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Abstract: To achieve higher yields and better soil quality under rice-legume-rice (RLR) rotation in 

rainfed production system, we formulated integrated nutrient management (INM) comprised of 

Azospirillum (Azo), Rhizobium (Rh), phosphate solubilizing bacteria (PSB) with phosphate rock 

(PR), compost and muriate of potash (MOP). Performance of bacterial bioinoculants was evaluated 

by determining grain yield, nitrogenase activity, uptake and balance of N, P and Zn, changes in 

water-stability and distribution of soil aggregates, soil organic C and pH, fungal/bacterial biomass C 

ratio, casting activities of earthworms and bacterial community composition using denaturing 

gradient gel electrophoresis (DGGE) fingerprinting. The performance comparison was made 

against the prevailing farmers' nutrient management practices [N:P2O5:K2O @ 40:20:20 kg ha-1 

for rice and 20:30:20 kg ha-1 for legume as urea:single-superphosphate:MOP (Urea:SSP:MOP)]. 

Cumulative grain yields of crops increased by 7-16% per RLR rotation and removal of N and P by 

six crops of 2 years rotation increased significantly (P<0.05) in bacterial bioinoculants based INM 



plots over that in compost alone or Urea:SSP:MOP plots. Apparent loss of soil total N and P at 0-15 

cm soil depth was minimum and apparent N gain at 15-30 cm depth was maximum in Azo/Rh plus 

PSB dual INM plots. Zinc uptake by rice crop and diethylenetriaminepentaacetate extractable Zn 

content in soil increased significantly (P<0.05) in bacterial bioinoculants based INM plots compared 

to other nutrient management plots. Total organic C content in soil declined at 0-15 cm depth and 

increased at 15-30 cm depth in all nutrient management plots after 2 years crop cycles; however, 

bacterial bioinoculants based INM plots showed minimum loss and maximum gain of total organic 

C content in the corresponding soil depths. Water stable aggregation and distribution of soil 

aggregates in 2000-250 � m and 250-53 � m classes increased significantly (P<0.05) in bacterial 

bioinoculants based INM plots compared to other nutrient management plots. Fungal/bacterial 

biomass-C ratio seems to be more reliable indicator of C and N dynamics in acidic soils than total 

microbial biomass-C. Compost alone or Azo/Rh plus PSB dual INM plots showed significant 

(P<0.05) higher numbers of earthworms' casts compared to Urea:SSP:MOP alone and bacterial 

bioinoculants with urea or SSP applied plots. Hierarchical cluster analysis based on similarity 

matrix of DGGE profiles revealed changes in bacterial community compositions in soils due to 

differences in nutrient managements, and these changes were seen to occur according to the 

states of C and N dynamics in acidic soil under RLR rotation.
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In the following pages, the Editor’s comments are in italics, followed by details of 
changes/modifications or responses from the authors (in plain type).  Please note that page
and line numbers refer to the revised version.

1. Editor comments

I have read your revised manuscript titled "Evaluation of bacterial bioinoculants for use as 
components of integrated nutrient management in sustaining rainfed rice-legume-rice 
cropping system" and it needs a further revision according to the comments:

We thank the editor-in-chief for these encouraging comments. We took actions against all 
suggested comments as follows:

Please modify the title as "Evaluation of......croppimg system on grain yoeld, nutrient 
uptake, nitrogen fixation, and chemical, physical and biological proprties of soil".
p. 1, Line 7-9: now stated that
“Evaluation of rice-legume-rice cropping system on grain yield, nutrient 
uptake, nitrogen fixation, and chemical, physical and biological 
properties of soil.”

Line 102-Please write "Yadvinder-Singh et al 2004;"
p. 4, Line 102: now stated that
“….; Yadvinder-Singh et al. 2004; Reddy and Raju 2006; Pampolino et al. 2007).”

Lines 105-106-Please write "being a N rich grain".
p. 4, Line 105-106: now stated that
“Besides being a N rich grain,....”

Line 295-please write "of excess NaOH and ammonia".
p. 11, Line 295: now stated that
“distillation in presence of excess NaOH and ammonia……..”

Line 296-297-Please write "boric acid; these steps were done by using Kjel......India. Then 
residual boric acid was titled with standard...HClO4, 3:1, as described".
p. 12, Line 296-298: now stated that
“…boric acid; these steps were done by using Kjel Plus, Pelican Equipments, India. Then 
residual boric acid was titrated with standard 0.01 N H2SO4 and total P by digestion in 
HNO3:HClO4, 3:1, as described (Olsen and Sommers 1982).”

Line 300-Please write "(DTPA) as described by".
p. 12, Line 300: now stated that
“…by using DTPA as described by Liang and Karamanos (1993)…….”
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Lines 311-312-Please write "Bacterial and fungal counts of soil were".
p. 12, Line 312: now stated that
“Bacterial and fungal counts of soil were determined ….”

Line 348-Please write "were maintained as described by".
p. 14, Line 348: now stated that
“….reaction conditions were maintained as described by Muyzer et al. (1993).”

Line 395-Please write "low organic C status".
p. 16, Line 395: now stated that
“….low organic C status (<8.0 g kg-1 soil)…...”

Line 419-Please write "that of other treatment".
p. 16, Line 419: now stated that
“….that of other treatments.”

Line 508- The citation is "Kucey et al".
p. 20, Line 508: now stated that
“….mediated mechanisms (Kucey et al. 1989)…”

Lines 520-521-Please write "Sali rice 2002 are presented".
p. 21, Line 520-521: now stated that
“….Sali rice 2002 are presented in the Table 4…”

Line 549-Please write "1986). Nakling et al".
p. 22, Line 549: now stated that
“….(Dalal and Mayer 1986). Earlier, Naklang et al. (1999) observed ……”

Lines 554-563-Please write "and mass of 2000-250 um and 250-53 um soil aggregates at 
0-15 cm......(Table 5. Mass of soil in aggregates class <53 um increased significantly 
(P<0.005) in control......and compost plots compared to that in bacterial bioinoculants
based INM plots. The formation and stabilization...........deeper soil depths. These macro-
and micro-aggregates contain higher".
p. 22, Line 553-564: now stated that
“Bacterial bioinoculants based INM plots showed significant (P<0.05) higher water-stable
aggregation and mass of 2000-250 m and 250-53 m soil aggregates at 0-15 cm soil 
depth compared to that in control, Urea:SSP:MOP and compost alone plots after harvest of 
six crops in RLR rotation (Table 5). Mass of soil in aggregates class <53 m increased 
significantly (P<0.05) in control, Urea:SSP:MOP and compost plots compared to that in 
bacterial bioinoculants based INM plots. The formation and stabilization of macro-
aggregates (250-2000 m) and micro-aggregates (53-250 m) in these plots perhaps 
physically protected higher amount of particulate organic matter and hence, less chance of 
depletion of labile organic C from the surface layer (0-15 cm depth) to deeper soil depths. 
These macro- and micro-aggregates contain higher amounts of particulate and light 
fraction organic matters and that support higher rate of C and N mineralization in soils 
(Manna et al. 2005; Yan et al. 2007).”

Lines 606-613.Please summarise and be simple and clear. I do not understand the 
meaning of sentences at lines 610-613.



p. 24, Line 605-609: now stated that
“Overall, results of FBC/BBC ratios suggested that incorporation of legume and rice crop 
residues into soils along with external application of compost and bacterial bioinoculants 
under rice based rotation were useful in maintaining balance between C and N dynamics in 
soils. A balance between C and N dynamics in soils ensures more labile pools of soil 
organic C, and hence better mineralization processes of nutrients in soils.”

