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Evaluation of Remote Sensing Based Terrestrial
Productivity From MODIS Using Regional
Tower Eddy Flux Network Observations
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Kenneth J. Davis, Paul V. Bolstad, Bruce D. Cook, Ankur R. Desai, Daniel M. Ricciuto, Beverly E. Law,
Walter C. Oechel, Hyojung Kwon, Hongyan Luo, Steven C. Wofsy, Allison L. Dunn, J. William Munger,

Dennis D. Baldocchi, Liukang Xu, David Y. Hollinger, Andrew D. Richardson, Paul C. Stoy, Mario B. S. Siqueira,
Russell K. Monson, Sean P. Burns, and Lawrence B. Flanagan

Abstract—The Moderate Resolution Spectroradiometer
(MODIS) sensor has provided near real-time estimates of gross
primary production (GPP) since March 2000. We compare four
years (2000 to 2003) of satellite-based calculations of GPP with
tower eddy CO2 flux-based estimates across diverse land cover
types and climate regimes. We examine the potential error contri-
butions from meteorology, leaf area index (LAI)/fPAR, and land
cover. The error between annual GPP computed from NASA’s
Data Assimilation Office’s (DAO) and tower-based meteorology is
28%, indicating that NASA’s DAO global meteorology plays an im-
portant role in the accuracy of the GPP algorithm. Approximately
62% of MOD15-based estimates of LAI were within the estimates
based on field optical measurements, although remaining values
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overestimated site values. Land cover presented the fewest errors,
with most errors within the forest classes, reducing potential
error. Tower-based andMODIS estimates of annual GPP compare
favorably for most biomes, although MODIS GPP overestimates
tower-based calculations by 20%–30%. Seasonally, summer
estimates of MODIS GPP are closest to tower data, and spring
estimates are the worst, most likely the result of the relatively
rapid onset of leaf-out. The results of this study indicate, however,
that the current MODIS GPP algorithm shows reasonable spatial
patterns and temporal variability across a diverse range of biomes
and climate regimes. So, while continued efforts are needed to
isolate particular problems in specific biomes, we are optimistic
about the general quality of these data, and continuation of the
MOD17 GPP product will likely provide a key component of
global terrestrial ecosystem analysis, providing continuous weekly
measurements of global vegetation production.

Index Terms—AmeriFlux, CO2 eddy covariance flux [net
ecosystem exchange (NEE)], gross primary production (GPP),
Moderate Resolution Imaging Spectroradiometer (MODIS),
remote sensing, Terra.

I. INTRODUCTION

GLOBAL climate change is a topic of vital importance to
meteorological and ecological science communities and

policy makers. According to the IPCC [1], atmospheric carbon
dioxide concentration has risen by 31% since 1750, largely due
to human activities such as fossil fuel burning and deforestation.
Additionally, it is impossible to account for associated climate
change, such as increases in air temperature without considering
the effects of human activity on the carbon cycle [2]. However,
atmospheric CO concentrations have not risen as high as ex-
pected once all of the known sources and sinks are taken into
account [3]. It is hypothesized that much of this “missing” CO
is being sequestered by terrestrial vegetation, and that the terres-
trial biosphere, particularly mid-latitude forests, can sequester
significant amounts of carbon [3]–[5]. While the magnitude of
the net terrestrial carbon uptake is uncertain and varies inter-
annually by a factor or two or more, the process of carbon se-
questration correlates with global-scale climate variations [1],
[5]–[7]. A scientific understanding of these processes in the con-
text of the entire Earth system is important for the develop-
ment of a sustainable life support system, and change in terres-
trial biological activity is likely one of the “most fundamental



Fig. 1. Location of the AmeriFlux network sites used to verify the MODIS GPP product (projection =WGS 84; http://www.wgs84.com/).

measure[s] of global change” [8]. Approaching such an under-
standing at the global scale requires global measures of terres-
trial biological activity. This interest has driven the effort to
create a consistent, timely global dataset of primary production
estimates.
Gross primary production (GPP) is a measure of photosyn-

thesis and can be estimated from satellite remote sensing using
optical and near-infrared spectral wavelengths [9]–[13]. Satel-
lite remote sensing-based observations of GPP provide a quan-
titative, but inferred, measure of spatial patterns and seasonal to
interannual variability in vegetation activity and can be used to
assess relative human habitability of the biosphere in terms of
the food, fiber, and fuel it provides. Additionally, GPP is the pri-
mary conduit of carbon flux from the atmosphere to land. Thus,
improved knowledge of the spatial and temporal dynamics of
GPP provides a useful measure of ecosystem health and impacts
from regional disturbances from land use and climate change,
resulting in a better understanding of the carbon cycle [11], [14].
The Moderate Resolution Imaging Spectrometer (MODIS)

was designed in part to help answer questions about global
carbon dynamics. Mounted on both the Terra and Aqua satel-
lites of the Earth Observing System (EOS), the MODIS sensors
provide near daily coverage of the globe at 1-km resolution.
From the 36 spectral bands present on the sensor, a number of
products have been developed for the atmosphere, ocean, and
land surface. Our particular interest is the use of the MODIS
sensor to estimate GPP at a 1-km resolution for 109 782 756
km of global vegetated land surface. Satellite remote sensing
measurements of GPP are inferred from surface reflectance
measurements made from space, and they are only useful if their
relative accuracy can be determined. A number of verification
efforts have been established to determine the accuracy of the
MODIS standard products. The BigFoot validation project, for
example, has provided detailed information regarding spatial
scale attributes of a number of biophysical variables produced
fromMODIS including: land cover class, leaf area index (LAI),

and the associated fraction of photosynthetically active radi-
ation absorbed by vegetation canopies (fPAR) and vegetation
net primary production (NPP) at a few sites throughout North
America [15]–[17]. However, these intensive sampling and
validation efforts were relatively infrequent in space and time
due to their high cost and logistical constraints. For this investi-
gation, we evaluate regional patterns and temporal dynamics of
satellite remote sensing estimates of seasonal and annual GPP
from MODIS using more limited information from a greater
number of sites within various biomes and climate regimes.
Our effort is aimed at determining if there is a systematic
bias in MODIS production estimates relative to network ob-
servation-based GPP estimates, and if such a bias originates
from the MODIS input data. Specifically, we compare flux
tower-based estimates of GPP to MODIS-based estimates at
fifteen research sites in six different biome classes across North
America (Fig. 1; Table I).
The calculation of GPP used in the MODIS GPP algorithm

(MOD17; Fig. 2) is based on work done by Monteith [18],
[19] relating gross photosynthesis to the amount of photosyn-
thetically active radiation (PAR) absorbed by photosynthetic
biomass. A conversion efficiency term is used in the relation-
ship, such that

(1)

where is the radiation use conversion efficiency (RUE) of the
vegetation (kgC ), fPAR is the fraction of incident PAR
that is absorbed by the canopy, and PAR is the PAR attendant
on the canopy ( ).

