to accurately characterise regional meteorology
plays a crucial role in the performance of photochemical simulations of air pollution. As part of the
research funded by the Australian government’s Department of the Environment Clean Air and Urban
Landscape hub, this study set out to complete an intercomparison of air quality models over the Sydney
region. This intercomparison would test existing modelling capabilities, identify any problems and
provide the necessary validation of models in the region. The first component of the intercomparison
study was to assess the ability of the models to reproduce meteorological observations, since it is
a significant driver of air quality. To evaluate the meteorological component of these air quality
modelling systems, seven different simulations based on varying configurations of inputs, integrations
and physical parameterizations of two meteorological models (the Weather Research and Forecasting
(WRF) and Conformal Cubic Atmospheric Model (CCAM)) were examined. The modelling was
conducted for three periods coinciding with comprehensive air quality measurement campaigns
(the Sydney Particle Studies (SPS) 1 and 2 and the Measurement of Urban, Marine and Biogenic
Air (MUMBA)). The analysis focuses on meteorological variables (temperature, mixing ratio of
water, wind (via wind speed and zonal wind components), precipitation and planetary boundary
layer height), that are relevant to air quality. The surface meteorology simulations were evaluated
against observations from seven Bureau of Meteorology (BoM) Automatic Weather Stations through
composite diurnal plots, Taylor plots and paired mean bias plots. Simulated vertical profiles of
temperature, mixing ratio of water and wind (via wind speed and zonal wind components) were
assessed through comparison with radiosonde data from the Sydney Airport BoM site. The statistical
comparisons with observations identified systematic overestimations of wind speeds that were more
pronounced overnight. The temperature was well simulated, with biases generally between ±2 ◦C
and the largest biases seen overnight (up to 4 ◦C). The models tend to have a drier lower atmosphere
than observed, implying that better representations of soil moisture and surface moisture fluxes
would improve the subsequent air quality simulations. On average the models captured local-scale
meteorological features, like the sea breeze, which is a critical feature driving ozone formation in the
Sydney Basin. The overall performance and model biases were generally within the recommended
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benchmark values (e.g., ±1 ◦C mean bias in temperature, ±1 g/kg mean bias of water vapour mixing
ratio and ±1.5 m s−1 mean bias of wind speed) except at either end of the scale, where the bias tends to
be larger. The model biases reported here are similar to those seen in other model intercomparisons.

Keywords: model evaluation; meteorological modelling; air quality modelling; Clean Air and Urban
Landscapes Hub; NSW Australia

1. Introduction

The health impacts of airborne particulates and gaseous pollutants on urban populations are now
well established [1,2]. Whilst the air quality in Australian cities is generally very good compared to
many other parts of the world, Sydney experiences occasional poor air quality events that expose
the population to heightened health risks [3]. Health effects are also known to occur at air pollution
concentrations that are within national air quality standards, meaning that health benefits can be realised
through improving air quality even in regions with relatively low pollution levels [4]. The population
within the Sydney basin is predicted to grow by ~20% in the next 20 years [5], increasing both the local
sources of pollution and the population exposure.

To predict spatial air pollution patterns and identify the best policies to reduce particulate matter
and improve air quality, robust and verified air quality models are needed. The Clean Air and Urban
Landscape (CAUL) hub (funded by the Australian government’s Department of the Environment)
set out to undertake an intercomparison of air quality models over Sydney that would test existing
capabilities, identify any problems and provide the necessary validation of models in the region.
This project was designed to establish robust air quality modelling capabilities by building on the
substantial efforts in recent years by the Commonwealth Scientific and Industrial Research Organisation
(CSIRO) and the New South Wales (NSW) Office of Environment and Heritage (OEH).

Over the past several years, CSIRO has developed an air quality modelling system to improve
photochemical ozone and secondary particle modelling for air quality applications in Australia [3,6].
This modelling intercomparison investigates the capabilities of the CSIRO modelling system and of
the OEH’s operational version, along with several other state-of-the-science air quality modelling
systems. Modelling groups from the Australian Nuclear Science and Technology Organisation
(ANSTO), the University of Melbourne (UM) and North Carolina State University (NCSU) used
varying configurations of the Weather Research and Forecasting (WRF) model for meteorology to drive
either the Community Multi-scale Air Quality (CMAQ) chemical transport model (CTM) or the inbuilt
WRF-chemistry model (WRF-Chem).

Since a significant driver of air quality model performance is ability of the models to reproduce
meteorological observations, this part of the intercomparison project aims to assess the performance of
these numerical weather simulations. Air pollution events predominantly occur under calm, stable
conditions where winds may be light and the direction harder to accurately predict [7,8]. Meteorology
plays an integral role in the formation, transport and transformation of pollutants and, therefore,
the accurate simulation of meteorology is essential for modelling air quality [9] and any errors or
uncertainties will propagate through to the air quality predictions [7].

There have been several previous model intercomparison exercises, mostly examining the
performance of regional models over Europe and North America. For example, the Air Quality
Model Evaluation International Initiative (AQMEII) was established in 2009 to provide a forum for the
advancement of model evaluation methods of regional-scale air quality models [10]. Phase I of the
AQMEII project involved a 16-member ensemble of offline air quality modelling systems run over either
North America and/or Europe for the full year of 2006. An operational evaluation was undertaken for
both the meteorology [11] and air quality [12,13]. Phase II of the AQMEII project involved 21 online
(coupled chemistry and meteorology) simulations and were evaluated for meteorology [14] and air
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quality [15,16]. Both AQMEII evaluations of meteorology found considerable variability between
models and observations and systematic biases, the most notable in the nocturnal wind speeds.

As part of the California Nexus (CalNex) field campaign in 2010 [17], six configurations of the
WRF model and one of the Coupled Ocean-Atmosphere Mesoscale Prediction system (COAMPS) were
evaluated for most of May and June 2010. Similar to the AQMEII evaluations they found biases toward
higher wind speed (particularly during the day). The study also identified flaws in the depth and
timing of the sea breeze, plus benefits of finer resolution and different initialization products. The
Department of Environment, Food and Rural Affairs (DEFRA) in the UK commissioned a regional
model intercomparison [18] with nine modelling systems run for the same modelling year as AQMII
phase I. Results suggested good overall performance from the surface meteorological components
examined. Overestimations of wind speeds were only observed from a small percentage of models
and the variability in the temperature and Planetary Boundary Layer Height (PBLH) did not appear
to translate to deviations in ozone predictions. This is the first model intercomparison to investigate
regional model performance over Australia.

Sydney is situated on the east coast of Australia bounded by forested, elevated terrain inland and
the Pacific Ocean to the east. The closest urbanised region to Sydney is the city of Wollongong located
on a narrow coastal strip against steep escarpment, approximately 80 km south of Sydney. These two
cities, in addition to Newcastle to the north, collectively make up the Greater Metropolitan Region
(GMR) of NSW where up to 75% of the state’s population resides [19]. Poor air quality episodes in the
NSW GMR are predominantly caused by particles from prescribed burns or bushfires or ozone from
photochemical smog [20,21].

The air quality impacts from prescribed burns or bushfires are predominantly dependent on the
location of the source and the state of the atmosphere [22]. A recent study into the relationship between
elevated PM2.5 across Sydney and prescribed burns [23] found the calm, stable overnight and early
morning conditions lead to the highest PM2.5 concentrations. Prescribed burns tend to be carried out
under these calm conditions as they are ideal for fire control, however, atmospheric dispersion tends to
be poor under these conditions [24]. Bushfires (wildfires), on the other hand, occur under varying
meteorological conditions and as the intensity of these fires are higher the impacts to the local air
quality tends to be smaller. These smaller local air quality impacts from bushfires are due to the plume
reaching the upper atmosphere, however, the impacts may be more widespread due to long-range
transport [24,25].

The three major cities in the GMR are characterised by similar meteorological conditions driving
ozone pollution, in addition to experiencing inter-regional transport of pollution [26]. Previous
studies [26–29] have highlighted the interactions between the synoptic and mesoscale processes that
drive these localised air pollution episodes. High ozone events tend to occur during warmer months,
when an anticyclone is present in the Tasman Sea directing north-westerly to north-easterly synoptic
flow. The synoptic flow interacts with the local mesoscale features of cold morning drainage flow off

the ranges (westerly) and the afternoon sea breezes (north-easterly) to transport pollution back inland.
Both Hart et al. [27] and Jiang et al. [28] found the location of the air quality impacts over the Sydney
basin were connected with the strength and location of the synoptic circulation. The peak in ozone
concentrations in the Sydney basin often aligned with the location of the sea breeze front [26]. In [29]
the authors also identified the cold drainage flow caused large air pollution events in Wollongong.
These studies also identified that the morning drainage flow and afternoon sea breeze circulation was
connected to inter-regional transport.