Lines 614-615-Please write "earthworms' castings approximately doubled (significant at 
P".
p. 24, Line 610-611: now stated that
“……earthworms’ castings approximately doubled (significant at P<0.05) in Azo/Rh plus 
PSB dual INM…...”

Line 625-Please write "or SSP reduced casting".
p. 25, Line 620-621: now stated that
“……addition of either urea or SSP reduced casting activities of earthworms in Azo/Rh 
alone INM, ..…...”

Lines 647-655. All this part is confusing. I do not understand the meaning of the sentence 
at lines 647-649. I suggest deleting the sentence at lines 653-655 and rewrite in a simple, 
clear and short way the rest of the text.
p. 25-26, Line 643-650: now stated that
“Interestingly, C and N dynamics in soils between Azo/Rh plus PSB dual INM and 
Azo/Rh alone INM plots were comparable, and soils of these two plots also harboured 
highly similar bacterial communities. Like-wise, C and N dynamics, bacterial community 
compositions in soils between Urea:SSP:MOP and urea added PSB alone INM plots were 
comparable. These findings implied that nutrient inputs such as legume and rice crops 
residues, bacterial bioinoculants, inorganic fertilizers added in different combinations to 
nutrient management plots modified community composition of soil bacteria through their 
direct influence on C and N dynamics.”

Is the reference at line 788 cited in the text? Yes, it is cited in the text as follows
p. 17, Line 422:
“….observation by earlier workers (Roper and Ladha 1995), we also found that…”

In the 4 figure legends you have to include the meaning of acronyms. I suggest writing 
"Azo is...; Rh is ...etc".
p. 33-34, Line 837-863: now stated that

“Fig. 1 Harvest index of rice crops influenced by different nutrient management treatments 
in rice-legume-rice rotation. Values that differ significantly (one-way ANOVA, P<0.05) 
within each cluster of dendrograms are followed by different letters. Azo is Azospirillum; 
Rh is Rhizobium; PSB is phosphate solubilizing bacteria; PR is phosphate rock; SSP is 
single super-phosphate; MOP is muriate of potash.   

Fig. 2 Nitrogenase activity in roots of Sali rice (A), pea (B) and Ahu rice (C) influenced by 
different nutrient management treatments under rice-legume-rice rotation. Nitrogenase 
activity in roots of Sali rice and French bean of 1st year crop cycle were not determined. 



Each value on the line graph represents mean nitrogenase activity in roots of 12 plants 
from four replicated plots. Values that differ significantly (one-way ANOVA, P<0.01) on 
each line graph are followed by different letters. Azo is Azospirillum; Rh is Rhizobium; 
PSB is phosphate solubilizing bacteria; PR is phosphate rock; SSP is single super-
phosphate; MOP is muriate of potash.   

Fig. 3 Microbial biomass C (MBC), bacterial biomass C (BBC) and fungal biomass C 
(FBC) influenced by different nutrient management treatments determined after harvest of 
six crops in rice-legume-rice rotation. Values that differ significantly (one-way ANOVA, 
P<0.05) within each parameter are followed by different letters. Azo is Azospirillum; Rh is 
Rhizobium; PSB is phosphate solubilizing bacteria; PR is phosphate rock; SSP is single 
super-phosphate; MOP is muriate of potash.   

Fig. 4 Denaturing gradient gel electrophoresis (DGGE) profiles of 16S rRNA gene 
fragments obtained by PCR amplification using bacterial primer sets (Muyzer et al. 1993) 
in soils of different nutrient management treatments. (A) an image of ethidium bromide 
stained DGGE gel and (B) hierarchical cluster plot based on similarity matrix  of DGGE 
profiles. Joints of the branches of the dendrogram indicate the percentage similarity based 
on unweighted pair group method with arithmetic means (UPGMA). Azo is Azospirillum; 
Rh is Rhizobium; PSB is phosphate solubilizing bacteria; PR is phosphate rock; SSP is 
single super-phosphate; MOP is muriate of potash.”

Table 1 Please write "Crop cycle and year"
Now stated that
“Table 1 Crop cycle and year, fertilizer application rate and form applied to nine crops in 
rice-legume-rice rotation during 2001-2004”

Add at each of the 5 tables as a footnote: "SSP is....; MOP is...; PR is...etc".
Table 1 foot-note included the following:
“PR is phosphate rock; SSP is single super-phosphate; MOP is muriate of potash.”
The following sentence was included in foot-note of each of the Tables from 2 to 5.
“Azo is Azospirillum; Rh is Rhizobium; PSB is phosphate solubilizing bacteria; PR is 
phosphate rock; SSP is single super-phosphate; MOP is muriate of potash.”  

p. 27, Lines 672-674:
Now acknowledgement section stated as: 

“Acknowledgements We thank the Department of Biotechnology, Ministry of Science 
and Technology, Government of India for financial support to carry out this research. We 
also thank Paolo Nannipieri and Kazuyuki Inubushi for critical review of the manuscript.” 
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Abstract  To achieve higher yields and better soil quality under rice-legume-rice (RLR) 44

rotation in rainfed production system, we formulated integrated nutrient management (INM) 45

comprised of Azospirillum (Azo), Rhizobium (Rh), phosphate solubilizing bacteria (PSB) with 46

phosphate rock (PR), compost and muriate of potash (MOP). Performance of bacterial 47

bioinoculants was evaluated by determining grain yield, nitrogenase activity, uptake and 48

balance of N, P and Zn, changes in water-stability and distribution of soil aggregates, soil 49

organic C and pH, fungal/bacterial biomass C ratio, casting activities of earthworms and 50

bacterial community composition using denaturing gradient gel electrophoresis (DGGE) 51

fingerprinting. The performance comparison was made against the prevailing farmers’ 52

nutrient management practices [N:P2O5:K2O @ 40:20:20 kg ha-1 for rice and 20:30:20 kg ha-153

for legume as urea:single-superphosphate:MOP (Urea:SSP:MOP)]. Cumulative grain yields 54

of crops increased by 7-16% per RLR rotation and removal of N and P by six crops of 2 years 55

rotation increased significantly (P<0.05) in bacterial bioinoculants based INM plots over that 56

in compost alone or Urea:SSP:MOP plots. Apparent loss of soil total N and P at 0-15 cm soil 57

depth was minimum and apparent N gain at 15-30 cm depth was maximum in Azo/Rh plus 58

PSB dual INM plots. Zinc uptake by rice crop and diethylenetriaminepentaacetate extractable 59

Zn content in soil increased significantly (P0.05) in bacterial bioinoculants based INM plots 60

compared to other nutrient management plots. Total organic C content in soil declined at 0-15 61

cm depth and increased at 15-30 cm depth in all nutrient management plots after 2 years crop 62

cycles; however, bacterial bioinoculants based INM plots showed minimum loss and 63

maximum gain of total organic C content in the corresponding soil depths. Water stable 64

aggregation and distribution of soil aggregates in 2000-250 m and 250-53 m classes 65

increased significantly (P<0.05) in bacterial bioinoculants based INM plots compared to other 66

nutrient management plots. Fungal/bacterial biomass-C ratio seems to be more reliable 67

indicator of C and N dynamics in acidic soils than total microbial biomass-C. Compost alone 68
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or Azo/Rh plus PSB dual INM plots showed significant (P<0.05) higher numbers of 69

earthworms’ casts compared to Urea:SSP:MOP alone and bacterial bioinoculants with urea or 70