The RUE (i.e., the amount of carbon a specific vegetation type
can produce per unit of energy ) is calculated as

(2)

where is the biome-specific maximum conversion effi-
ciency, is a multiplier that reduces the conversion
efficiency when cold temperatures limit plant function, and



TABLE I
AMERIFLUX NETWORK SITES USED IN ANALYSIS

Fig. 2. Flowchart shows the logic behind theMOD17 algorithm for calculating
eight-day GPP.

is a multiplier used to reduce the maximum conver-
sion efficiency when the vapor pressure deficit (VPD) is high
enough to inhibit photosynthesis. The multipliers range linearly
from 0 (total inhibition) to 1 (no inhibition) for a range of
biomes, which are listed in a Biome Properties Look-Up Table
(BPLUT), along with the biome-specific maximum conversion
efficiency used in the algorithm [20]. The effect of soil water
availability is not included in the GPP algorithm. To partially
account for this issue, sensitivity to VPD is increased in the
model as a surrogate for drought effects. Complete details
on the derivation of the algorithm and the values used in the
BPLUT can be found elsewhere [20]–[22].
There are three potential sources of error related to inputs for

the MOD17 GPP algorithm: 1) meteorology, 2) radiometry, and
3) biophysical inputs to themodel. Each of these sources of error
requires a different mode of verification and must be considered
separately. Meteorological errors arise from the use of global
scale meteorology (1.00 1.25 ) from NASA’s Data Assim-
ilation Office (DAO) GEOS-4 global climate model. Errors in

the radiometry derive from results of the MODIS LAI/fPAR al-
gorithm (MOD15) [23]–[25]. There are two potential sources of
error regarding biophysical attributes. Correct land cover classi-
fication from the MOD12 decision tree algorithm is vital to the
success of MODIS GPP calculations. The fPAR algorithm uses
a structural land cover classification scheme in its calculations
[24], while the GPP algorithm depends upon the University of
Maryland (UMD) land cover classification scheme [26] to dif-
ferentiate among biome types and determine the correct conver-
sion efficiency for the pixel. Errors in either of these classifica-
tion schemes will lead to incorrect estimates of production.
Additional sources of potential error arise from the biome-

specific properties used in the MOD17 algorithm. An accurate
derivation of is difficult because it is affected both by vari-
ations in climate (e.g., temperature, humidity, and soil water)
and by biological attributes (e.g., land cover type C versus
C plants) [8]. To implement MOD17 globally, assumptions
are made to establish a single use efficiency for each of the 12
land cover classes used in the MOD17 algorithm. These biome-
specific radiation-use efficiencies, as well as the stress limits
for minimum temperature and VPD, were originally derived
prelaunch using a global simulation of the ecosystem process
model Biome-BGC [27]–[29]. Postlaunch verification efforts
have led to a recalibration of these parameters in the latest ver-
sion of MOD17, described fully by Zhao et al. [30]. The re-
calibration has resulted in a new release of the MOD17 data



(Collection 4.5; C4.5), which is the basis for this investiga-
tion. Finally, we assume that nutrient constraints on vegetation 
growth such as nitrogen stress are quantified by limiting canopy 
leaf area. While this assumption is not entirely accurate [31], 
spectral reflectances are somewhat sensitive to leaf chemistry, 
and MODIS-derived LAI and fPAR may partially assess differ-
ences in leaf nitrogen content.

II. MATERIALS AND METHODS

This investigation focuses on error contributions from mete-
orology, land cover, and the MOD15 LAI/fPAR algorithm only. 
Additional error sources may be due to uncertainties in the eco-
physiological assumptions of the BPLUT, but these require fur-
ther investigation.

A. Meteorological Data

Site meteorological data were obtained directly from partici-
pating site researchers or were downloaded from the AmeriFlux
network website (public.ornl.gov/ameriflux). Half-hourly or
hourly data consisting of air temperature ( , C); precipi-
tation (PPT, cm); either PAR ( mol m s ) or incoming
shortwave radiation ( , m ); and either relative
humidity (RH, %) or VPD, Pa were used in this analysis. From
these data, we obtained daily maximum air temperature ( ,
C), minimum air temperature ( , C), average daytime
temperature ( , C), daytime average VPD ( ,
Pa), and total (assuming ,

m ).
Direct inputs to the MODIS GPP algorithm include ,

, , and , which were obtained from
NASA’s Data Assimilation Office (DAO, polar.gsfc.nasa.gov)
GEOS-4 global climate model at a 1.00 1.25 resolution
[32], [33]. Daily data for each pixel were first compiled from
three-hour data and then interpolated using a nonlinear interpo-
lation scheme based on the four nearest DAO cells [30].

B. Eddy Covariance CO Flux and Site Data

For this effort, we relied heavily upon members of the
AmeriFlux community to provide ground-based measurements
of the net ecosystem exchange (NEE) of CO between the bio-
sphere and the atmosphere, as well as LAI measurements and
vegetation cover types. The NEE measurements are used with
local meteorological measurements to estimate GPP for fifteen
individual sites (38 site years) in North America (Table I).
AmeriFlux is a regional network of sites making microme-
teorological, meteorological and biological measurements in
different biomes of North and South America [34]. To ascertain
the quality of a global product, it is necessary to verify the
product under many different scenarios, in this case, differing
vegetation types and climate regimes. Many of the selected
sites are forest ecosystems with widely disparate climate. A
number of these forests are boreal and transitional forests of
diverse species composition, including hardwoods, conifers
and mixed forest with dissimilar soils and hydrologic patterns.
Other forests include a subalpine forest and a warm-temperate
planted pine forest. Additional biomes represented in this study
include artic tundra, northern grassland, oak savanna, and