As a model intercomparison of this type has not previously been conducted over the Sydney region,
this study aims to determine the ability of the meteorological models to reproduce observed features of
the local meteorology that drives poor air quality episodes specific to Sydney and Wollongong. This is
done by investigating the causes of discrepancies between models and observations and between
different models. The focus on these two cities was based on the availability of three significant
monitoring campaigns conducted over the region. Section 2 describes the model configurations,
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observational data and evaluation methods. The results and discussions of the model evaluation are
separated by each meteorological parameter through Section 3. The final section concludes with a
summary of the findings.

2. Methodology

2.1. Models

The modelling was conducted over four consistent geographical domains, grid resolutions and
time periods. The modelling domains (See Figure 1) cover Australia (AUS) at 80 km resolution,
NSW at 27 km, the GMR at 9 km and the innermost domain covers the Sydney basin (SYD) at 3 km
resolution. The spatiotemporal variability of key modelled meteorological or air quality parameters is
generally expected to improve with increasing grid resolutions. However, improved performance is
not guaranteed [30]. There is also a need to optimize the use of available computational resources.
Therefore, 3 km was chosen as the finest resolution for this study. Vertical resolution was not prescribed
and was chosen by each group to assimilate into their air quality model.
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Figure 1. (a) Modelling domain configurations and the (b) location of Bureau of Meteorology Automatic
Weather Stations used in this study. AUS: Australia NSW: New South Wales GMR: Greater Metropolitan
Region SYD: Sydney domains.

Seven different simulations were examined based on various configurations of two meteorological
models. A summary of the meteorological model configurations from each institution are presented in
Table 1. The WRF model [31] from the National Centre for Atmospheric Research and the National
Centre for Environmental Prediction (NCAR/NCEP) was used to drive one configuration of CMAQ
(W-UM1) and four different configurations of WRF-Chem (W-UM2, W-A11, W-NC1 and W-NC2).
The Conformal Cubic Atmospheric Model (CCAM) from the CSIRO [32] was used by two institutions
to drive the CSIRO CTM (O-CTM and C-CTM). The results from the intercomparison of these CTMs
for ozone and PM2.5 are presented in part II of this paper [33].

All models were initialised with 0.75◦ resolution European Centre for Medium Range Forecasting
(ECMWF) Re-Analysis (ERA) interim reanalysis [34], except those from NCSU which used the 0.25◦

resolution NCEP Operational Global Analysis final analysis (FNL) [35]. All model configurations used
some form of analysis nudging in the AUS domain.
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Table 1. Overview of the configuration of the meteorological models.

Model Identifier
Parameter W-UM1 W-UM2 W-A11 O-CTM C-CTM W-NC1 W-NC2

Research Group Univ. Melbourne Univ. Melbourne ANSTO NSW OEH CSIRO NCSU NCSU

Model specifications

Met. model WRF WRF WRF CCAM CCAM WRF WRF

Chem. model CMAQ WRF-Chem WRF-Chem with
simplified Radon only CSIRO-CTM CSIRO-CTM WRF-Chem WRF-Chem-ROMS

Met model
version 3.6.1 3.7.1 3.7.1 r-4271:4285M r-2796 3.7.1 3.7.1

Domain

Nx 80, 73, 97, 103 80, 73, 97, 103 80, 73, 97, 103 75, 60, 60, 60 88,88,88,88 79, 72, 96, 102 79, 72, 96, 102

Ny 70, 91, 97, 103 70, 91, 97, 103 70, 91, 97, 103 65, 60, 60, 60 88,88,88,88 69, 90, 96, 102 69, 90, 96, 102

Vertical layers 33 33 50 35 35 32 32

Thickness of first
layer (m) 33.5 56 19 20 20 35 35

Initial & Boundary
conditions

Met input/BCs ERA Interim ERA Interim ERA Interim ERA Interim ERA Interim NCEP/FNL NCEP/FNL

Topography/Land
use

Geoscience
Australia DEM for

inner domain,
USGS elsewhere

Geoscience
Australia DEM for

inner domain.
USGS elsewhere.

Geoscience Australia
DEM for inner
domain, USGS

elsewhere. MODIS
land use

MODIS MODIS USGS USGS

SST
High-res SST

analysis
(RTG_SST)

High-res SST
analysis

(RTG_SST)

High-res SST analysis
(RTG_SST)

SST from ERA
Interim

SSTs from ERA
Interim

High-res SST
analysis

(RTG_SST)

Simulated by
ROMS

Integration
24-h simulations,
each with 12-h

spin-up

Continuous with
2-d spin up

Continuous with 10-d
spin up

Continuous with 1
mth spin up.

Continuous with 1
mth spin up.

Continuous with
8-d spin up

Continuous with
8-d spin up

Data assimilation
Grid-nudging
outer domain
above the PBL

Grid-nudging
outer domain
above the PBL

Spectral nudging in
domain 1 above the
PBL (scale-selective

relaxation to analysis)

Scale-selective
filter to nudge

towards the
ERA-Interim data

Scale-selective
filter to nudge

towards the
ERA-Interim data

Gridded analysis
nudging above

the PBL

Gridded analysis
nudging above

the PBL
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Table 1. Cont.

Model Identifier
Parameter W-UM1 W-UM2 W-A11 O-CTM C-CTM W-NC1 W-NC2

Research Group Univ. Melbourne Univ. Melbourne ANSTO NSW OEH CSIRO NCSU NCSU

Parameterisations

Microphysics Morrison Lin WSM6
Prognostic
condensate

scheme

Prognostic
condensate

scheme
Morrison Morrison

LW radiation RRTMG RRTMG RRTMG GFDL GFDL RRTMG RRTMG

SW radiation RRTMG GSFC RRTMG GFDL GFDL RRTMG RRTMG

Land surface NOAH NOAH NOAH Kowalczyk
scheme

Kowalczyk
scheme NOAH NOAH

PBL MYJ YSU MYJ
Local Richardson

number and
non-local stability

Local Richardson
number and

non-local stability
YSU YSU

UCM 3-category UCM NOAH UCM Single layer UCM Town Energy
budget approach

Town Energy
budget approach Single layer UCM Single layer UCM

Convection G3 (domains 1-3,
off for domain 4) G3 G3 Mass-flux closure Mass-flux closure MSKF MSKF

Aerosol feedbacks No No No

Prognostic
aerosols with

direct and indirect
effects

Prognostic
aerosols with

direct and indirect
effects

Yes Yes

Cloud feedbacks No No No Yes Yes Yes Yes

ANSTO: Australian Nuclear Science and Technology Organisation WRF: Weather Research and Forecasting NSW OEH: New South Wales Office of Environment and Heritage CSIRO:
Commonwealth Scientific and Industrial Research Organisation NCSU: North Carolina State University CCAM: Conformal Cubic Atmospheric Model BCs: Boundary Conditions ERA:
European Centre for Medium Range Forecasting (ECMWF) Re-Analysis NCEP/FNL: National Centre for Environmental Prediction Final Analysis DEM: Digital Elevation Model USGS:
United States Geological Survey MODIS: Moderate Resolution Imaging Spectroradiometer SST: Sea Surface Temperature PBL: Planetary Boundary Layer WSM6: WRF Single-Moment
6-class Scheme RRTMG: Rapid Radiative Transfer Model for GCMs GFDL: Geophysical Fluid Dynamics Scheme GSFC: Goddard Space Flight Centre Scheme MYJ: Mellor-Yamada-Janjic
Scheme YSU: Yonsei University Scheme UCM: Urban Canopy Model G3: Grell 3D ensemble Scheme MSKF: Multi-Scale Kain-Fritsch Scheme.
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The WRF model is a fully compressible, non-hydrostatic mesoscale meteorological model with
a wide range of applications, including weather prediction and dynamical downscaling. All the
model configurations employ four-dimensional data assimilation (FDDA) grid nudging either above
the planetary boundary layer (PBL) or through the entire atmosphere. Between the individual WRF
configurations there are up to three different schemes selected per physics parameterisation option.
For the PBL either the MYJ [36] utilising a local closure scheme was chosen or the non-local closure
scheme of YSU [37]. The complex Lin [38], WSM6 [39] or Morrison [40] schemes were used to
parameterise microphysics. Most models’ parameterised cumulus using the Grell 3D scheme [41]
and the W-NC models used Multi-Scale Kain-Fritsch (MSKF) [42], which can improve the model’s
performance for precipitation at fine spatial scales. For radiation the RRTMG long and shortwave
schemes were chosen [43] except for W-UM2 which used the GSFC [44,45] for shortwave radiation.
All models used the Noah Land Surface Model (LSM) scheme, which uses four soil layers [46].
All simulations used prescribed sea surface temperatures (SSTs) except the W-NC2 simulation.
The SSTs in W-NC2 were predicted using the Regional Ocean Modelling System (ROMS) that was
dynamically coupled with WRF (described in detail in [47]). Aerosol and cloud feedbacks to radiation
are explicitly defined in W-NC1 and W-NC2 but not in other WRF simulations. As WRF-Chem is
an online modelling system, there are some feedbacks into the meteorology from aerosol direct and
indirect effects in W-NC1 and W-NC2 [48]. Further detail of W-NC1 and W-NC2 can be found in [49,50].