SSP applied plots. Hierarchical cluster analysis based on similarity matrix of DGGE profiles 71

revealed changes in bacterial community compositions in soils due to differences in nutrient 72

managements, and these changes were seen to occur according to the states of C and N 73

dynamics in acidic soil under RLR rotation.74

75

76

Keywords Azospirillum  Compost  DGGE  Fungal/bacterial biomass-C ratio  N balance  P 77

balance  Phosphate-solubilizing bacteria  Rhizobium  Zn balance78

79

80

Introduction81

82

To increase crop productivity under rainfed rice cropping systems in sustainable manner, 83

efficient nutrient management approach needs to be developed keeping in view the factors of 84

low productivity inherent in the systems. In northeastern alluvial plains of India, factors of 85

low productivity of rice are (a) the nutrient content in soil and their use efficiency (NUE) is 86

low, for example highly weathered light texture alluvium soils of Brahmaputra basin are 87

prone to intense leaching losses of applied nitrogenous fertilizers coupled with high (> 81%) 88

fixation rate of applied phosphatic fertilizers due to high activities of Fe and Al oxides, and 89

Zn deficiency; (b) lack of site-specific efficient nutrient management approach; (c) low soil 90

organic carbon (SOC) content (<8.0 g kg-1); (d) uneven distribution of rainfall throughout 91

crop growing periods; (e) no or little inorganic fertilizers (N:P2O5:K2O) use @ 13 kg ha-1 in 92

the northeastern region of India and (f) poor economic condition of farmers (Tewari et al.93
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1969; Talukdar and Chakravarty 1988; Khan et al. 2004; Talukdar et al. 2004). Under such 94

conditions, increasing cropping intensity from double to triple in a year, without affecting soil 95

quality is a major challenging task. This demands that several different aspects including 96

cultivation of right crop in rotation with rice, recycling of crop residues and efficient nutrient 97

management approach inclusive of different sources of nutrients are addressed through 98

systematic research. Combined application of inorganic fertilizers with blue-green algae or 99

green manure or farmyard manure with or without crop residue incorporation is known to 100

improve NUE and higher yields in rice-based cropping systems (Regmi et al. 2002; 101

Yadvinder-Singh et al. 2004; Reddy and Raju 2006; Pampolino et al. 2007).102

Inclusion of legume crop in rotation is an important aspect of N and C management in 103

fragile soils (Ladha and Reddy 2003) and also an opportunity to meet the perpetuated deficit 104

in per capita availability of pulses in India (Prasad and Nagarajan 2004). Besides being a N 105

rich grain, legume crop can also serve the role of green manure in the triple cropped rice 106

systems by contributing N and biomass to the soil (George et al. 1994; Dobermann and White 107

1999; Yadav 2003). Application of inorganic N fertilizer at higher rate to boost crop 108

productivity in acidic soils under rainfed rice systems is not a profitable N management 109

approach due to very low N use efficiency. A recent study has indicated that use of inorganic 110

N fertilizer at rate exceeding grain N removal caused a net decline in soil C despite 111

increasingly massive residue C incorporation (Khan et al. 2007). Therefore, we presumed that 112

any N management strategy that involves higher rate of inorganic N fertilizer application 113

together with crop residue incorporation into soil to boost high yields from rainfed rice 114

systems would be a suicidal approach. In this context, concept of integrated nutrient 115

management (INM) might be fruitful in increasing grain yields in triple cropped rice-legume-116

rice (RLR) rotation and also in sustaining soil productivity and overall environmental quality 117

(DeDutta 1989; Yadav 2003; Pampolino et al. 2007). Use of bacterial bioinoculants such as 118
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azospirilla or rhizobia with phosphate solubilizing bacteria and phosphate rock (a slow release 119

mineral P source) with compost and crop residue incorporation might increase NUE of major 120

limiting nutrients N, P and Zn including better management of soil C under RLR rotation in 121

acidic soils (Ladha and Reddy 2003; Somado et al. 2003; Choudhury and Kennedy 2004). 122

Many previous studies confirmed the benefits of single or dual inoculation of phosphate 123

solubilizing bacteria with azospirilla or rhizobia to cereals and legumes (Jeyabal and 124

Kuppuswamy 2001; Johri et al. 2003; Somado et al. 2003; Choudhury and Kennedy 2004; 125

Lucy et al. 2004; Reddy and Raju 2006). However, data on performance (in terms of grain 126

yield, nutrient balance and soil quality) of single or dual inoculation of these beneficial 127

microorganisms as components of INM in acidic rice soils under RLR rotation and residue 128

incorporation over several seasons are limited.129

The objective of this study was to determine performance of bacterial bioinoculants 130

(Azosprillum, Rhizobium and phosphate solubilizing bacteria) based INM treatments against 131

the existing farmers’ nutrient management practices (N:P2O5:K2O @ 40:20:20 kg ha-1 for rice 132

and 20:30:20 kg ha-1 for legume)  for RLR rotation in acidic alluvial soils of northeastern 133

plains of India in order to achieve higher productivity and soil sustainability. The performance 134

comparison was done in terms of grain yields, uptake and balance of N, P and Zn and changes 135

in organic C, aggregation, bacterial and fungal biomass C, casting activities of earthworms in 136

soil. We also assessed the impacts of continuous application of bacterial bioinoculants based 137

INM on composition of bacterial communities of soils under different nutrient managements 138

in RLR rotation.139

140

141

Materials and methods142

143
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6

Experimental location and climate144

145

A field experiment was set-up at the experimental farm of Assam Agricultural University 146

(24046/ N, 94013/ E and 87 m above mean sea level) located in Assam, India. The field was 147

not cultivated in the last 5 years prior to this experiment. Climate of the region is typic sub-148

tropical humid and receives mean annual rainfall 1931 mm and average rainy days 157 per 149

annum. Total bright sunshine hour (BSSH) is 2129 hours against maximum possible BSSH of 150

4432 hours per year. Mean relative humidity is 79%. During experimental years 2001–2004, 151

the mean maximum and minimum temperatures recorded during Sali rice (Kharif, August-152

November) seasons were 30.6 and 21.7 0C, legume (Rabi, December-March) seasons were 153

25.0 and 11.0 0C and Ahu rice (Summer, April-July) were 30.9 and 21.6 0C, respectively. The 154

length of crop growing period (LGP) is 210 days in a year in this agro-ecological zone.155

156

Plot layout, soil characteristics, crops and treatments157

158

The Experimental field was divided into six blocks. Each block represented one nutrient 159

treatment (see below for treatments detail) and within each block, four plots were the 160

replicates each with an area of 4 x 5 m2. Each block was laterally isolated by polythene sheets 161

embedded into the soil to a depth 30 cm. The experiment was arranged as completely 162

randomized block design. An uniformity trial of soil fertility on the experimental field was 163

carried out before the start of the RLR rotation crops by growing high yielding Ahu rice 164

(Summer rice) variety ‘Luit’ in close spacing (10 cm x 10 cm, between rows x plants). 165

The initial soil characteristics of the experimental field were determined after 166

completion of the uniformity trial. The sandy loam inceptisol (Oxyaquic Dystrocrept) had the 167

following properties: sand 55%, silt 30%, clay 15%, bulk density 1.36 Mg m-3, pH (1:2, 168
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7

soil:water) 4.80, total organic C 8.8 g kg-1 soil, total N 1.07 g kg-1 soil, total P 210 mg kg-1169

soil, diethylenetriaminepentaacetate (DTPA) extractable Zn 0.62 mg kg-1 soil, cation 170

exchange capacity 3.17 cmol kg-1 soil, base saturation 65.5% and water holding capacity 372 171

g kg-1 soil. 172

Nine crops in 3 years crop cycles were successfully harvested. The year-wise crop 173

calendar is presented in Table 1. For both Sali and Ahu rice, three rice seedlings together (25 174

days old) were transplanted in the puddled plots at spacing 30 cm x 10 cm (between rows x 175

between plants). French bean (Phaseolus vulgaris L.), the grain legume of the 1st year crop 176

cycle, was sown at spacing 35 cm x 15 cm (between rows x between plants) after harvest of 177

the first Sali rice crop of the experiment following land preparation. In 2nd and 3rd year crop 178

cycle, pea (Pisum sativum L.) was grown as relay crop with Sali rice (Palaniappan 1985). 179