chaparral. Climate regimes range from the northern arctic to
mid-continent boreal and transition areas, as well as temperate
and Mediterranean climates.
Available NEE estimates were obtained for the years 2000

to 2003 (Table I). Many site investigators provided site-specific
estimates of the component fluxes [GPP and ecosystem respi-
ration (Reco)]. GPP and Reco were estimated for several addi-
tional sites using a method that accounts for seasonal changes in
the temperature sensitivity of ecosystem respiration using NEE,
canopy CO storage, air and soil temperatures, VPD, and in-
coming shortwave radiation [35]. Estimates of GPP and Reco
for the Duke Forest site were obtained using the method created
for the Chequamegon Ecosystem Atmosphere Study (ChEAS)
study sites (WLEF, Lost Creek, Sylvania, Willow Creek) [36],
[37]. This method is a slight modification of the method used by
Falge et al. [38], and Reco and GPP are modeled using response
functions based on soil temperature and PAR.
Site-specific LAI data were obtained from the literature,

the AmeriFlux website, and site investigators. In general, only
average maximum LAI measurements were available for the
sites. Where possible, annual measurements corresponding to
the time of the MODIS estimates were obtained. Otherwise,
multiyear means were calculated from available data, repre-
senting typical values for each site. While spatial heterogeneity
within a 1-kmMODIS cell is common [15], it is not specifically
tested in this study because of the large number of sites and
limited datasets available.

C. MODIS Data

The verification exercise is based on Collection 4.5 (C4.5)
MODIS GPP (MOD17) data, available from the NTSG anony-
mous ftp site (ftp.ntsg.umt.edu/pub/MODIS). Using the latitude
and longitude provided by the investigators, ASCII subsets
for many of the MODIS land products are created at the Oak
Ridge National Laboratory (ORNL) Distributed Active Archive
Center (DAAC) (www.modis.ornl.gov/modis/index.cfm). We
obtained 7 7 km cutouts centered over each eddy covariance
flux tower location representing:

1) land cover classification (MOD12Q1, C3);
2) LAI and fraction of absorbed PAR (fPAR) (MOD15A2,

C4);
3) GPP (MOD17A2, C4.5).
The MODIS Collection 3 (C3) land cover classification [39]

is used in the Collection 4 (C4) LAI/fPAR and Collection 4.5
(C4.5) MODIS GPP calculations. While the Collection 4 land
cover dataset has been recently released and is a significant im-
provement over the Collection 3 (C3) dataset [40], this analysis
is restricted to the C3 MOD12 land cover classification dataset.
There are two separate land cover classification schemes used
in the calculation of GPP. First, the MOD15 (LAI/fPAR) al-
gorithm uses the MOD12Q1 Land Cover Classification Type 3
(LAI/fPAR biome scheme) [24], [41]. The MOD17 algorithm
uses the University of Maryland (UMD) land cover classifica-
tion (MOD12Q1 Land Cover Classification Type 2 [26]). Er-
rors in classifying either or both of these land cover types will
propagate to the MOD17 algorithm, resulting in erroneous GPP
outputs.



The MOD15A2 LAI and fPAR data were subjected to a rig-
orous quality check in which only those pixels that were of good
quality according to the MOD15A2 quality assurance product
and that used the primary radiative transfer algorithm were ac-
cepted [25]. Average eight-day LAI and fPAR were calculated
separately for each land cover type foundwithin a 7 7 km grid.
Linear interpolation was used to fill data gaps in the LAI and
fPAR as in the official C4.5 product [30]. Eight-day mean, total
seasonal, and total annual values of GPP were calculated for
each 7 7 km subset (49 pixels) and used for comparison with
site estimates of GPP. MODIS data collection began on Day 56
of 2000. Therefore, to have four complete years of data, average
LAI and fPAR were calculated from the 2001 to 2003 data and
used to simulate GPP estimates for January–February 2000.
Gaps within the MOD15 LAI and fPAR data were filled via

linear interpolation. An average of 15 ( ) eight-day averages
(out of a possible 46) were missing during each site year with
a median gap size of 6 ( at Barrow, AK; at
numerous sites). During March 30–October 15, there were an
average of six ( ) missing datapoints with a median gap size
of 2 ( 10 at Harvard Forest; 0 at Lethbridge).
Once the data were compiled, we made direct comparisons

of both total annual and seasonal MOD17 GPP with tower-es-
timated GPP. To elucidate the effects of meteorology on the re-
sults, we used an off-line, but identical, version of the MOD17
GPP algorithm to calculate the GPP for each of the land cover
types at each site using theDAOmeteorology and the land-cover
specific average fPARmentioned in the previous paragraph. We
then created weighted averages of GPP for each site year. We
replaced the DAOmeteorology with tower meteorology and fol-
lowed the same procedure to obtain estimates of GPP based on
the local site environment. Use of the off–line algorithm ensured
that the only variant in the input data was the meteorology.

D. Analytical Methods

All datasets were tested for normality using the Shapiro-
Wilkes normality test. Pearson’s correlation analysis ( ) was
used when the data were normal, and the confidence limits
(CL) surrounding were calculated as

(3)

where is the number of samples used in the analysis and
is the Student t-statistic. When the data were not normally dis-
tributed, a paired two-sided t-test was used, as it is more robust
to the assumption of normality. In both cases, data were consid-
ered statistically significant when . When data were
subset, such as the biome-specific data, a Bonferroni correction
was applied, and data were considered statistically significant
when . Finally, a relative error term ( , %) was
calculated for each comparison, such that

(4)

III. RESULTS

A. Annual GPP (MOD17, C4.5)

Themost recent release ofMOD17 data (C4.5) was compared
with flux tower estimates of annual GPP (Table II). There is a
fairly strong correlation between the MOD17 standard product
and tower estimates of annual GPP ( ), but
MOD17 tends to overestimate tower GPP for most sites (

). For the most productive sites, however, MOD17 underes-
timates tower GPP. Potential errors associated with the MOD17
algorithmwere described in the introduction and are covered in-
dividually as follows.