The global CCAM uses a semi-Lagrangian advection scheme and semi-implicit time integration
across a conformal cubic grid [32,51]. The cubic conformal grid utilizes the Schmidt coordinate
transformation [52] to stretch the grid with higher resolution in the domain of interest and lower
resolution elsewhere. Previously CCAM has been used for regional climate studies (e.g., [53,54] and
more recently a number of air quality studies in Australia [55,56] as part of the CCAM-CTM air quality
modelling system. The physical parameterizations and input data include the land surface scheme
detailed in [57], the Moderate Resolution Imaging Spectroradiometer (MODIS) land use data [58],
GFDL for long-wave and short-wave radiation [59] with microphysics determined by the liquid and
ice-water scheme of [60] and [38]. The PBL scheme is based on Monin–Obukhov similarity theory [61]
and has non-local treatment of stability from [62]. Cumulus are parameterised using a mass-flux
closure [63]. Aerosol feedbacks are characterised by prognostic aerosols, including both direct and
indirect effects [64]. The urban canopy is based on the Town Energy Budget approach described in [65].

2.2. Observations

The three modelling periods coincide with intensive air quality monitoring campaigns in the
NSW region (periods shown in Table 2), and these three discrete periods were chosen to facilitate an
in-depth investigation of modelled air pollutants concentrations and their transformations. The first
two periods are the Sydney Particle Study (SPS) measurement campaigns, held in summer 2011 (SPS1)
and autumn 2012 (SPS2). The goal of the SPS studies were to gain a quantitative understanding of
the sources and sinks of particles within the Sydney airshed for science and policy development [6].
The third campaign was the Measurement of Urban, Marine and Biogenic Air (MUMBA) campaign
held over summer 2012/2013 [66,67], 80 km south of Sydney in Wollongong. One of the aims of the
MUMBA campaign was to characterise the ocean–forest–urban interface to test the skill of atmospheric
models. These measurement campaigns are described in further detail in part II of this study [33].

Table 2. Measurement campaigns.

Campaign Period Start Data Source

SPS1 07 February 2011–07 March 2011 http://doi.org/10.4225/08/57903B83D6A5D

SPS2 16 April 2012–14 May 2012 http://doi.org/10.4225/08/5791B5528BD63

MUMBA 21 December 2012–15 February 2013 http://doi.pangaea.de/10.1594/PANGAEA.871982

http://doi.org/10.4225/08/57903B83D6A5D
http://doi.org/10.4225/08/5791B5528BD63
http://doi.pangaea.de/10.1594/PANGAEA.871982
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During the SPS1 measurement period the maximum temperatures were on average 30.3 ◦C
(Sydney stations shown in Figure 1b), which were warmer than the climatological average (1981–2010,
http://www.bom.gov.au/climate/data/) of 28.2 ◦C. Rainfall recorded for February was low (22.2 mm)
compared with the climatological mean (108.9 mm). Photochemical activity was deemed ‘moderate’
with no hot days to drive ozone formation [6]. The following SPS2 campaign in autumn experienced
average maximum temperatures of 23.8 ◦C and 20.5 ◦C across the Sydney region for April and May,
respectively. There was significant rainfall during April (138 mm), while May recorded below average
rainfall of 16.6 mm (climatological averages for May were 86.3 mm and in April were 61.0 mm).

The MUMBA campaign was held during a very hot summer, and there were two days when
maximum temperatures were above 40 ◦C across the region. There was also high rainfall recorded
toward the end of January (122 mm recorded at Wollongong Airport (station no. 068241) on the 29th
January 2013). For a detailed discussion of the meteorology and air quality see [67], while the two hot
days are examined in the modelling study in [21].

The meteorological model evaluation primarily consists of an operational evaluation [68],
comparing model output with observations at seven Bureau of Meteorology (BoM) stations. A selection
of BoM stations (see locations in Figure 1b) were chosen to provide an even spread across the Sydney
Basin and Wollongong (location of the MUMBA campaign) and the inclusion of any additional sites
was not expected to provide any further information as there is limited variability in the model
performance across the domain. The OEH maintain an extensive air quality monitoring network
with up to 18 stations within the study area that includes meteorological parameters. These data
however, are not included in this analysis as the OEH sites do not comply with World Meteorological
Organisation (WMO) standards for meteorological instrumentation and placement, in particular the
winds are influenced by fine-scale flow features not present in the 3 km resolution simulations.

Following a similar methodology as previous meteorological model intercomparisons studies
for air quality [11,14] this study examines the temperature, mixing ratio of water, wind (via wind
speed and wind components), precipitation and PBLH. In this evaluation, the water content of the
atmosphere is represented by the water mixing ratio, which is the amount of water in the air in grams
of water vapour per kilogram of dry air.

2.3. Evaluation and Analysis Methods

Utilising a similar set of statistical metrics to those in [11,14], the operational evaluation presented
here comprises primarily of panels of composite diurnal plots comparing each model simulations
configuration for each campaign. The analyses presented focuses on the hourly data averaged across
the seven selected measurement sites, however, the same analysis for daily averages can be found in
the Supplementary Material.

The composite diurnal plots are followed by a panel of Taylor diagrams summarising model
performance in terms of standard deviation, correlation coefficients and centred root-mean-square error
(CRMSE) for each campaign. On the Taylor diagrams the standard deviations of the hourly observations
are indicated with a dashed radial line and the point of perfect agreement with observations is marked
as ‘observed’ on the x axis. The strength of the correlation between modelled and observed hourly
variables are indicated by the Pearson’s correlation coefficient (R) shown on the outside arc. Finally,
the CRMSE is indicated by concentric dashed grey lines emanating from the ‘observed’ value. The last
panel presents mean bias (MB) for paired model/observed values, split into quantile bins (0–1, 1–5,
5–10, 10–25, 25–50, 50–75, 75–90, 90–95, 95–99 and 99–100 percentiles) of observed values. Tables of the
statistics are presented in the Supplementary Material (Tables S1–S5).

To investigate how each meteorological model performs through the atmosphere we also examine
radiosonde observations (released twice daily from Sydney Airport at approximately 6:00 (morning)
and 15:00 (afternoon) local standard time—UTC+10). Both the observed and model profiles are
interpolated to the altitudes of 20, 50, 100, 150, 250, 500, 750, 1000, 2000, 3000, 4000 m above ground
level. The focus of this study in on the lower 4000 m of the atmosphere as it is most relevant for air

http://www.bom.gov.au/climate/data/
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quality modelling, however, the full profile up to 20,000 m elevation can be found in the Supplementary
Material (Figures S4, S6 and S8). The statistical metrics (MB, CRMSE and R) are calculated for
temperature, water mixing ratio and wind speed in the vertical. Only the average vertical profiles of
the zonal wind component are shown, as the interpretation of the statistics computed on the wind
components is difficult due to the positive/negative nature of the data.