Twenty-five days before harvest of Sali rice, pea seeds were sown in the inter-row spaces of 180

Sali rice at spacing 30 cm x 10 cm (between rows x between plants).181

Bioinoculants used were: Azospirillum amazonense A10 (MTCC 4716), Rhizobium 182

phaseoli (FB-9-2) for French bean or Rhizobium leguminosarum AAURh1 for pea and 183

Bacillus megaterium P5 (MTCC 4714) as phosphate solubilizing bacteria and hereafter 184

referred to as Azo, Rh and PSB, respectively (Thakuria et al. 2004). Compost was prepared 185

from farm waste (N–16.7 g kg-1, P–2.6 g kg-1 and K–8.8 g kg-1). The six different nutrient 186

management treatments were: 1. Control (no addition of compost, inorganic fertilizers and 187

bioinoculants), 2. N:P2O5:K2O applied as urea:single super-phosphate:muriate of potash, 188

hereafter referred to as Urea:SSP:MOP, 3. Compost alone, 4. Compost + Azo (for rice) or Rh 189

(for french bean/pea) + PSB + phosphate rock (PR) + MOP (hereafter referred to as Azo/Rh 190

plus PSB dual INM), 5. Compost + Azo/Rh + SSP + MOP (hereafter referred to as Azo/Rh 191

alone INM) and 6. Compost + urea + PSB + PR + MOP (hereafter referred to as PSB alone 192

INM). The half amounts of the recommended quantity of urea (inorganic N) and the whole 193
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8

amounts of the recommended quantities of SSP (inorganic P) and MOP (inorganic K) were 194

applied in the puddled plots as basal application one day before transplanting of rice seedlings 195

and the remaining half quantity of urea was top dressed on standing rice crop after 30 days of 196

transplantation (DAT). Urea, SSP and MOP were applied as basal dose to the legume crops in 197

rows 2 days before seeding. Compost was applied to respective treatment plots 10 days before 198

transplanting in case of rice or at the time of seeding in case of pea. Crop-wise fertilizer dose 199

applied to nine crops during 3 years crop cycles are presented in Table 1. 200

Dry compost (particle size 1 mm) in 500 g packets were double sterilized (at 121 0C 201

under 0.11 MPa for 15 min twice at 36 h interval) to ensure complete sterilization and used as 202

carrier material for bioinoculants Azo, Rh and PSB. Known quantity of broth culture of each 203

bioinoculant was mixed separately with sterilized compost as described by Thakuria et al.204

2004. The number of cells of Azo, PSB and Rh were 3.5 x 109, 3.3 x 108 and 2.9 x 109 cfu g-1205

compost, respectively. The compost-based Azo, Rh and PSB bioinoculants were applied (@ 4 206

kg ha-1) to rice seedlings by root-dip technique. The required quantity of bioinoculants was 207

made into slurry and the rice seedlings of respective treatments were dipped for 3 h prior to 208

transplanting.  By this technique the bioinoculants were adhered to the seedling roots. After 209

root-dip treatment of rice seedlings, the average population of Azo and PSB determined on 210

inoculated rice seedling roots were 8.3 x 107 cfu on rojo congo agar (Cáceres 1982) and 7.8 x 211

106 on Pikovskaya’s agar (Sundara Rao and Sinha 1963), respectively. Pea seeds were coated 212

with Rh and average cfu per coated seed determined on yeast extract mannitol agar (Subba 213

Rao 1999) was 6.9 x 106. French bean seeds were coated with Rhizobium phaseoli (FB-9-2) 214

and cfu on seeds were not quantified.215

216

Crop harvesting and residue recycling217

218
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Both Sali and Ahu rice were harvested at physiological maturity stage. Pods of french bean 219

and pea crops were picked up thrice in sequence. French bean pods were harvested as green 220

vegetable, whereas the pea was harvested as mature pods. Ahu rice straw and legume stover 221

were harvested just at level to the soil surface. The fresh rice straw and legume stover from 222

each plot were weighed and a uniform sample of 2 kg (rice) and 1 kg (legume) withdrawn, 223

oven-dried at 65 0C to constant weight and weighed. Oven-dry weight of the sample was used 224

to convert the fresh straw and stover weight on oven-dry basis. The remaining portion of the 225

straw and stover was again immediately incorporated into the soil of respective plots. In case 226

of Sali rice of 2nd and 3rd year rotations, panicles were harvested for grain yield and the straw 227

yield was estimated by cutting only 10 hills at ground level in uniform pattern from each plot.228

229

Nutrient balance in soil after harvest of six crops (2 years rotation)230

231

The depth-wise (at 0-15 cm and 15-30 cm) nutrient balance sheets in soil were calculated at 232

the end of second year rotation. Straw and stover of rice and legume crops were incorporated 233

into soil and hence, nutrient removed by six crops referred to the grain nutrient uptake by six 234

crops plus nutrient uptake by straw of the Ahu rice 2003 i.e. the sixth crop. In this study, the 235

possibilities of inputs error through rice seedlings, legume seeds and also from rainfall to 236

nutrient treatment plots were negligible for nutrient balance calculation,  because each 237

treatment plot received equal numbers of rice seedlings (same age) and legume seeds as238

planting materials and also equal amount of rainfall. During dry spell in each Ahu rice season, 239

one life saving irrigation was given in equal volume from the same irrigation source to all 240

treatment plots and it was assumed that any nutrient added to the plots through irrigation 241

water was in equal amount and did not affect nutrient balance results. There was no flood on 242

the plots during the Sali (monsoon) seasons of experimentation period and thus assumed to 243
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have no nutrient loss by run off from the plots. The nutrient balance under these sets of 244

experimental conditions indicated apparent loss or gain of N and P balances to make relative 245

comparison among different nutrient management treatments. Depletion of DTPA extractable 246

Zn was determined after completion of 1st year crop cycle. Apparent N and P balances were 247

estimated using the method described by Regmi et al. (2002). We didn’t consider N and P 248

inputs through irrigation and rain waters in the balance estimation.249

N or P balance =  (N or P from compost & inorganic fertilizers) – plant N or P (uptake in      250
grain & straw or stover)251

   252
253

Determination of nitrogenase activity by acetylene reduction assay254

255

Closed acetylene reduction assay (ARA) can accurately indicate relative differences in 256

nitrogenase activity in legume root nodules, though total nitrogenase activity measurement is 257

not possible (Vessey 1994). ARA was determined in pea roots collected when maximum 258

nodules were observed, and in rice roots collected at maximum tillering stage. Pea plants were 259

uprooted and excess adhered soils were removed carefully. Entire roots with intact nodules of260

each plant were put in a glass bottle (volume 630 ml) and mouth was made airtight with 261

rubber septum and 10% of the bottle’s air space replaced by acetylene gas (C2H2, >99.99%262

purity) and incubated at room temperature for 1 h. For determination of nitrogenase activity in 263

rice roots, the entire roots of a rice hill was uprooted and separated from the above ground 264

plant parts. The entire root was rinsed with standing water on same spot in the field to remove 265

excess adhered mud and immediately placed in a glass bottle (volume 630 ml) and mouth was 266

made airtight with rubber septum. An air volume of 10% of the bottle’s air space was replaced 267

by injecting acetylene gas (C2H2, 99.99% purity). Bottles were incubated at room 268

temperature for 16 h at dark (Barraquio et al. 1986). Ethylene production was measured on a 269

gas chromatogram (GC Top series 8000, CE instruments, Italy) by standard procedure and 270
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nitrogenase activity expressed in mole of C2H4 h-1 100 cc-1 root volume (for rice) and mole 271