B. Meteorology (DAO)

The NASA DAO global meteorology used with MODIS
spectral data to derive GPP is obtained at relatively coarse
(1.00 1.25 ) spatial scales. The DAO-based MOD17 algo-
rithm results (DAO-based GPP), using the off-line calculations
of fPAR, produced an mean annual GPP of 1039 gC m
[Fig. 3(a); Table II], nearly identical to results from the standard
product. Differences are attributed to the averaging technique
used in the analysis. The remaining comparisons in this paper
will be made against these data as they are directly compa-
rable to calculations made with tower meteorology. These
results also have good correlation with annual tower GPP (996
gC m ; ). The DAO-based data
consistently overestimated local tower-based estimates, with
a relative error of 19%. Use of local tower meteorology in
the MOD17 algorithm [Fig. 3(b); Table II] reduced correla-
tion when compared with tower network-based GPP results
( ), but also reduced ( ). Underes-
timation of tower GPP increased at the most productive site
(Duke Forest), indicating that there are several factors affecting
GPP estimates at this site.
Overall, the arithmetic mean difference between DAO and

tower meteorology based GPP results is , indi-
cating that the DAO meteorology plays an important role in
the accuracy of the GPP algorithm, and that this role is site
specific (Fig. 4). Minimum daily temperatures are significantly
different from local measurements at both the Tonzi Ranch
site ( ) and the Niwot Ridge site ( ). On an
annual basis, minimum daily temperatures are overestimated at
the Tonzi Ranch site ( ) and underestimated at the
Niwot Ridge site ( ). The mean annual daytime
VPD is generally underestimated by the DAO meteorology
[Fig. 4(c) and (f)] at both Niwot Ridge, the humid subalpine
site ( ), and dry sites, such as Metolius and Tonzi
Ranch ( ), although this trend is more apparent at the
dry sites, particularly during the summer months [Summer

; Fig. 4(f)]. Radiation tends to be well represented,
but localized cloud cover results in substantial day-to-day
variability in the results, which can cause significant discrep-
ancies between the DAO and tower meteorology at both sites
( ). Variability in radiation is greater at the Tonzi
Ranch site ( ) than the Niwot Ridge site ( ).
The effect of meteorology varies by biome type and site

(Figs. 1 and 3 and Table III). There are only two biomes as
classified by the C3 MOD12 land cover classification with



TABLE II
COMPARISON OF TOWER ESTIMATES OF GPP WITH THOSE DERIVED FROM THE MODIS ALGORITHM

sufficient data for significant statistical analysis—evergreen
needleleaf forests (ENF) and mixed forests (MF). The ever-
green needleleaf forest sites cover a range of biomes, including
boreal, subalpine, and dry temperate areas. The MODIS GPP
with DAO meteorology significantly overestimates tower GPP
at all of these sites ( ; ). Use of tower
meteorology leads to a significant underestimation of annual
GPP ( ; ).

The MOD17 algorithm GPP for MF sites is significantly dif-
ferent from the tower GPP for calculations using both DAOme-
teorology ( ) and tower meteorology ( )
(Table III). However, annual relative error for both datasets is
small ( and , respectively). This analysis fails
to illustrate that there is, in fact, little variation in theMODIS es-
timates of GPP regardless of the value of the tower GPP (Fig. 3).
At the most productive site (Duke Forest), MODIS substan-
tially underestimates GPP (mean for DAO and

for tower meteorology), noting that Duke forest,
an ENF, is misclassified as MF (see Section III-C).
The relationships betweenMODIS and tower estimates at the

Duke Forest and Tonzi Ranch sites become worse when tower
data are used. Use of the DAO meteorology in the MODIS
GPP algorithm at the Duke Forest site results in GPP values
that are consistently lower than tower-based results for all four
years examined ( ). The use of tower meteorology
lowers GPP estimates even further ( ). At the Tonzi
Ranch site, DAO meteorology leads to an overestimate of GPP
( ), while tower meteorology leads to a much larger
underestimation of GPP ( ).

There is an underestimation of GPP using both DAO (
) and tower meteorology ( ) for the Harvard

Forest site, identified by theMODISUMD land cover classifica-
tion as the only predominately deciduous broadleaf forest. Open
shrubland (OS) sites are overestimated when local tower mete-
orology is used in the MODIS GPP algorithm ( ), but
there is greater GPP overestimation when DAO meteorology is
used ( ). There is a general reduction in MODIS
GPP when local tower meteorology is used at the savanna site
( ), while the DAO based meteorology tends to
overestimate GPP ( ). There is no major change in
the relationship between tower- and MODIS-based GPP at the
Lethbridge grassland site with the change in meteorology, indi-
cating that the use of DAO meteorological data accurately cap-
tures annual GPP ( ; Table III).

All of the temperate-boreal transitional forest sites
(Lost Creek, WLEF, Willow Creek, Sylvania, Howland
Forest) have approximately the same MODIS-derived GPP
( gC m ), although tower GPP is actually
quite variable, ranging from 660 to 1450 gC m . Four
of these five study sites are part of a local cluster of towers
situated in close proximity to one other. They are also located
within the same DAO grid cell, and the tower meteorology at
these four sites is quite similar. Although tower estimates of
the MOD17 algorithm accurately reflect GPP at the Willow
Creek and Sylvania sites, GPP at the Lost Creek and WLEF
sites is overestimated. The GPP of the Howland Forest site is
underestimated when compared with tower data. When tower



Fig. 3. Comparison of annual GPP estimates from the flux tower sites and the MODIS 7� 7 km cutout. These data were created using (a) the global DAO
meteorology and (b) tower-specific meteorology.

Fig. 4. Comparison of the VPD measured at the tower site and that estimated by the global DAO meteorology for 2002. Sites with both (a)–(c) low summer
daytime average VPD (Niwot Ridge) and (d)–(f) high summer daytime average VPD (Tonzi Ranch) are shown. These two sites reflect the extremes in summertime
VPD measured at the study sites.

meteorology is used in the MODIS algorithm, the comparison
between tower and MODIS GPP improves.