The most commonly referenced meteorological benchmarks were established by [69].
The modelling conducted by [69] was over the eastern and mid-west of the US where the terrain is
considered flat and “simple”. For more complex terrain the benchmarks provided by [71] and [72]
may be more appropriate and are also provided in Table 3. Both the Sydney basin and Wollongong
region would be considered complex due to the surrounding ranges/escarpment and the presence of
the coastline; therefore, the complex benchmarks will be considered.

Table 3. Meteorological parameter benchmarks.

Variable Statistical Metric Units Benchmark Terrain Type Source

Temperature

MAE/Gross Error

degrees K

≤2 Simple [69]

≤3 Complex [70]

Bias
≤±0.5 Simple [69]

≤±1 Complex [70]

IOA - ≥0.8 [69]

Mixing ratio
MAE/Gross Error g/kg ≤2 [69]

Bias ≤±1 [69]

IOA - ≥0.6 [69]

Wind speed

RMSE

m s-1

≤2 Simple [69]

≤2.5 Complex [70]

Bias
≤±0.5 Simple [69]

≤±1.5 Complex [70]

IOA - ≥0.6 [69]

Wind direction
MAE/Gross Error

Degrees

≤30 Simple [69]

≤55 Complex [70]

Bias ≤±10 [69]

Mean gross error (MAE), index of agreement (IOA).

3. Model Evaluation Results and Discussion

The following results and discussion sections are based on the hourly averaged data across the
seven selected BoM weather stations in Sydney and Wollongong. Box and whisker plots of the MB, R
and CRMSE for each model (presented in Figure S1 in the Supplementary Material) highlight some of
the variability in the meteorological data across the seven sites. Generally, the average of the seven
stations capture the sign and magnitude of the statistics. There appears to be less variability between
sites for temperature and water mixing ratio, with the exception of a couple of stations. There is more
spread in the statistics across sites for the wind.

3.1. Temperature

Temperature plays an important role in air pollution due to the temperature dependency of
photochemical and aerosol processes, as well as vertical dispersion from buoyancy due to the heat
island effect. The WRF 2 m temperatures and the CCAM 10 m temperatures were used for the near
surface temperature evaluation. This is the temperature parameter that has been historically evaluated
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for the CCAM-CTM system [6,72]. The composite diurnal pattern (Figure 2a) is captured by the
simulations and the expected shift in temperature between summer (MUMBA/SPS1) and autumn
(SPS2) is observed.Atmosphere 2019, 10, x FOR PEER REVIEW  11 of 37 
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(b) Taylor diagrams and (c) mean bias split by quantiles of observed values.

There is close agreement between the WRF simulations and the observations, with a small
negative bias in the first half of the day across all campaigns. The largest negative bias in the diurnally
averaged temperatures is seen in the W-NC1 simulation during MUMBA and W-UM1 during SPS1.
The nocturnal temperatures are underpredicted by most WRF configurations during the two summer
campaigns and overpredicted during SPS2 (autumn). The O-CTM and C-CTM simulated near surface
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daytime temperatures during all campaigns are close to the observations. These CCAM simulations
overestimate overnight temperatures during all campaigns, except for the C-CTM simulation during
SPS2 where they are underestimated.

Taylor diagrams for temperature (Figure 2b) provide a visual comparison of each model’s
performance, highlighting in this case a tight clustering of skill between the simulations across
all campaigns. The two CCAM configurations are outliers with poorer performance during SPS2.
The CCAM models CRMSE range between 2 and 3 ◦C and tend to have a higher amplitude of variation
than the observations, with the exception of O-CTM during SPS2 which is lower. The WRF simulations
temperatures are close to the amplitude of the standard deviation for all campaigns with a CRMSE
around 2 ◦C. Overall the correlation coefficients are high (close to 0.9), with the two CCAM simulations
slightly lower (around 0.8) during SPS2.

Figure 2c presents the mean bias of the paired modelled and observed hourly averaged
temperatures by quantile of observed values. For the WRF model configurations, the bulk of
the modelled temperatures (within quartile 25–75) fall within the benchmarks of ±1 ◦C (denoted
by the dashed lines). At the higher and lower ends of the temperature ranges, where there are
fewer occurrences, the mean bias is above the benchmark but it remains within ±3 ◦C of the mean.
There is a consistent pattern between all WRF model configurations and across all campaigns of a
positive bias for cooler temperatures (too warm) and a negative bias for warmer temperatures (too
cool). The two CCAM simulations temperature biases are positive across all quantiles for the summer
campaigns, while C-CTM simulation temperature biases are negative during SPS2. During SPS2
the WRF simulations tend to have a larger positive bias in the cooler temperatures compared to the
summer campaigns. These biases are seen in the diurnal plots (Figure 2a), particularly overnight when
temperatures are at their coolest. Quantile-quantile plots (Figure S2 in the Supplementary Material)
show that these biases are not a function of the timing of the temperature variations as they are seen in
the unpaired analysis. The greatest deviations from the observations in the WRF simulations are the
cooler biases in W-NC1 (MUMBA), W-UM1 (SPS1) and W-UM2 (SPS2), which all remain warmer than
−2.5 ◦C.

The C-CTM and O-CTM simulations consistently overestimate temperatures during the summer
campaigns, however, most of these remain within the benchmark values (±1 ◦C). Similar to the WRF
simulations, the CCAM simulations cooler temperatures have a positive bias (up to 3 ◦C), seen as an
overestimation of overnight temperatures in the diurnal plots (Figure 2a). Conversely, the C-CTM
simulation underestimate temperatures (but within the benchmark values) during SPS2 and only just
beyond the benchmark values for warmer temperatures.

In the daily analysis (Figure S3 in the Supplementary Material) most of the simulated temperatures
are close to the observed. These plots show similar biases as seen in the hourly analysis (Figure 2);
for example, the CCAM simulations overpredict temperatures by up to 2 ◦C during the summer
campaigns. The performance metrics are improved when considering daily averages, with correlation
coefficients above 0.9 for all models. The majority of the mean bias daily temperature quantiles follow
the same pattern as the hourly and fall within the benchmark values. The magnitude of temperature
biases that are outside the benchmark values are only up to 2 ◦C.

To examine the model performance above the surface, vertical profiles of temperature MB, CRMSE
and R at Sydney Airport are presented in Figure 3. Below 4000 m, temperature MB varies between
±1.7 ◦C for all models. The W-A11 and W-UM1 configurations consistently underestimate temperatures
below 2000 m. During SPS1 and MUMBA, the MB for W-UM2 and W-NC2 is close to zero, while
their MB ranges between −1 and 0.5 ◦C during SPS2. The MB for W-NC1 changes between campaigns
with the largest (<−1 ◦C) during MUMBA, close to zero during SPS1 and within ±0.5 ◦C during
SPS2. The CCAM models tend to have a positive bias below 1000 m, except during SPS2 where the
O-CTM mean bias is negative and C-CTM becomes negative above 250 m. Since all the models are
nudged towards the analysis data (ERA Interim or FNL) above the PBL, the temperature bias in the
vertical profiles is likely reduced due to an increasing influence from the gridded analysis data forcing.
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This would lead to improved model performance above the PBL that would vary depending on the
type and strength of the nudging. Both W-A11 and O-CTM consistently have larger biases, greater
CRMSE and lower correlations compared to other simulations which may be the result of the weaker
scale-selective spectral nudging.
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The vertical profiles of CRMSE (Figure 3b) show the spread of CRMSE during SPS1 ranges between
0.5 and 2.5 ◦C in the lower 1000 m compared to 0.5–2 ◦C for MUMBA and SPS2. The O-CTM and W-A11
simulations consistently have the largest CRMSE in the vertical across all campaigns, whereas W-UM2
and both the W-NC simulations have the smallest CRMSE. The correlation coefficients (Figure 3c) are
generally over 0.9 during MUMBA and SPS2. During SPS1 the correlations coefficients are above 0.9,
with the exception of W-UM1, W-A11 and O-CTM which have correlation coefficients above 0.75.

At 2000 m through all statistics, most notable in the SPS1 campaign, is a positive MB, an increase
in CRMSE and a reduction in the correlation coefficients. Additionally, the correlation coefficients
reach a minimum of 0.7 for O-CTM at 3000 m. These reductions in model performance are the result of
the model’s inability to accurately capture upper level inversions observed between 2000 and 3000 m
on certain days. This would likely be a response to the choice of PBL parameterisations and there is a
similar magnitude response between the simulations that use YSU (W-A11, W-UM1) or MYJ (W-UM2,
W-N1 and W-NC2) PBL schemes. It appears that the simulations using the MJY PBL scheme have a
greater skill capturing these upper level inversions.