of C2H4 h-1 plant-1 (for pea) (Thakuria et al. 2004). 272

273

Soil and plant sampling and analyses274

275

Soil samples (moisture content at field capacity) were collected randomly from 10 spots 276

within each treatment plot up to 0-15 and 15-30 cm soil depth using a 5 cm diameter soil core 277

at the end of both 1 and 2 year crop cycles (Ahu rice harvest). Each soil sample of 0-15 cm 278

depth was divided into three sub-samples. The first sub-sample was used for physical 279

properties with minimum structural disturbances. The second sub-sample was air-dried, 280

crushed to pass through 2 mm mesh and stored in sealed plastic bags for subsequent analyses 281

of chemical properties. The third sub-sample was carried to laboratory in ice box and 282

immediately analysed for biological properties.283

Grain and straw/stover were sampled randomly on five plants from each plot at 284

harvest for N, P and Zn uptake analysis. Plant samples were washed with 0.01 N HCl 285

followed by several washings with de-ionized water and oven dried at 65 0C to constant 286

weight. Samples were ground in a Willey Laboratory Mill. Tissue N was determined by 287

micro-Kjeldahl digestion, distillation and titration procedures (Bremner and Mulvaney 1982). 288

Ground tissue was digested in a mixture of HNO3:HClO4 (3:1) and concentrations of P and Zn 289

were determined by the ammonium molybdate (Olsen and Sommers 1982) and atomic 290

absorption spectrophotometer (Perkin Elmer Analyst 200, USA), respectively. 291

Soil samples were analysed for pH (1:2 soil/water suspension) using a standard pH 292

meter (Mettler Toledo, Model SevenEasy pH, GmbH, Switzerland), total N (by Kjeldahl 293

method: digestion with concentrated H2SO4 in presence of K2SO4 and Zn dust at 360 0C in a 294

Kjel Plus block digester, distillation in presence of excess NaOH and ammonia absorption in295
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boric acid; these steps were done by using Kjel Plus, Pelican Equipments, India. Then residual 296

boric acid was titrated with standard 0.01 N H2SO4 and total P by digestion in HNO3:HClO4, 297

3:1, as described (Olsen and Sommers 1982). Available P (Bray’s P) in soil was determined 298

by stannous chloride blue color method (Bray and Kurtz 1945). Available Zn in soil was 299

extracted by using DTPA as described by Liang and Karamanos (1993) followed by 300

determination using atomic absorption spectrophotometer (Perkin Elmer Analyst 200, USA).301

Total organic C content in soil was determined by the dichromate oxidation method (Nelson 302

and Sommers 1982). Soil aggregate analysis was done by wet sieving method (Camberdella 303

and Elliott 1992). A 100 g soil sample (capillary-rewetted) was wet sieved by Yodder’s 304

apparatus through a series of sieves to obtain four size fractions: 2000 m, 2000-250 m, 305

250-53 m and 53 m. Aggregate fractions retained on each sieve transferred to glass 306

beaker and oven dried at 65 0C for weight determination. 307

308

Soil biological properties309

310

Several biological properties of soils from the six treatments were determined. Bacterial and 311

fungal counts of soil were determined by serial dilution techniques (Subba Rao 1999). For312

analysis of microbial biomass-C (MBC), fungal biomass-C (FBC) and bacterial biomass-C313

(BBC) moist soil samples were pre-incubated at 250C for 36 h to attain basal respiration 314

condition (Srivastava and Singh 1989). Microbial biomass C in pre-incubated soil samples (20 315

g dry weight equivalent) was determined by the chloroform fumigation-incubation technique 316

(Jenkinson and Powlson 1976) using a Kc = 0.45 conversion factor (Witt et al. 2000). Fungal 317

and bacterial biomass-C were determined using the method described by Hafeel et al. (2004) 318

with some modifications. For FBC estimation, we used a mixture of fungal inhibitors 319

amphotericin-B and captan to a final concentration of 0.5 and 2 mg g-1 soil, respectively. For 320
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BBC, a mixture of bacterial inhibitors Rifampicin, Ampicillin, Chloramphenicol, Gentamycin 321

and Streptomycin, each had a final concentration of 1 mg g-1 soil. These inhibitors were added 322

to samples by mixing with talc powder (Bailey et al. 2002). Each soil sample was sub-divided 323

into three equal sub-samples (20 g each). The control sub-sample received only talc @ 20 mg 324

g-1 soil. Other two soil sub-samples received fungal and bacterial inhibitors, separately. The 325

treatment mixtures were thoroughly mixed and incubated at 250C for 1 h. Then 1.0 ml of 326

0.4% glucose solution was added to each treatment tube, mixed thoroughly and inserted a 327

glass test tube containing 5 ml of 0.5 N NaOH in each sample vial and stoppered with rubber 328

bungs and re-incubated. Amount of CO2 absorbed by NaOH was determined by titrating 329

against standard 0.1 N H2SO4. Rest calculations were done as per the procedure followed for 330

MBC determination. The MBC, FBC and BBC were expressed in terms of g g-1 dry soil.331

Earthworms’ casts were counted in plots at the start of the 3rd year crop cycle by 332

quadrate method. Plots were puddled, leveled and waited for the thin layer of water to 333

disappear 7 days before transplanting of 7th crop, Sali rice, 2004. On the leveled plots, the 334

earthworm casts appeared overnight and these casts were counted using 1 m2 grid. 335

336

DNA extraction, polymerase chain reaction (PCR) and DGGE337

338

Microbial DNA was extracted in freshly collected soil samples (500 mg) using the 339

commercial FastDNA Spin Kit for soil (BIO101, Vista, CA). The soil DNA content ranged 340

from 49.4 to 137.1 g g-1 dry soil. Partial 16S rRNA gene fragments in the sample DNA were 341

amplified using bacterial primers set described by Muyzer et al. (1993). Each amplification 342

reaction (50 l) contained 50 ng soil DNA, 1U Taq DNA polymerase, 200 µM dNTPs, in a 10 343

mM TrisHCl buffer (pH 8.0), 1.5 mM MgCl2 , 50 mM KCl and 0.1% Triton X-100 and 32.5 p 344

mol of each primer. Template DNA was omitted from negative control reaction. All 345
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amplifications were performed at least twice for each DNA sample obtained from each 346

replicate INM plot using a Hybaid Omnigene Thermocycler (Omnigene, The Netherlands) 347

and reaction conditions were maintained as described by Muyzer et al. (1993). Amplified 348

products were initially checked in agarose gel (1.5 % w v-1). 349

Amplified products were loaded on 8% acrylamide gel using a denaturant gradient of 350

45-65% and run at 75 V, 60 ºC constant temperature for 18 h (Ingeny Phor mutation detection 351

system (Ingeny International BV, The Netherlands). Gel was stained with ethiduim bromide 352

(0.5 mg L-1) and visualized under UV light on an Imago imaging system (Imago Scientific 353

Instruments, USA). Number of bands in each profile was recorded. The relative intensity of a 354

specific band was expressed as the ratio between the intensity of that band and the total355

intensity of DNA in a profile. Pair-wise similarity matrix among DGGE profiles based on 356

numbers and relative abundances of DGGE bands using Dice correlation coefficient (Dice 357

1945) was determined. Hierarchical cluster analysis was performed using unweighted pair 358

group method with arithmetic means (UPGMA) on similarity matrix to construct dendrogram359

to illustrate the relationship between bacterial community profiles of different nutrient 360

management plots. 361

362

Statistical analysis363

364

All statistical analyses were performed using SPSS v. 12.0 (SPSS Inc. Chicago, IL). We 365

checked normality distribution among data generated from all replicated plots under six 366

nutrient management treatments for each parameter using the Kolmogorov-Smirnov test and 367

found normally distributed. For every parameter reported in this investigation, the six nutrient 368

management treatments were analysed for differences among means (P0.05) by performing 369
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one-way analysis of variances (ANOVA) incorporating the Levene statistics to test the 370

equality of group variances and the Least Significant Difference (LSD) test at P0.05. 371