C. Land Cover (MOD12)

Forested ecosystems are the dominant biomes considered in
this verification exercise (Table II). In general, the MOD12 de-
cision tree algorithm classifies forests correctly (Fig. 5). Most
errors that do occur are within the forest classes. For example,
many pixels are classified as mixed forest (MF) pixels when
they are actually dominated by either evergreen needleleaf forest

(ENF) or deciduous broadleaf forest (DBF). The underlying
LAI/fPAR land cover classification more accurately reflects the
vegetation cover (data not shown), presumably because there is
no mixed forest classification within the LAI/fPAR land cover
scheme [24], [26].
There are some areas in which misclassification may be a

significant source of error (Fig. 5). At the Barrow tower site, for
example, local vegetation is predominantly wet sedge tundra,
which is more physiologically similar to grassland (Class
10) than the shrubland (Class 7) and barren/sparse vegetation



TABLE III
BIOME-BASED COMPARISON OF TOWER ESTIMATES AND MODIS-DERIVED ESTIMATES OF ANNUAL GPP

USING (A) GLOBAL METEOROLOGY AND (B) TOWER METEOROLOGY IN THE MODIS ALGORITHM

(Class 16) categories included in the current classification
by the MOD12Q1 product. The Willow Creek site is also
anomalous because there are a number of cropland pixels
in the 7 7 km MODIS extraction window surrounding the
tower. While there are some wetland areas nearby which may
be impacting the results, site investigators have found that the
area surrounding the flux tower is dominated by deciduous
broadleaf forest, with no cropland in the vicinity. The Duke
Forest site misclassification also falls under the category of
heterogeneous land cover and management. While analysis of
the MODIS land cover indicates that 94% of the MODIS pixels
are forested, the 7 7 km MODIS extraction window includes
old field and hardwood forest vegetation, a clearcut area, por-
tions of the city of Chapel Hill, NC, and the Orange County,
NC, municipal landfill. The investigators use a strict footprint
analysis to ensure that measured fluxes originate from the pine
forest. The Metolius young ponderosa pine site showed 8%
of the area misclassified as shrub- or grassland, when, in fact,
the areas were young pine forests where field measurements
indicate about 40% of the cover was understory shrubs.

D. LAI and Fraction of Absorbed PAR (MOD15)

The MOD15A2 algorithm provides essential inputs to the
MOD17 GPP/NPP algorithm. The fPAR is used to directly cal-
culate the GPP of a pixel (1), while LAI is used to scale the
respiration equations for NPP estimates. Errors in fPAR, then,
will lead to incorrect estimates of GPP. Unfortunately, few tower
sites currently provide seasonal estimates of LAI because of the
logistical difficulty in making enough measurements spatially

around the towers, and the effect of tree stems on the subcanopy
measurements as solar zenith angle increases autumn through
spring and as solar azimuth changes seasonally. Furthermore,
very few tower sites measure site-specific fPAR at the scale
necessary for comparison with MODIS results. The MODIS
LAI is derived via radiative transfer methods [24], and since
LAI and fPAR are generally related to each other, we assume
that an overestimation of LAI would correspond to an overesti-
mation of fPAR. This is potentially a greater issue at low LAI
( m m ) sites, when a small change in LAI corresponds
to a large change in fPAR, assuming a Beer’s Law relationship.
At sites with higher LAI values, however, a large change in LAI
corresponds to a small change in fPAR, and algorithm satura-
tion occurs. Field-based estimates of LAI ranged from 0.6 to
5.3 m m , with a mean of 3.8 m m . Overall, 62.5%
of the LAI estimates from MODIS lie within the specifications
( m m of LAI) of the MOD15A2 algorithm (Fig. 6).
The remaining MOD15A2-based LAI values overestimate site
LAI measurements by a relative error of 9.6% to 323.6% (me-
dian 30.3%), with the largest RE for sites with LAIs ranging
from 1.0 to 5.2 m m (median 3.9 m m ).
The LAI estimates fromMODIS are consistent by biome type

relative to site-based measurement results (Table IV). MODIS
LAI significantly overestimates site LAI at both low LAI (

) and high LAI ( ) sites. Evergreen needleleaf
forests have an average estimated MODIS LAI of 4.5 ( )
m m , and an average measured LAI of 3.6 ( ) m m .
Conversely, for open shrubland systems, the average estimated
MODIS LAI is 2.2 ( ) m m , and average measured LAI



Fig. 5. Collection 3 University of Maryland (UMD) land cover classification for the fifteen sites. This land cover classification is used to determine the
biome-specific biophysical properties used in the algorithm. Stars (�) are used to indicate the actual land cover at each site.

is 1.1 ( ) m m . The savanna system is also overesti-
mated, with an average estimated MODIS LAI of 4.3 ( )
m m , and a measured LAI of 2.0 m m .

E. Seasonal Relationships in GPP

One of the strengths of the MODIS GPP algorithm is its
ability to capture seasonal dynamics in photosynthetic produc-
tion. Seasonal traces of flux estimates for several flux tower
sites indicate that the algorithm captures the onset and end of
the growing season [Fig. 7(a), (c), and (d)]. In addition, the
algorithm captures changes in photosynthesis throughout the
growing season, indicating that it is responding to short-term
changes in environmental conditions, although the magnitude
of the changes may not be accurate. Use of tower meteorolog-
ical data in the MODIS algorithm tends to overcorrect for these

changes, which could be due in part to the fact that the algorithm
has been designed specifically for use with the global DAO data.
There are areas such as the Tonzi Ranch oak savanna site, how-
ever, in which the algorithm fails to capture all seasonal dy-
namics [Fig. 7(b)]. Both of the MODIS estimates capture the
seasonal onset of growth during the winter and early spring as
well as the return of the rainy season in November at this site.
Use of the DAO meteorology in the MODIS algorithm captures
trends at the Tonzi Ranch site better than the use of tower mete-
orology, but it fails to capture the decrease in production during
the late summer when the site is extremely water limited. Use of
tower data results in a complete shutdown of the algorithm for
much of the year because of the high local VPD, indicating that
the algorithm fails to account for vegetation that has adapted
to this Mediterranean climate. This is in sharp contrast to the
Metolius old ponderosa pine site, which has lower annual rain-
fall, and at which theMOD17 algorithm adequately captures the



Fig. 6. Average LAI estimated for the tower pixel from the MOD15
algorithm as compared with site-specific LAI measurements. The dashed lines
represent the specific acceptable variation in LAI computed with the algorithm
(�0:5 m m ).