The WRF simulations temperature estimates across all three campaign periods have mean biases
at the surface mostly within the benchmark values (±1 ◦C) and between −1.5 ◦C and 0.5 ◦C through the
vertical. Pairings of model performance for temperature are seen between W-A11 and W-UM1, which
share the same PBL, radiation and LSM physics parameterisation schemes. These two simulations have
a tendency for cooler temperature biases that extend through the atmosphere. Comparison between the
two W-NC simulations show an improvement in temperature predictions in the lower atmosphere by
the inclusion of the ROMS SSTs and further analysis of these two simulations can be found in [49,50].

The CCAM simulations are another pairing which have near surface warm temperatures biases
that are largest overnight and greater than the benchmark values (up to 5 ◦C). The warm temperature
biases in the CCAM simulations may be a result of the choice of LSM and its inputs, providing
biased surface temperature and moisture. The Community Atmosphere Biosphere Land Exchange
(CABLE) [73] is an alternative LSM available to the CCAM system. A recent intercomparison including
CCAM run with CABLE LSM [74] had cold maximum temperature biases around ±2 ◦K and minimum
temperature biases around ±1.5 ◦K over southern Australia, indicating that this choice might lead to
improved temperature biases.

Ozone pollution events tend to occur at the peak of diurnal temperatures during summer months.
The overestimation (underestimation) of temperatures in the 90th percentile by the CCAM (WRF)
simulations suggests that these models may overpredict (underpredict) such episodes.. The larger
CRMSE values (>2 ◦C) indicate that the models could potentially drive large errors in the subsequent
air quality modelling, as the largest errors tend to occur during hotter days when photochemical
activity is more likely. The impacts of these biases on ozone predictions are discussed further in [33].

The cooler nocturnal temperatures, seen predominantly in the W-UM1 and W-NC1 simulations
during SPS1 and the C-CTM simulation during SPS2, could potentially be associated with more
stable/calmer nights and reduced dispersion (see Section 3.4). The evaluation method discussed in [8],
enables a closer, separate investigation of conditions at the extreme ends of the scale. They found the
nocturnal temperature estimates in the models showed a strong sensitivity to stability class, with the
poorest performance seen on the most stable nights. They also found the largest variability in model
skill was under the most stable nocturnal conditions (associated with clear sky days the following day)
and the best skill was during well mixed conditions. It should be noted that this analysis was focused
on autumn (SPS2) only.

3.2. Mixing Ratio of Water

Moisture in the atmosphere influences both photochemistry and aerosol formation. There is no
clear diurnal cycle in the mixing ratio of water, as seen in Figure 4a. The models capture the seasonal
change between the drier autumn months of SPS2 and higher moisture in the two summer campaigns.
Most models underestimate water mixing ratio, with the largest deviations overnight. W-UM2
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is consistently drier than the observations across all campaigns. Conversely, W-UM1 consistently
overestimates water mixing ratio throughout the day across all campaigns, while W-A11 and both
the W-NC models overestimations predominantly occur after 10:00 local standard time (UTC+10).
The CCAM models are drier during the SPS1 campaign and O-CTM is wetter on average than
observations during the daytime for MUMBA and SPS2.
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The Taylor plots in Figure 4b all show a dispersed model performance for water mixing ratio.
The best performance is seen for the W-NC models and W-UM1, with the poorest performance for
W-UM2 and the CCAM configurations. The variability of the models tends to be greater than the
variability of the observations during MUMBA. This was not observed for the SPS campaigns where
the variability of the models was the same or slightly less than the variability of the observations.
The driest models (O-CTM, C-CTM and W-UM2) have CRMSE between 2 and 3 g/kg for the summer
campaigns and 1.5–2 g/kg for SPS2, while for the other WRF simulations the CRMSE was between
1 and 2 g/kg. The correlation coefficients generally range from 0.6 to 0.95, except for C-CTM during
SPS1 which had a lower correlation coefficient around 0.5.
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The paired quantile mean bias plots for water mixing ratio (Figure 4c) highlight that the biases
of the extreme dry measurements are too wet (positive mean bias) and for the high water vapour
measurements the simulations are too dry (negative mean bias). The majority of the data sits within
the benchmark values (±1 g/kg). The largest underestimation of surface moisture (between −4 and
−2 g/kg) is seen in W-UM1, C-CTM and O-CTM simulations during SPS1.

For daily averages (Figure S5 in the Supplementary Material), there is an improvement in the model
skill with smaller differences between simulated and observed water mixing ratios. The correlation
coefficients are above 0.8 for WRF simulations and between 0.6 and 0.9 for both CCAM simulations.

Figure 5a shows that the MB of water mixing ratio throughout the vertical profile is underestimated
by most models at the BoM Sydney Airport site. A small positive MB (<0.6 g/kg) is observed in
the lower levels of the W-UM1 simulation during all three campaigns, and the W-NC1 and W-A11
simulations (<0.2 g/kg) during SPS1. The W-UM2 simulation below 2000 m had the largest negative
vertical moisture MB (between −1.5 and −1 g/kg) for all three campaigns. The CRMSE (Figure 5b)
ranged between 0.5 and 3 g/kg across all campaigns. Above 1000 m the variability of CRMSE between
simulations decreases and tends towards zero, which again may be a function of the analysis nudging
above the PBL. The correlation coefficients (Figure 5c) are similar to those at the surface, between
0.4 and 0.95. The spread between models during SPS2 is smaller, with higher correlation coefficients
(>0.7).

Overall the water mixing ratio from the simulations of these three campaigns fall within the
benchmark values (±1 g/kg). Similar to temperature, there are pairings of model performance.
The W-A11 and W-UM1 simulations have a tendency to be too moist. The W-NC simulations have
the smallest biases, however, unlike with temperature, the differences between the two simulations
are small, indicating that the addition of the ROMS has less of an impact on atmospheric moisture.
The CCAM simulations tend to be too dry, along with the W-UM2 simulation. All performance
statistics, both at the surface across Sydney and through the vertical at Sydney Airport, are consistently
better during SPS2 compared to the summer campaigns.

Again, a notable feature appears at 2000 m where there is an increasingly negative spike in the MB.
This dry MB is largest for SPS1 CCAM simulations and is aligned with the warm temperature biases
seen in Section 3.1. These warm, dry biases, where the variability of each of the model simulations are
increased and the correlation coefficient are reduced, is the result of the model’s inability to accurately
capture upper level inversions observed between 2000 and 3000 m on certain days.

Perhaps as expected, the simulations tend to overestimate moisture during relatively dry
observed conditions and underestimate moisture during relatively moist observed conditions.
The underestimation of atmospheric moisture, particularly in the W-UM2 simulations during all
campaigns and the CCAM simulations during SPS1, could result in impacts on subsequent air quality
modelling. In particular they may result in reductions in afternoon convection or formation of
non-precipitating cloud which could alter solar radiation, chemistry and secondary aerosol formation.

The possible sources of these drier conditions in the CCAM simulations may be from soil moisture
and temperature biases from the LSM, similar to what may be driving the temperature biases seen
in Section 3.1. Additionally, accurate soil moisture is achieved with a multi-year spin-up time [75],
however, the longest spin-up in these simulations was one month in C-CTM and the shortest was two
days for W-UM2. Increasing the length of the spin up of the LSM may result in improved surface
fluxes and, subsequently, temperature and atmospheric moisture.
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3.3. Wind

Winds influence the spatial distribution and concentrations of pollutants through processes of
dispersion, advection and turbulent mixing. It is, therefore, critical to accurately characterise the air
flow speed and direction for input into air quality models. Statistical comparisons of wind speed
measurements are straightforward, however, there is a relationship between model skill and the wind
speed when considering wind direction [76]. Jiménez et al. [76] found large differences between
simulated and observed winds at low wind speeds and in complex terrain, while the inverse was
found for higher wind speeds and flatter terrain. Comparisons of wind direction will not be examined
in this evaluation, however, it is interesting to investigate how well the models capture the strong
afternoon north-easterly sea breeze that is critical for ozone formation and transport in the Sydney
region [26]. Given that the predominant feature of the sea breeze is the east-west wind component,
this evaluation will focus on the zonal winds. The meridional wind plots can be found in Figures S10
and S11 in the Supplementary Material.
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3.3.1. Wind Speed