372

373

Results and Discussion374

375

Grain yield and harvest index as influenced by bacterial bioinoculants based INM376

377

Grain yields of Sali rice, Ahu rice and legume crop ranged from 2.4 to 3.8 Mg ha-1, 1.6 to 3.7378

Mg ha-1 and 0.15 to 1.3 Mg ha-1, respectively across all nutrient management treatments 379

(Table 2; P0.05). Performance of the French bean crop in the 1st year crop cycle was poor 380

i.e. 0.095–0.135 Mg (dry bean) ha-1 because of white mould disease in the crop. 381

The grain or pod yield of each crop under bacterial bioinoculants based INM plots was 382

consistently higher (significant at P0.05) compared to the yields under control plots and also 383

increased marginally over that in compost alone or Urea:SSP:MOP plots (Table 2). In our 384

earlier study, these bioinoculants (Azo and PSB) were found to be best among several strains 385

tested in increasing grain yield of rice in field conditions compared to uninoculated control 386

(Thakuria et al. 2004). Other workers reported 4.9 to 22% increase in yield of rice due to 387

inoculation with Azospirillum compared to uninoculated control in field conditions (Lucy et 388

al. 2004). Similarly, PSB strains were reported to vary in phosphate solubilization activity and 389

stimulating growth of soyabean (Fernández et al. 2007). Reddy and Raju (2006) found that 390

application of PSB with PR produced rice yields statistically at par with that produced by SSP 391

application @ 30 kg ha-1. The grain/pod yields for all nine crops under Urea:SSP:MOP or 392

compost applied plots were at par to each other and this was expected as the soils of 393

northeastern alluvial plains are highly responsive to externally added organic matter owing to 394
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low organic C status (<8.0 g kg-1 soil) and very low NUE of applied inorganic fertilizers in 395

these soils (Talukdar et al. 2004). During 3 years crop cycles, average increase in grain yield 396

of Sali rice over control plots was 21.5%, 18.6% and 29.7%, of Ahu rice 33.8%, 33.3% and 397

46.2% and in pod yield of the legume 254.6%, 266.2% and 296.7% due to application of398

Urea:SSP:MOP, compost and bioinoculants based INM treatments, respectively (Table 2). 399

This clearly indicated that response of legume crop (December-March) to applied nutrients 400

was highest followed by Ahu (April–July) and Sali rice (August–November) in RLR rotation.401

Harvest index (HI) of grain crops refers to the ratio of grain yield by total biomass 402

yield (Rosielle and Frey 1975) and hence, HI can serve as a quality index for N management 403

in cropping system. Harvest index of rice crops in Urea:SSP:MOP and urea added PSB alone 404

INM plots was significantly (P0.05) lower than HI in Azo/Rh plus PSB dual INM and405

Azo/Rh alone INM plots (Fig. 1). The higher quantity of straw production was responsible for 406

the lower HI of rice crops in Urea:SSP:MOP and urea added PSB alone INM plots, which407

might be due to more availability of inorganic N through urea at early stages of crop growth. 408

Aulakh et al. (2000) also reported that an excess supply of inorganic N at the early stages of 409

crop growth encourages more vegetative growth. Overall, these results indicated that combine 410

application of compost, Azo/Rh and PSB along with PR and MOP sustain higher yields under 411

RLR rotation in acidic rice soils.      412

413

Nitrogenase activity as influenced by bacterial bioinculants based INM414

415

Nitrogenase activity in roots of rice and pea (intact nodules) was determined in all nine crops 416

except Sali rice, 2001 and French bean, 2001-02 (Fig. 2). In Azo/Rh alone INM and Azo/Rh417

plus PSB dual INM plots, nitrogenase activity was significantly (P<0.01) higher compared to 418

that of other treatments. The ability to fix atmospheric N by the test Azo strain in rice roots 419
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and also the synergistic effect of co-inoculation of Azo with PSB strain on N2 fixation either 420

in-vitro or in field conditions were previously reported (Thakuria 2006). Similar to 421

observation by earlier workers (Roper and Ladha 1995), we also found that application of 422

compost stimulated nitrogenase activity in both rice and pea roots. In contrast, inorganic 423

fertilizer and urea included INM retarded nitrogenase activity but not significantly. Whether 424

the stimulation or retardation in nitrogenase activity is associated with a corresponding 425

stimulation/retardation of population of the N2 fixing microorganisms can not be confirmed as 426

we did not determine their population in soil.  A very interesting observation was gradual 427

increase in nitrogenase activities in roots of rice and pea under Azo/Rh alone INM or Azo/Rh 428

plus PSB dual INM plots towards later crop cycles, which could be a result of either 429

population build up of introduced bioinoculants in the rhizosphere or better soil environment 430

for the N2 fixers (Fig. 2). Although we observed persistence of these test strains in rice soil up 431

to one year after inoculation (Boro et al. 2004), their population was not monitored yearly in 432

this study. However, earlier research indicated that the counts of inoculated strains of 433

Azospirillum and Azotobacter increased 2 to 3 folds in pearl millet rhizosphere when 434

inoculation was continued for 3 years in fields with a corresponding increase in grain yield, 435

nitrogenase activity and N assimilation (Wani et al. 1988).  436

437

Nitrogen uptake and balance438

439

Nitrogen removed by grains of six crops plus straw of Ahu rice 2003 in different nutrient 440

management plots differed significantly (P<0.05; Table 3) after completion of the 2nd year 441

crop cycle. Nitrogen removed by six crops in control plots was the least (92 kg ha-1).  In 442

compost and Urea:SSP:MOP plots, removal of N increased by 43.7% and 51% over control 443

plots, respectively and in bacterial bioinoculants based INM plots removal of N further 444
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increased by 7.2-14.7% and 12.7-20.5% over Urea:SSP:MOP and compost treated plots, 445

respectively. Higher grain yields and N concentration in grain/pod and straw/stover of RLR 446

rotation under bacterial bioinoculants based INM plots indicate more availability of N for 447

crop uptake (Table 2 and 3). These results support a positive role for N2 fixation by the test 448

Azo and Rh strains in rice and pea crops, respectively. 449

Among three different bacterial bioinoculants based INM treatments, there was no 450

statistically significant difference observed in the amount of N removed, despite of ~2 fold 451

more N inputs added to soil in the urea added PSB alone INM treatment (Table 3). 452

Surprisingly, in this treatment, the apparent N loss was approximately double the amount of 453

apparent N loss observed in 0-15 cm soil depth in Azo/Rh plus PSB based INM or Azo/Rh 454

alone INM plots (Table 3). But this higher apparent N loss could not be accounted for 455

corresponding N removal value and apparent N gain in 15-30 cm soil depth suggesting N loss 456

in relatively higher amount from soil of this treatment. This resulted in a low agronomic 457

efficiency of applied N i.e. 8.5 kg grain kg-1 N in urea added PSB alone INM plots as against 458

14.1 kg grain kg-1 N in other two bioinoculants based INM plots. These results also suggest a 459

positive role for nitrogen fixation in soils under Azo/Rh based INM treatments. The 460

nitrogenase activity was also higher in these plots (Fig. 2).461

The data on apparent N loss in 0-15 cm and apparent N gain in 15-30 cm soil depth 462

under different treatments are in conformity with values of previous 14 reports that included 463