TABLE IV
COMPARISON OF SITE LAI ESTIMATES WITH THOSE FROM MODIS

seasonal changes in GPP. Additional research is needed at other
drought-affected sites to determine if this is a site-specific lim-
itation of the algorithm, or if it has impacts at the larger scale.
Since all of the sites in this study are located in North

America, the year is arbitrarily divided into four seasons, each
containing three months of data.
1) Spring (March–May): Spring is the time of growing

season onset, and there is a relatively rapid transition in
ecosystem processes during leaf-out. Because of the eight-day
compositing period used with many MODIS products, it is
not surprising that some of the greatest differences between
tower and MODIS estimates of GPP occur during this period,
particularly in early spring [Table II and Fig. 8(a)]. However,
there is not a clear pattern to the relationship when considering
either climate or biome type effects (Fig. 8). Most sites are
significantly overestimated ( ), although a few sites
are underestimated when compared with tower estimates. The
use of tower meteorology in the MOD17 algorithm does not
resolve GPP overestimation relative to tower-based results at

Fig. 7. Seasonal traces of GPP estimated from tower CO flux data and for
MODIS GPP calculated using both DAO and tower-specific meteorology for
four AmeriFlux tower sites. (a) Metolius (old growth ponderosa pine). (b) Tonzi
Ranch (oak savanna). (c) Sylvania (old growth deciduous broadleaf). (d) Niwot
Ridge (subalpine fir).

most sites, and causes under estimation at two sites (Duke
Forest and Tonzi Ranch).
2) Summer (June–August): The best relationships between

tower and MODIS GPP occur during summer (Table II). Be-
cause overstory canopies are in full flush during this time, there
should be less uncertainty assigned to the MOD15 algorithm as
a result of the compositing period. Analysis of maximum LAI
of the tower site and the MOD15 algorithm (Fig. 6) reveals that
MODIS has a consistent bias toward overestimation of LAI, and
presumably, of fPAR as well. There is still a bias towardMODIS
overestimation of GPP relative to tower based estimates at these
sites ( ; ) when using the DAO meteo-
rology in the MOD17 algorithm [Fig. 9(a)]. The use of tower
meteorology in the MOD17 algorithm [Fig. 9(b)] reduces bias
( ), but the difference between the tower andMODIS
GPP remains significant ( ) as variation in the results
increases. Because summer is the time of primary growth and
production, the errors associated with summertime estimates of
GPP will dominate the annual pattern.
3) Autumn (September–November): Autumn results using

the interpolated DAO meteorology are fairly well-correlated
with tower estimates of GPP ( ). How-
ever, the total autumn MODIS GPP for most of the sites is

gC m , and sites with low productivity tend to
be overestimated in the autumn, while sites with relatively
higher productivity tend to be slightly underestimated relative
to tower based estimates ( ; Fig. 10). The use of
tower meteorology in MOD17 removes some of this bias
( ), although the difference from tower GPP is
significant ( ).
4) Winter (January–February and December): Winter is a

time of low productivity at most of the study sites (Fig. 11), and
MODIS and tower-based GPP are again well correlated (

). While the MOD17 algorithm estimates similar
production ( gC m ) for a number of sites that range



Fig. 8. Comparisons of tower GPP for Spring (March–May) with MODIS GPP estimated using (a) DAO meteorology and (b) tower-specific meteorology.

Fig. 9. Same as Fig. 8, but for Summer (June–August).

Fig. 10. Same as Fig. 8, but for Autumn (September–November).

Fig. 11. Same as Fig. 8, but for Winter (January–February and December).



in productivity from near 0 to almost 300 gC m , there is 
insufficient supplemental site data to quantitatively determine 
the reason for these differences. Use of tower meteorology in 
the MOD17 GPP algorithm does not significantly alter the slope 
of the trend line, but correlation is reduced ( ).

IV. DISCUSSION

There are a number of possible reasons for the differences in 
tower and MODIS estimates of GPP. For the purposes of this 
generalized study, we are necessarily assuming that tower GPP 
and meteorology are ground truthed, but there are errors associ-
ated with these measurements. Tower GPP is calculated as the 
difference between NEE and Reco. Estimates of ecosystem res-
piration at flux tower sites are typically made using nighttime 
fluxes of NEE (when photosynthesis is assumed to be zero). 
Calm winds often occur at night, and the data are screened 
from the analysis (a filter is commonly used), limiting the 
dataset that can be used to estimate GPP (GPP daytime NEE

daytime ecosystem respiration). However, there may be sit-
uations in which the above-canopy fluxes are decoupled from 
the surface, leading to underestimates of nighttime respiration 
and, thus, GPP that arise from both systematic and random er-
rors [42]–[46]. Also, tower flux footprints are subsamples of the 
MODIS pixel, often less than 1 km. In heterogeneous areas, the 
differing scales of the tower and MODIS GPP estimates should 
ideally be taken into account via an upscaling process, such as 
that used in the Bigfoot study [15]–[17]. Unfortunately, the up-
scaling technique is both intensive and expensive, and, as such, 
cannot be used at a large number of sites. In addition, site con-
ditions can make it more difficult to obtain estimates of GPP. 
For example, the low productivity and harsh weather found at 
the Barrow site make it difficult to accurately capture seasonal 
and annual GPP and Reco components of net CO flux mea-
surements.
Probably the single largest error associated with MODIS GPP 

at most sites derives from the meteorology. The MOD17 algo-
rithm is strongly dependent on VPD to reduce the maximum 
radiation use efficiency (1), and, therefore, underestimation of 
VPD contributes greatly to the overestimation of GPP. The VPD 
at which the radiation use efficiency begins to be reduced in the 
MODIS BPLUT is on the order of 650 to 1100 Pa [20]. As the 
DAO meteorology underestimates local VPD at many dry sites 
during the summer [47], it does not sufficiently constrain photo-
synthesis in the MOD17 algorithm during dry periods. Further-
more, since the MOD17 algorithm does not directly account for 
soil moisture, there may be problems at water-limited sites, as 
the results from Tonzi Ranch suggest. The local vegetation is 
well-adapted to the dry summer drought-like conditions and as-
sociated large maximum VPD values for local (5500 Pa) and re-
gional DAO (3400 Pa) typical of these sites. While both of these 
maximum VPD values would result in a complete shutdown of 
photosynthesis in the MOD17 algorithm, consistent underesti-
mation of the VPD by the DAO compared to actual local me-
teorology partially explains the MODIS overestimation of GPP 
( ) for days 180–300 at Tonzi Ranch [Fig. 4(f) and 
Table III]. The use of tower meteorology overcorrects for the