On average all the models overestimated nocturnal wind speeds during all three campaigns (see
Figure 6a), with the exception of O-CTM during SPS1. During the daytime throughout the two summer
campaigns, C-CTM, W-A11 and W-UM1 all overestimated wind speeds on average. During SPS2 these
three models simulated average daytime wind speeds closer to the observations. The other three WRF
configurations (W-UM2, W-NC1 and W-NC2) all underestimated wind speeds during the day across
all campaigns. O-CTM overestimated daytime wind speeds during SPS1, getting close to observations
on average during MUMBA and underestimating on average during SPS2.Atmosphere 2019, 10, x FOR PEER REVIEW  20 of 37 
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There are two clusters of wind speed model performance in the Taylor plots (Figure 6b), aligning
with the above mentioned diurnal groupings (W-A11, W-UM1 and C-CTM in one cluster and W-UM2
and both the W-NC simulations in the other). All models show lower variability than observed and
this deviation is largest for W-UM2 and both the W-NC models in all three campaigns. The correlation
coefficients range between 0.5 and 0.8 for the SPS2 campaign and 0.6 and 0.8 for the summer campaigns.
The O-CTM is an outlier with a correlation coefficient close to 0.4 for all three campaigns.

The quantile plots of the paired wind speed mean bias (Figure 6c) show that the lower 10%
(Q10) of wind speeds tend to be overestimated (too fast) and the higher 10% (Q90) of winds speeds
are underestimated (too slow). The bulk of the wind speed biases are within the benchmark values
(±1.5 m s−1) and the largest biases are seen in the higher wind speeds. The largest negative biases are
seen for the O-CTM (over −6 m s−1), W-UM2 and both the W-NC simulations (up to −4 m s−1), which
corresponds with the underestimation of daytime wind speeds seen in Figure 6a. The exception to
this is O-CTM during SPS1. This simulation overestimates peak daytime wind speeds on average
(Figure 6a); however, the lower correlation and the larger negative mean bias when the winds speeds
are fastest, suggests this simulation has the poorest performance across this campaign.

Examining the quantile-quantile plots (Figure 7), most of the models underestimate the highest
wind speeds, agreeing with the paired mean bias plots (Figure 6c). During MUMBA W-UM1, and to a
lesser extent W-A11 and the CCAM models, overestimate the high wind speeds, in particular around
15 m s−1. This overestimation is also seen in SPS1 for C-CTM, W-A11 and W-UM1. This differs from
the paired mean bias plots (Figure 6c), suggesting that these models have disproportionately high
wind speeds overall compared to the observations and the timing of the modelled high wind speed
events does not coincide with observed events.
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Figure 7. Quantile-quantile plots for wind speed (m s−1) comparing observations and models grouped
by each campaign (MUMBA, SPS1 and SPS2).

The daily analysis (Figure S7 in the Supplementary Material) shows that the wind speeds are
overestimated on this time scale. The Taylor plots highlight overall better model performance in the
daily analysis compared to the hourly. The daily averaged correlation coefficients compared to the
hourly averaged analysis increase to 0.6–08 for W-A11, W-UM1 and O-CTM, while all other model
simulations correlation coefficients were greater than 0.8. For daily averages the wind speed mean
biases all lie within the benchmark values.

Overall the mean biases in the vertical (Figure 8a) are within the benchmark values (±1.5 m s−1),
becoming smaller (within ±1 m s−1) above 1000 m, with the exception of the C-CTM and W-A11
simulations at the surface during MUMBA. The negative bias for all models in the lowest levels
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(Figure 8a) differ from the surface analysis (Figure 6), with positive biases overnight for all simulations
in and the W-A11, W-UM1 and the C-CTM simulations during the day. This difference is due to the
vertical profiles only containing BoM Sydney Airport data, where the wind speeds are, on average,
higher due to its location close to the coast. The models tend to underestimate winds at this site. This is
seen clearly in the bubble plot of surface mean bias in Figure 9, where the mean bias is negative at
Sydney Airport and often at another coastal site further south, whereas the mean bias is positive at all
other sites.
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The observations are from the twice daily radiosondes released at the BoM Sydney Airport site.
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The CRMSE (Figure 8b) is similar among the models, with values between 1.5 and 4 m s−1.
The correlation coefficients (Figure 8c) are generally greater than 0.6 for MUMBA and SPS2. In the SPS1
simulations the correlation coefficients decrease from 0.80 to a minimum of 0.4 at 1000 m, particularly
in the O-CTM, W-A11 and W-UM1 simulations. This reduction in correlation at 1000 m is the result
of these simulations overestimating the wind speeds over several days. The improvement in model
performance above the PBL is again potentially due to the nudging above the PBL forcing the models
towards the gridded analysis data (ERA-interim or FNL).

3.3.2. Winds Components

The strong sea breeze that occurs predominantly during summer is seen in the diurnal plots of
zonal winds (Figure 10a), with the models showing good agreement with the observed average diurnal
cycle. The easterly wind component peaks around 3 pm during the summer campaigns (SPS1 and
MUMBA) and all the models on average capture this feature. During SPS2, the westerly component
dominates with a weaker easterly shift than the observations on average by 4 pm. The amplitude of
the shift from westerly to easterly in the diurnally averaged plots is larger than observed for almost all
models. The C-CTM has the largest deviation from the observations during all campaigns.Atmosphere 2019, 10, x FOR PEER REVIEW  25 of 37 
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Figure 10. Zonal winds (m s−1) comparing observations and models grouped by each campaign
(MUMBA, SPS1 and SPS2) for (a) mean diurnal cycle (observations are shown in black) and (b)
Taylor diagrams.

Model performance of the zonal wind components vary considerably, particularly during the
summer campaigns, as illustrated by the spread in the Taylor plots (Figure 10b). Both the W-NC
simulations and W-UM2 are clustered together with slightly lower variability than the observations,
whereas W-UM1, W-A11 and both the CCAM simulations have higher variability than the observations.
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This is similar to the Taylor plots for wind speed (Figure 6b). The correlation coefficients range between
0.5 and 0.8 for all campaigns.

The analysis of daily averaged zonal winds (Figure S9 in the Supplementary Material) shows a
similar level of performance for MUMBA and SPS2 and decreased performance for SPS1. Interestingly,
the performance seen in the Taylor plots of the daily averaged meridional winds (Figure S11b in
the Supplementary Material) is improved when compared to the hourly analysis, as the north-south
component of the winds is more likely a synoptic feature and better captured on daily time scales.
However, the local sea breeze is a diurnal feature which is better represented by the hourly analysis.

The averaged zonal wind through the vertical profile for the morning (AM) and afternoon (PM)
soundings are presented in Figure 11a,b. Overall the models tend to follow the observed average wind
component through the vertical, with a weak westerly component (positive) in the morning during
summer, easterly (negative) at the top of the boundary layer and westerly (positive) above the PBL.
In the afternoon the sea breeze has set up an easterly wind flow within the PBL and the westerlies
remain above. During autumn (SPS2), the winds are consistently westerly through the vertical profile
in the morning. The afternoon winds generally remain westerly, however, the strength is much less in
the O-CTM, W-A11 and W-UM1 simulations, where the lower 1000 m has a slight easterly component.
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The consistent overestimation of calm nocturnal wind speeds seen in all simulations, could lead to
an underestimation of pollutant concentrations due to unrealistic dispersion. These calm conditions are
important for air quality as they are generally associated with high pollution events. Vautard et al. [11]
also saw this overestimation and suggested it may be associated with insufficient vertical resolution and
excessive vertical diffusion. Chambers et al. [8] demonstrated this overestimation of nocturnal winds by
the models (especially under stable conditions) and linked this problem directly to overestimated PBL
depths and found the resultant pollutant concentrations were also underestimated. This overestimation
of wind speeds may be due to the assigned surface roughness in the models, the thickness of the
near-surface model layer, or a host of challenges associated with modelling the surface boundary
layer [77,78] especially under weak winds and strong stratification [79].

Conversely, an underestimation of winds speeds, seen across the daytime of the W-UM2 and
both W-NC simulations, may lead to an overestimation of pollutant concentrations as dispersion and
advection would be reduced. The difference between coastal and inland wind speed biases could also
potentially impact air quality simulations. The models appear to be unable to capture the observed
shift in wind speeds between coastal and inland station locations.