211 N balance values in rice based cropping system, out of which ninety-five percent values 464

were in between –60 to +90 kg N ha-1crop-1 (Roger and Ladha 1992). The apparent loss of N 465

at 0-15 cm depth not only supports differential N uptake by the six crops in different nutrient 466

management treatments but also the movement of N from surface layer (0-15 cm) to the sub-467

surface layer (15-30 cm) as evident from positive soil total N balances at 15-30 cm depth. 468

This data clearly indicated that application of N inputs in excess either as inorganic or organic 469
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or in combination enhances loss of N from the system. Soils of the Brahmaputra basin are 470

highly weathered and light in texture, and intense rain in the region seems to cause leaching of 471

substantial amount of N from the surface layers particularly when the urea is a component of 472

external nutrient inputs. Excessive use of N fertilizers is known to promote nitrate leaching 473

(Aulakh et al. 2000; Ju et al. 2007). Under this situation, application of a bacterial 474

bioinoculant based INM appeared to enhance N assimilation by crops, nitrogen fixation in soil 475

and ability of the system to reduce N loss. The mechanisms of such beneficial effects of 476

bacterial bioinoculants based INM approach need to be addressed in future research. 477

478

Phosphorus uptake and balance479

480

Phosphorus removed by grains of six crops plus straw of Ahu rice 2003 in control plots was 481

the least i.e. 22.8 kg ha-1 (Table 3). In compost alone and Urea:SSP:MOP plots, removal of P 482

increased by 51.3% and 68.4% (significant at P<0.05) over control plots, respectively. 483

Removal of P by six crops in bacterial bioinoculants based INM plots was significantly higher 484

(P<0.05) compared to that in control or compost alone plots. Quantity of P removed in 485

bacterial bioinoculants based INM plots was 7.6-12% higher over that in Urea:SSP:MOP 486

plots (Table 3). These results indicated better P assimilation by the crops in bacterial 487

bioinoculants based INM plots under RLR rotation in acidic soils.    488

After harvest of six crops, a net negative soil total P balance at 0-15 cm depth ranged 489

from –26.4 to –61.3 kg P ha-1 (Table 3). The depletion of total P from the initial value at 0-15 490

cm soil depth can not be justified by the amount of total P removed by the six crops and 491

suggests that two years of cultivation caused downward movement of P in soil as evident 492

from a net positive soil total P balance of +28.1 to +88.1 kg P ha-1 at 15-30 cm soil depth493

irrespective of nutrient management (Table 3). Zhang et al. (2003) earlier also reported that 494
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substantial quantity of molybdenum reactive P can move down from surface layers to deeper 495

depth in paddy soils. We observed two distinct phenomena in relation to P management either 496

through PSB with PR or SSP in acidic soil. The Azo/Rh plus PSB dual INM and PSB alone 497

INM plots (both nutrient treatments received PSB with PR as source of P) showed least 498

apparent loss of soil total P i.e. 1.6 and 0.8 kg ha-1, respectively; whereas the Urea:SSP:MOP 499

and Azo/Rh alone INM plots (both nutrient treatments received SSP as source of P) showed 500

apparent gain in soil total P i.e. 11.4 and 6.0 kg ha-1, respectively at 15-30 cm depth after 501

harvest of six crops (Table 3). Therefore, application of readily soluble SSP in whole quantity502

as basal dose in light textured acidic soil under high rainfall areas might encourage 503

translocation of substantial quantity of P to subsurface layer (15-30 cm soil depth). This 504

leached down soluble form of P immediately bound by highly active Fe and Al oxides at sub-505

surface soil layer and thereby contributed a positive apparent soil total P balance. On the other 506

hand, PR is insoluble in soil and with time slowly dissolves through various microbial 507

mediated mechanisms (Kucey et al. 1989) and such available P fraction in soil was readily 508

taken up by plants and thereby less chance of leaching losses to deeper depth and hence no 509

positive apparent soil total P balance at 15-30 cm soil depth. The higher content of Bray’s P in 510

soil (significant at P<0.05) with corresponding higher quantities of P removal by crops under 511

bacterial bioinoculants based INM plots also supported the positive role of the test PSB strain 512

for better P assimilation by crops in RLR rotation (Table 3 and 5). The ability to solubilise tri-513

calcium phosphate in-vitro and enhancement of rice growth and yield under field condition by 514

the test PSB strain was previously reported (Thakuria et al. 2004).  515

516

Depletion of DTPA extractable Zn in soil and Zn uptake by crop517

518
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Changes in soil DTPA extractable Zn in different nutrient management treatments after 519

completion of 1st year crop cycle and also uptake and balance of Zn for the Sali rice 2002 are 520

presented in the Table 4. The three bacterial bioinoculants based INM plots showed a 521

significant (P<0.05) increase in soil DTPA extractable Zn content compared to that in control, 522

Urea:SSP:MOP and compost plots (Table 4). A high correlation coefficient (r=0.83, P0.01) 523

between grain yields and DTPA extractable Zn contents in soil after 1-year RLR rotation 524

indicated better Zn use efficiency in bacterial bioinoculants based INM plots compared to 525

other treatment plots. Zinc removed by grain and straw of Sali rice 2002 was significantly 526

(P<0.05) higher in bacterial bioinoculants based INM plots compared to the amount of Zn 527

removed in control or compost plots. In control and compost alone plots, high apparent gain 528

of DTPA extractable Zn in soil after harvest of Sali rice 2002 and lower quantity of Zn 529

removed by that crop indicate the possibility of applied ZnSO4 getting transformed to 530

unavailable forms of Zn (clay-lattice bound, organic complexed, amorphous and crystalline 531

sesquioxides-bound, Hazra et al. 1987) in soil of these plots. Such transformation of applied 532

ZnSO4 may also occur in INM plot soils but there is the possibility of solubilization of the 533

bound fractions of Zn in the bioinoculants based INM plots. Hence, uptake of Zn by plant in 534

these bioinoculants based INM plots was significantly (P<0.05) higher (Table 4). However, 535

this need to be systematically investigated in future research. Raj (2002) also reported Zn-536

solubilization by a Bacillus sp in soil and improvement in grain yield and Zn uptake of rice.537

Therefore, improved Zn assimilation by the crops in bacterial bioinoculants based INM plots 538

argues against a specific effect of the bioinoculants on N or P nutrition in cropping system. 539

540

Changes in total organic C content, aggregation, bacterial and fungal biomass, casting 541

activities of earthworms and in composition of bacterial communities of soil542

543
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After completion of 2 years crop cycles, soil total organic C content depleted (ranged from 1.1 544

to 14.8%) at 0-15 cm depth and gained (ranged from 5.6 to 25.0%) at 15-30 cm soil depth 545

across all nutrient management plots compared to initial total organic C content values in the 546

respective soil depths (Table 5). Prior to this experiment, the field was lying fallow for 5 547

years. Therefore, this decline in total organic C at top layer might be associated with the 548

cultivation induced factors (Dalal and Mayer 1986). Earlier, Naklang et al. (1999) observed 549

depletion of soil organic C and labile C in 0-10 cm depth and gain of labile C in 20-40 cm 550

depth following conversion of forest land to rainfed rice in light texture soil. However, the 551

decline in soil total organic C was less in bacterial bioinoculants based INM plots and the 552

reason could be better soil aggregation. Bacterial bioinoculants based INM plots showed 553

significant (P<0.05) higher water-stable aggregation and mass of 2000-250 m and 250-53 554

m soil aggregates at 0-15 cm soil depth compared to that in control, Urea:SSP:MOP and 555

compost alone plots after harvest of six crops in RLR rotation (Table 5). Mass of soil in 556

aggregates class <53 m increased significantly (P<0.05) in control, Urea:SSP:MOP and 557

compost plots compared to that in bacterial bioinoculants based INM plots. The formation and 558

stabilization of macro-aggregates (250-2000 m) and micro-aggregates (53-250 m) in these 559

plots perhaps physically protected higher amount of particulate organic matter and hence, less 560

chance of depletion of labile organic C from the surface layer (0-15 cm depth) to deeper soil 561

depths. These macro- and micro-aggregates contain higher amounts of particulate and light 562

fraction organic matters and that support higher rate of C and N mineralization in soils 563