problem, causing the algorithm to underestimate the GPP of the
site ( ), suggesting that this site warrants further
investigation.
Land cover is a potential source of error because of the

heterogeneity of the landscape at the subpixel scale. In gen-
eral, however, the land cover classification is fairly accurate;
research has demonstrated that the MODIS land cover product
is accurate to within 82% [26]. Our study has found that many
of the misclassifications within the MODIS land cover tend to
occur within similar classes, reducing potential errors in GPP
estimates.
The land cover map captures the dominant cover types at sites

with three notable exceptions. The area surrounding the Barrow,
AK, site is dominated by wet sedge tundra, but is described by
MODIS as either shrubland or barren/sparsely vegetated. Since
the for open shrubland inMOD17 is higher than that for grass-
lands under similar environmental conditions and the MODIS
GPP is not calculated for the barren areas, the resulting MODIS
GPP is artificial. Site estimates, however, match those of the flux
tower fairly closely, indicating that there are compensatory er-
rors at this site, whichmay include the difficulty in obtaining site
data and errors in the MOD15 product. TheWillow Creek site is
also anomalous because there are a number of cropland pixels in
the 7 7 kmMODIS extraction window surrounding the tower.
These pixels, which exhibit radically different GPP behavior
than adjacent forest, would strongly influence aggregate GPP
estimates at this site. Many of the extant land cover types sur-
rounding the Duke Forest (the pine plantation considered here,
old field, hardwood forest, and urban) are smaller than 1 1 km
and are aggregated as “mixed forest” by the C3 MODIS land
cover classification. Remote sensing data with greater resolu-
tion in the spatial domain, for example IKONOS, may be nec-
essary to capture fluxes from highly productive and extremely
heterogeneous landscapes [48]. Unfortunately, such specialized
analyzes would also limit the global applicability of theMODIS
algorithm.
It is difficult to quantify the error associated with the

LAI/fPAR product in this study because of the limited avail-
ability of site-specific measurements. The LAIs at more than
half of the study sites are within the design specification of the
MOD15 product, although the remainder were overestimated.
This corresponds to the results of Cohen et al. [15], who found
that MODIS LAI overestimated site measurements of LAI
at four sites in four different biomes. There are additional
on-going studies to verify the LAI and fPAR products [23],
[40], [49], [50]. These results will provide valuable information
on the errors associated with both LAI and fPAR.
The MODIS LAI and fPAR measurements used in this study

were required to pass the quality control checks of the MOD17
algorithm, reducing potential cloud and snow contamination.
However, it is possible that some contamination remains, par-
ticularly at high latitudes in which low solar angles, persistent
cloud cover, and extended periods of darkness can affect re-
flectance readings from the optical MODIS sensor. This signal
contamination could affect GPP in undetermined ways. Consis-
tent overestimation of GPP in the spring suggests that there is
a problem with early season estimation of fPAR, which could
be the result of a combination of cloudy skies and snowmelt.



Discovery of the true effects of fPAR in spring will require ex-
tensive instrumentation, which is beyond the scope of the cur-
rent study. Further, missing LAI/fPAR measurements are gap
filled using a simple linear function. During the active growing
season, most gaps were small, increasing the accuracy of the in-
terpolation method. Gaps during the nongrowing season were
more common because of cloud cover and contamination by
snow and ice. This fact has a large impact on the seasonal anal-
ysis of the data, but less of an impact at the annual timescale.
Estimates at sites with large data gaps may be erroneous, par-
ticularly if the gaps occur during times of rapid transition, such
as spring and autumn. The MODIS LAI/fPAR measurements at
Barrow, AK, were difficult to obtain because of meteorological
conditions at the site, resulting in 18 missing datapoints during
the study period, with the largest gap (nine continuous measure-
ments) occurring at the beginning of the growing season. It was
also difficult to obtain accurate estimates of LAI and fPAR at
the Harvard Forest site, which had large data gaps during the
growing season in both 2001 (ten points) and 2002 (nine points).
These results could explain, in part, the differences between site
and MODIS data.
A possible contribution to the overestimation of LAI is the

way in which it is measured. Sites typically only provide LAI
measurements of the dominant, overstory canopy, while the
MODIS sensor receives reflectance information for a vertically
and horizontally integrated canopy. If the dominant canopy is
open, as it is at many of these sites, the MOD15 algorithm will
consider both overstory and understory surface reflectance as
a single canopy unit of the land cover classification, leading
to overestimation of LAI relative to site-based measurements.
In deciduous broadleaf forests where the understory may flush
out earlier in the season. If the forest also contains evergreen
needleleaf trees, such as Harvard Forest (10% ENF), the algo-
rithm will calculate an LAI and fPAR for a DBF forest canopy
prior to actual leaf-out. At Metolius evergreen needleleaf sites,
both understory and overstory LAI were measured in the field at
20 1-ha plots [51], and the MOD15 LAI greatly overestimated
the total LAI of these sites ( of 50%–100%), suggesting that
sites with open canopies should be considering the understory
contribution to LAI, GPP and NEE.
The MODIS GPP algorithm does not have a winter dor-

mancy function to regulate winter productivity. Therefore, if
the MOD15 algorithm reports a sizable LAI and fPAR for a
site, and temperatures are not limiting, it is possible for the
MODIS algorithm to calculate photosynthesis during that time.
Alternately, the Duke Forest is classified as a mixed forest,
but is actually dominated by loblolly pine (Pinus taeda). This
site can maintain relatively high GPP in the winter under mild
weather conditions, indicating that a winter dormancy function
cannot be used globally.
The fPAR tends to saturate in areas with high LAI values,

limiting its ability to capture the activity of highly productive
sites such as Duke Forest. Alternately, MODIS overestimates
the LAI of the savanna site, which could lead to an increased
MODIS GPP estimate and explain, in part, the differences be-
tween theMODIS and tower-derivedGPP. In addition, measure-
ments made by the BigFoot study group indicate that the fPAR is
overestimated at the Barrow site throughout the growing season,

while it is overestimated mid-season at the Metolius forest site
[52]. Finally, studies need to be performed to determine the ac-
curacy of the fPAR product for a senescing canopy or a canopy
experiencing prolonged water stress, and to quantify the true ef-
fects of MODIS LAI/fPAR on GPP estimates.
The MODIS algorithm itself is a source of error in estimating

GPP. One of the largest assumptions made is for a constant
maximum radiation use efficiency for all sites within a given
biome. However, one can easily imagine that the RUE of a bo-
real forest is not the same as that of a southern U.S. warm-tem-
perate planted pine forest, leading to overestimations at the bo-
real forest and underestimations at the warmer site. It is also
possible that the algorithm does not accurately account for VPD
and temperature effects with the generalized scalars. However,
this is a global product, which is produced every eight days, and
certain simplifying assumptions are necessary to ensure that rea-
sonably accurate results are produced in a fairly rapid fashion
for all vegetated MODIS pixels.