In addition to wind speed, predicting the direction that air pollutants are transported is critical to
accurately modelling air quality impacts. The models appear, on average, to capture the direction and
amplitude of the daily sea breeze, a key component in the formation and transport of ozone across
the Sydney basin. In this location, the sea breeze provides a clear demonstration of the importance of
accurate wind fields for other meteorological parameters. For example, W-A11 (Figure 11b) develops
an overly strong sea breeze and as a result the water mixing ratio has a high bias in the afternoon.
The resultant chemical species may then be affected in a similar manner.

3.4. Planetary Boundary Layer Height

Turbulent mixing in the boundary layer of the atmosphere controls the dilution of air pollution at
the surface. In order to assess each model’s ability to simulate turbulent mixing, the PBLH has been
investigated. Each modelling system provides PBLH, however, the methods for computing it can vary
between models. For consistency, the PBLH for both the model output and the observations has been
derived using a method based on the bulk Richardson number (Ri), as described in [80]:

Ri(z) =
(g/θvs) ∗ (θvz − θvs) ∗ (z− zs)

(uz − us)
2 + (vz − vs)

2 +
(
bu2
∗

) (1)

The Ri profile is calculated using the virtual potential temperature (θv), wind component profiles
(u and v) starting from surface values (denoted by s) of 0 and ignoring surface frictional effects (b = 0).
The first level with a Ri ≥ 0.25 is identified and linear interpolation between that level and the next
lowest level provides an estimate of the PBLH.

The PBLH is computed for each morning (AM) and afternoon (PM) radiosonde measurement
at the BoM Sydney Airport site and are presented in Figure 12 (denoted by black dots for AM and
black crosses in a box for PM) along with the full time series of the modelled PBLH. Although the
observations are sparse during some periods, it is evident that the model simulations capture some of
the day-to-day variability of the PBLH in addition to several anomalous events.



Atmosphere 2019, 10, 374 24 of 33
Atmosphere 2019, 10, x FOR PEER REVIEW  28 of 37 

 

 
Figure 12. Planetary boundary layer height (PBLH—m) simulated (lines) and observed morning 
(AM—black dots) and afternoon (PM—black crosses in a box) for MUMBA, SPS1 and SPS2 campaign 
simulations. 

The campaign averaged normalised mean bias (NMB) computed for morning and afternoon 
observations are presented in Table 4. During the morning, generally all models overestimate PBLH, 
with the exception of O-CTM during MUMBA. Conversely during the afternoon, the models 
underestimate PBLH. The exceptions to this are C-CTM, O-CTM and W-A11 during MUMBA when 
the models overestimate the magnitude of the PBLH on the afternoon of the first of the two hot days. 
Additionally, W-NC1 on average overpredicts the afternoon PBLH during SPS2.  

Table 4. Normalised mean bias (%) of PBLH (m) for each model per campaign. 

Time of Day Statistic Model 
Campaign 

MUMBA SPS1 SPS2 

AM 
NMB (%) 

C-CTM 66 260 92 
O-CTM −9 61 47 
W-A11 41 184 57 
W-NC1 19 127 93 
W-NC2 8 139 71 
W-UM1 1 58 7 
W-UM2 17 131 167 

Mean (m) Observations 255 132 92 

PM 
NMB (%) 

C-CTM 17 −29 −1 
O-CTM 12 −22 1 
W-A11 13 −27 −8 
W-NC1 −31 −26 11 
W-NC2 −22 −18 −10 
W-UM1 −1 −31 −13 
W-UM2 −36 −26 −11 

Mean (m) Observations 1048 1196 985 

Figure 12. Planetary boundary layer height (PBLH—m) simulated (lines) and observed morning
(AM—black dots) and afternoon (PM—black crosses in a box) for MUMBA, SPS1 and SPS2
campaign simulations.

The two hot days in January (8th and 18th) of the MUMBA campaign, when the PBLH peaks
above 2000 m during the afternoon, are captured by all models for the first event, but only by W-A11,
W-UM1 and the two CCAM simulations for the second event. The timing of the peak is slightly later
for the W-UM2 simulation of January 8th, however, the magnitude is closer to observations. All other
simulations overestimate the PBLH between 500 m (W-UM1) and 2000 m (C-CTM) on January 8th.
There was no recorded rainfall during these two events, so the peaks are associated with heating, not
convective rainfall. The improved ability of the W-A11 simulation to capture the deep convection on
both hot days may be the result of increased vertical resolution (56 vertical levels), however, the W-UM1
simulation has similar vertical resolution to all other simulations (33 vertical levels).

Both the W-A11 and W-UM1 simulations used the MYJ PBL scheme (local closure) and more
accurately simulated the deep convection during the two hot days during MUMBA compared to the
simulations that used the YSU PBL scheme (non-local closure). The treatment of localised stability
maxima by the YSU non-local closure scheme should allow for a more realistic representation of mixing
from large eddies [81], simulating deep convection more accurately. However, it was not the case in
our comparison since the MYJ local closure scheme in the W-A11 and W-UM1 simulations were able to
simulate the larger PBLH during both of these events. This agrees with what was also seen in [21] and
the use of MYJ for this region was recommended in the performance evaluation of WRF simulations
over south eastern Australia in [82]. The CCAM simulations employ a non-local closure PBL scheme
and appear to simulate the deep convection during these events well.

During SPS1 there were two days towards the end of the measurement campaign (March 1st and
4th) when the observed PBLH was greater than 2000 m. However, these peaks were not associated
with above average temperatures. The C-CTM, W-A11, W-NC1 and W-NC2 simulations all captured
the amplitude of the first peak, however, none of the simulations captured the amplitude of the second
peak. There were also at least two days when some of the simulations overestimated the PBLH up to
2000 m. The large overestimations of the first day (February 20th) were predominantly from O-CTM
and W-A11, W-UM1 and W-UM2 and during the second day (February 27th) it was O-CTM, W-UM1
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and both the W-NC simulations. During SPS2, there were no days when the PBLH peaked over 2000 m,
however, all simulations, except W-UM2, overestimated the PBLH peaks up to 1500 m on two days.
There does not seem to be a PBL scheme that performs better during the SPS1 and SPS2 campaigns.

The campaign averaged normalised mean bias (NMB) computed for morning and afternoon
observations are presented in Table 4. During the morning, generally all models overestimate
PBLH, with the exception of O-CTM during MUMBA. Conversely during the afternoon, the models
underestimate PBLH. The exceptions to this are C-CTM, O-CTM and W-A11 during MUMBA when
the models overestimate the magnitude of the PBLH on the afternoon of the first of the two hot days.
Additionally, W-NC1 on average overpredicts the afternoon PBLH during SPS2.

Table 4. Normalised mean bias (%) of PBLH (m) for each model per campaign.

Time of Day Statistic Model
Campaign

MUMBA SPS1 SPS2

AM
NMB (%)

C-CTM 66 260 92

O-CTM −9 61 47

W-A11 41 184 57

W-NC1 19 127 93

W-NC2 8 139 71

W-UM1 1 58 7

W-UM2 17 131 167

Mean (m) Observations 255 132 92

PM
NMB (%)

C-CTM 17 −29 −1

O-CTM 12 −22 1

W-A11 13 −27 −8

W-NC1 −31 −26 11

W-NC2 −22 −18 −10

W-UM1 −1 −31 −13

W-UM2 −36 −26 −11

Mean (m) Observations 1048 1196 985

There is a considerable amount of spread in model performance as seen in the Taylor diagrams of
PBLH (Figure 13). It is evident that the model simulations generally overestimate variability in the
morning, with the exception of W-UM2 and both the W-NC models during MUMBA and W-UM1
during SPS2. Conversely, the Taylor plots illustrate lower variability in the modelled afternoon PBLH
compared to observations for most simulations, except for both W-NC simulations during SPS2 and
C-CTM in all campaigns. Overall, correlation coefficients are low, ranging between 0 and 0.6, with
the exception of the W-UM1, W-A11 and C-CTM simulations during the afternoon of the MUMBA
campaign where the correlation coefficients are over 0.9. This improved performance is the result
of better simulating the peak in PBLH associated with the hot days during January of the MUMBA
campaign. The poorest performance overall for PBLH is seen during the SPS1 campaign, which seems
to be the most challenging campaign to model overall.
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(MUMBA, SPS1 and SPS2).

The analysis performed here indicates that the models have limited skill in accurately predicting
the PBLH. There are two aspects to the PBLH observations which may be behind the errors in the
PBLH. Firstly, the observations are effectively discrete points in time, so that apparent biases in the
morning PBLH can be caused by errors in the timing of PBL growth. Second, the radiosonde launch
site is close to the coast, situated on the shore of Botany Bay and 8 km inland from the ocean. This has
the potential for small errors in wind direction to dramatically change the measurements upwind.

Most simulations tend to over predict the PBLH during the morning and under predict the PBLH
during the afternoon. The overestimation of the morning PBLH height has the potential to lead to an
underestimation of pollutant concentrations due to overestimated turbulent mixing. The overestimated
PBLH aligns with the overestimated nocturnal temperatures and wind speeds seen in Sections 3.1
and 3.3.

The underprediction of the afternoon PBLH would mean reduced daytime mixing and, therefore,
potential reductions in dispersion of pollutants. Investigations into PBLH in [8], found that under
stable nocturnal conditions there was less variability between the models compared to the unstable
categories, suggesting the models inability to accurately model these conditions.

3.5. Precipitation

Precipitation impacts air quality predominantly through wet deposition and aerosol scavenging.
Figure 14 shows total accumulated precipitation for each model during each campaign compared with
the observations and the MSWEPv1.2 gridded precipitation data [83]. Precipitation totals vary by
up to 1500 mm between the model simulations and campaigns. Overall, MUMBA had the greatest
observed precipitation (occurring at the end of the campaign), while the SPS1 period was relatively dry
compared to the other campaigns. The models appear to capture this variability in total precipitation
between campaigns, with the exception of a few model simulations.
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Figure 14. Time series of accumulated precipitation (mm) averaged over all BoM stations for each
model and campaign (MUMBA, SPS1 and SPS2).

Total accumulated precipitation modelled during the MUMBA campaign is overestimated by all
simulations except W-NC1 and W-NC2. All models have more precipitation than observed during the
drier SPS1 campaign, with the W-NC1 and W-NC2 closest to the observations. W-A11, W-UM2 and
O-CTM overestimate accumulated precipitation during SPS2 whereas all other models underestimate
precipitation for this campaign.

Overall the simulations tend to overestimate total accumulated precipitation. The exceptions are
the two W-NC model simulations, which underestimate precipitation during MUMBA and SPS2 as well
as W-UM1 during SPS2. The overestimation of precipitation would likely result in underestimation of
particulates, while conversely the underestimation of precipitation would lead to an overestimation of
particulate pollutant due to reduced wet deposition and aerosol scavenging.

The O-CTM simulation was consistently wetter than the C-CTM simulations which was also seen
in the water mixing ratio (Section 3.2). This difference is atmospheric and precipitable water may
be the result of different versions of the models (see Table 1). The two W-NC simulations used the
MSKF scheme and the precipitation was dominated by non-convective precipitation (analysis not
provided in this manuscript), which may explain why these simulations were drier than the other WRF
simulations which used the Grell 3D cumulus scheme. The MSKF scheme is relatively new and has
proven to have good skill in other regions of the globe, however, this scheme may not be not suited to
South-eastern Australia.

4. Conclusions

A model intercomparison has been conducted to evaluate the ability of two meteorological models
(CCAM and WRF), used in a suite of seven air quality modelling systems, to reproduce observed
features of the local meteorology relevant to air quality and specific to Sydney and Wollongong in
NSW, Australia. The modelling covered three periods when air quality measurement campaigns were
held to facilitate an in-depth evaluation of the air quality models. The operational evaluation was
conducted on hourly data averaged across seven BoM sites, focusing on temperature, water mixing
ratio, winds, PBLH and precipitation.

Overall the best performance is seen for the SPS2 campaign (during autumn) when temperatures
tend to be cooler, the atmosphere is drier and wind speeds are lower. The data generally sit within the
benchmark values, except at either end of the scale, where the bias tends to be larger.



Atmosphere 2019, 10, 374 28 of 33

A summary of the findings in this study are:

• The near surface air temperatures on average are accurately predicted by the WRF models, with
biases within ±2 ◦C and CRMSE <2 ◦C. There are larger biases (within ±3 ◦C) and CRMSE up
to 3 ◦C seen in the daytime near surface temperatures in the CCAM simulations. There is a
potential for these biases to impact on photochemistry as they do occur when temperatures peak.
The largest temperature biases (up to 5 ◦C) are seen in the nocturnal temperature, which may be
associated with the model’s inability to simulate stable conditions overnight and could impact on
dispersion in subsequent air quality modelling.

• Most models show a consistently drier atmosphere than observed, that is largest overnight
(<−6 g/kg), while several the WRF simulations overestimate daytime moisture (up to 4 g/kg).

• The biases in temperature and atmospheric moisture in both CCAM simulations may be the result
of biases from land surface fluxes. Further investigations into the ideal spin-up length and choice
of LSM may reduce these biases.

• The wind speeds were consistently over predicted overnight, which is a common issue with
meteorological models. The impact of these biases would lead to underestimation of pollutants
overnight due to overestimated dispersion/advection. All simulations tend to underestimate the
higher wind speeds.

• The models appear to have the ability to simulate the local-scale meteorological features, like the
sea breeze, which is critical to ozone formation over the Sydney Basin. Further analysis into the
capability of the models to emulate the progression of the sea breeze front is recommended.

• The PBLH evaluation highlighted some timing differences in the formation of the PBL, which would
likely impact simulated morning dispersion. However, the discrete nature of the observations
makes it challenging to fully identify the cause of the biases. Some of the models did better than
others at capturing PBLH peaks during MUMBA, with the WRF MYJ PBL scheme showing better
performance predicting deep convection during hot days compared to YSU. Neither PBL scheme
showed better performance for deep convection not associated with extreme temperatures.

• Simulated total accumulated precipitation was overestimated by most models across all campaigns.
The W-NC simulations, which used the MSKF cumulus scheme, tended to underestimate total
precipitation from a reduction in convective rainfall over the region. Further investigations into
the optimal cumulus parameterisation for the Australian region may shed some light on the
biases observed.

• The simulations with stronger nudging (both W-NC simulations) had improved skill through
the vertical profiles compared to the weaker scale selective spectral nudging in W-A11 and
CCAM simulations.

When taken together, the pattern of biases in the model outputs suggests areas which might
improve the results, at least in some of the simulations. Improving the surface fluxes of moisture and
momentum may help with the biases seen in temperature, wind speed and water mixing ratio, and
this may partly be achieved by using more realistic initial conditions for soil moisture. The results also
point to the importance of nudging parameters. Like previous studies, the difficulty of adequately
representing the stable boundary layer is particularly apparent, meaning that the output from chemical
models should be used with caution under conditions of light winds and stable stratification.

Largely the model simulations performance meets the benchmarks of key atmospheric variables
for input into air quality models. The biases shown are similar to what has been identified in
previous model intercomparison studies and they have the potential to impact on subsequent air
quality modelling.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/10/7/374/s1,
Figure S1. Box and whisker plot of station data for each model, meteorological variable and statistic; Figure S2.
Same as Figure 7 with hourly temperature data; Figure S3. Same as Figure 2 with daily averaged temperature data;
Figure S4. Same as Figure 3 up to 20,000 m elevation; Figure S5. Same as Figure 4 with daily averaged mixing
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ratio data, Figure S6. Same as Figure 5 up to 20,000 m elevation; Figure S7. Same as Figure 6 with daily averaged
wind speed data; Figure S8. Same as Figure 8 up to 20,000 m elevation; Figure S9. Same as Figure 11 with daily
averaged zonal wind data; Figure S10. Same as Figure 10 with hourly meridional winds; Figure S11. Same as
Figure S7 with daily averaged meridional wind data; Table S1. Statistics for temperature (◦C) for each model and
campaign; Table S2. Statistics for mixing ratio of water (g/kg) for each model and campaign; Table S3. Statistics for
wind speed (m s−1) for each model and campaign; Table S4. Statistics for zonal (U) and meridional (V) winds (m
s−1) for each model and campaign; Table S5. Statistics for Planetary Boundary Layer Height (m) for each model
and campaign for morning (AM) and afternoon (PM).
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