V. CONCLUSION

The MODIS GPP algorithm has been developed to provide
a consistent, continuous global estimate of photosynthetic
production. The resulting dataset is evaluated for 38 site years
of data, comparing tower site estimates of GPP with those from
the MODIS algorithm. Use of the global DAO meteorology is
problematic because of the scale of the product (1.00 1.25 ).
There is a 28% difference between the MODIS GPP derived
with DAO meteorology and the MODIS GPP derived with
tower-specific meteorology. The resulting tower-specific esti-
mates of MODIS GPP are not significantly different from the
GPP estimates calculated from site measurements of NEE. This
indicates that the DAO data can be a significant source of error
in the MOD17 algorithm. The VPD is the primary source of
error from the DAO, and the relative impact of this error on
MODIS GPP increases as limitations from VPD become more
severe.
Additional errors, while difficult to quantify in this type of

general analysis, propagate from the MODIS products used in
the GPP algorithm. The MOD12 land cover product can affect
the GPP output in two ways. It is used in the MOD15 LAI
and fPAR product algorithm and is used to specify the biome
type, and, hence, a set of ecophysiological parameters, for
the MOD17 GPP product. The MOD12 land cover accurately
captures the MOD15-associated land cover, which is based
on vegetation structural type. The MOD12 algorithm is less
accurate at capturing the land cover for the MOD17 Biome
Properties Look-Up Table. However, most of the differences
are within the forest classes themselves, resulting in less error
than would occur by misclassifying land cover morphology
(e.g., forest versus grassland). The largest error associated with
land cover is the assumption of a single land cover class for the
entire 1-km pixel. This is not a valid assumption at many sites
and may need to be addressed in future research efforts.
Outputs from the MOD15 LAI/fPAR algorithm are another

potential source of error for MODIS GPP calculations. The
MOD17 algorithm uses a strict quality assurance control over
MOD15 product inputs to eliminate potential contamination



from clouds and other adverse effects, but there are still prob-
lems in the winter in areas containing snow and ice. In addition, 
the MOD15 algorithm tends to overestimate the LAI at most of 
the study sites, particularly early in the spring, and this could 
lead to an associated overestimation of MODIS GPP relative 
to the site. It is not possible at this time to fully quantify the 
effects of the MOD15 algorithm, but its effects on MODIS GPP 
estimates should be considered in the future when adequate data 
are available for analysis. More site-specific measurements are 
needed to determine the accuracy of the fPAR product directly 
including seasonal measurements of overstory and understory 
LAI and fPAR.
Errors associated with the MOD17 GPP algorithm itself 

cannot be ignored. Further research is needed to clarify the 
relative contributions of uncertainty in the various assumptions 
of ecological response parameters represented in the BPLUT 
component of the MOD17 algorithm. In some cases, the 
maximum conversion use efficiency may be underestimated 
(e.g., Duke Forest). With an increasing network of sensors at 
AmeriFlux network eddy covariance towers, the radiation use 
efficiency and the parameters within the BPLUT that control 
the associated and VPD reductions can be evaluated. It is 
also likely that spatial heterogeneity in stand-age, soil type, and 
canopy structure is not well represented by a global land cover 
map containing only eleven different vegetation types and the 
associated BPLUT. Currently, the algorithm calculates GPP 
based on a single overstory vegetation type. This simplification 
leads to overestimations of GPP in complex ecosystems, partic-
ularly in areas with LAIs of 2.5 m m or less. The MODIS 
vegetation continuous fields product currently in development 
may improve the MODIS GPP product [53]. The continuous 
fields product will provide subpixel proportional estimates 
of the basic vegetation forms (e.g., tree, shrub, evergreen, 
deciduous, etc.), which can then be used in conjunction with 
the BPLUT to determine a more accurate GPP, as all of the 
vegetation types within a pixel can be taken into account in 
calculations. Errors at several of the other sites, such as the 
Tonzi Ranch savanna and Duke Forest, require additional 
investigation.
Meteorology and land cover do not completely explain the 

differences between MODIS and tower-based GPP estimates, 
suggesting the importance of evaluating the algorithm. Turner 
et al. [16], [17], as part of the BigFoot MODIS validation 
project, have provided valuable insight regarding potential 
improvements to the MOD17 algorithm, including accounting 
for possible PAR saturation effects on the conversion efficiency 
and the improved representation of seasonal variability in light 
use efficiency. There is additional evidence to suggest that, 
while many studies show a quasilinear relationship between 
light use efficiency and GPP [54], [55], this assumption may not 
be valid for all vegetation types [56], [57]. On the other hand, 
nonlinear light response curves tend to become more linear if 
they are evaluated over the course of a day [58]. Differences 
in the light use efficiencies of sunlit and shaded leaves are not 
explicitly considered in the satellite-based approach. Soil water 
and nutrient limitations are also not explicitly defined in the 
algorithm. These factors may also help explain the MODIS 
overestimates of GPP as compared with tower results.

The results of this study indicate, however, that the current
MODIS GPP algorithm shows reasonable spatial patterns and
temporal variability across a diverse range of biomes and cli-
mate regimes. So, while continued efforts are needed to iso-
late particular problems in specific biomes, we are optimistic
about the general quality of these data. While no individual
dataset can be expected to meet all of the individual needs of the
climate change community, continuation of the MOD17 GPP
product will likely provide a key component of global terres-
trial ecosystem analysis, providing continuous weekly measure-
ments of global vegetation production.
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