(Manna et al. 2005; Yan et al. 2007). Our results also indicate higher rate of C and N 564

mineralization in bioinoculants based INM plots. However, laboratory incubation studies 565

using soils both from the bioinoculants based INM and other treatment plots need to be 566

carried out to generate data on C and N mineralization in future. Nevertheless, it is clear from 567

the data that straw/stover incorporation with inorganic fertilizers or compost in light texture 568
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alluvial soils might not be sufficient to counter balance the loss of soil organic C and 569

deterioration of soil aggregation due to intensive cultivation under RLR rotation.570

The Azo/Rh plus PSB dual INM and Azo/Rh alone INM and compost plots supported 571

significant (P<0.05) higher BBC compared to that in control, Urea:SSP:MOP and urea added 572

PSB alone INM plots (Fig. 3). In contrast, the control, Urea:SSP:MOP and urea added PSB 573

alone INM plots supported significant (P<0.05) high FBC than the other nutrient management 574

plots (Fig. 3). Population of bacteria and fungi determined in soils maintained a high 575

correlation co-efficient (r = 0.87, P<0.01) with BBC and FBC, respectively in corresponding 576

nutrient management plots (data not shown). The reflection of high MBC in control, 577

Urea:SSP:MOP and urea added PSB alone INM plots was due to exceptional high 578

contribution by FBC; FBC/BBC ratios were 3, 4.5 and 2.0, respectively in those plots. The 579

high FBC/BBC ratios in Urea:SSP:MOP and urea added PSB alone INM plots might be due 580

to lowering of soil pH, which stimulated fungal population significantly in those plots. After 581

harvest of six crops, the maximum pH drop (0.24 units) observed in Urea:SSP:MOP plots 582

followed by 0.20 units drop in urea added PSB alone INM plots (Table 5). The least pH drop 583

(0.05 units) was observed in Azo/Rh plus PSB dual INM plots. Bååth and Anderson (2003)584

reported that fungal/bacterial ratio decreased significantly with increasing pH from about 9 at 585

pH 3 to approximate 2 at pH 7.0. Although, reduction in pH in soils of control plots was not586

significant (Table 5), high FBC/BBC ratio in control plots could be a result of poor quality587

rice straw incorporation in soil (low nutrient content) and lower quantity of legume stover 588

returned to the plots per RLR rotation. It has been reported earlier that low quality substrates 589

(high C/N) favor fungi while high quality (low C/N) substrates favor bacteria in soil (Bossuyt 590

et al. 2001). Thus we see that the bacterial bioinoculants based INM practice in RLR rotation  591

ensure annual high return of quality legume stover along with rice straw and compost and 592

associated biological N2 fixation, consequently an improved status, uptake and balance  of N 593
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in soil (Table 3). As expected these factors caused an approximate balance of FBC/BBC ratio 594

ranging from 1.1 to 1.3 in bacterial bioinoculants based INM plots that in turn helped to 595

sustain a better nutrient mineralization process fueled by the labile C substrates in those plots.596

Higher N, P and Zn assimilation by crops coupled with high content of soil available N, P and 597

Zn pools also supports the onset of a better mineralization process under bacterial 598

bioinoculants based INM practice. Thus the fractionation of the MBC to FBC and BBC, and 599

interpretation and use of their ratio in this study is justified as an index of better C and N 600

mineralization process in soil. Because, MBC is a measure of biomass that is size not activity601

of microorganisms and therefore, use of MBC as a rapid indicator of C and N mineralization 602

processes in soil may be misleading. Earlier, Witt et al. (1998) also reported that MBC 603

measurement was a poor indicator of N mineralization–immobilization dynamics in soils.604

Overall, results of FBC/BBC ratios suggested that incorporation of legume and rice crop 605

residues into soils along with external application of compost and bacterial bioinoculants 606

under rice based rotation were useful in maintaining balance between C and N dynamics in 607

soils. A balance between C and N dynamics in soils ensures more labile pools of soil organic 608

C, and hence better mineralization processes of nutrients in soils.609

After completion of 2 years crop cycles, earthworms’ castings approximately doubled610

(significant at P<0.05) in Azo/Rh plus PSB dual INM and compost plots compared to that in 611

Urea:SSP:MOP, SSP added Azo/Rh alone INM and urea added PSB alone INM plots (Table 612

5). Rice field earthworms are endogeics and preferentially feed on high quality soil organic 613

matters. Endogeic earthworms preferably assimilate C from recently deposited fractions of 614

soil organic matter, which is composed of more readily decomposable substances (Edwards 615

and Arancon 2004). The bacterial bioinoculants based INM plots contained higher levels of 616

readily decomposable substances like particulate organic matter due to higher percentage of 617

macro- and micro-aggregates (Table 5). Again continuity of foods (for example more labile C618
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and N pools in the soil) through out the year attracted more earthworms in compost and 619

bacterial biofertilizers based INM plots. However, addition of either urea or SSP reduced 620

casting activities of earthworms in Azo/Rh alone INM, PSB alone INM and Urea:SSP:MOP621

plots. Though we do not know the exact cause for this reduction in casting activities of rice 622

field earthworms, previous study reported that earthworm numbers and biomass were 623

significantly less in inorganic fertilizer applied plots compared to manure-amended plots624

(Whalen et al. 1998), which needs further confirmation. 625

Hierarchical cluster analysis based on pair-wise similarity matrix of DGGE profiles 626

showed that bacterial community (in terms of number of bands and their relative abundances) 627

in control plots distinctly separated from the bacterial communities in other nutrient 628

management plots (Fig. 4). The four DGGE bands (indicated by horizontal lines with square 629

pointers in the lane 1, Fig. 4A) might represent succession of unique bacterial groups those 630

are specifically abundant in nutrient poor soils. The variation in DGGE banding pattern in 631

control plots compared to other nutrient management plots might be associated with 632

preferential colonization of rice straw in soil by certain groups of bacteria under poor N 633

availability condition, or otherwise decrease or elimination of abundant bacteria (for example 634

DGGE bands indicated by the horizontal lines with arrow pointers in the lane 1, Fig. 4A)635

those prefer to colonize high quality soils, which needs further confirmation. Among nutrient 636

input added plots, 2 distinct clusters at ≥82% similarity level were formed by the bacterial 637

communities; one cluster represented by bacterial communities (>90% similarity) in 638

Urea:SSP:MOP and urea added PSB alone INM plots and other one represented by the 639

bacterial communities (>99% similarity) in Azo/Rh plus PSB dual INM and Azo/Rh alone 640

INM plots (Fig. 4B). Except control plots, the differences of bacterial communities among 641

nutrient input added plots were mainly due to change in relative band intensities, which 642

indicates shift in abundances of dominant bacterial groups. Interestingly, C and N dynamics in 643
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soils between Azo/Rh plus PSB dual INM and Azo/Rh alone INM plots were comparable, and 644

soils of these two plots also harboured highly similar bacterial communities. Like-wise, C and 645

N dynamics, bacterial community compositions in soils between Urea:SSP:MOP and urea 646

added PSB alone INM plots were comparable. These findings implied that nutrient inputs 647

such as legume and rice crops residues, bacterial bioinoculants, inorganic fertilizers added in 648

different combinations to nutrient management plots modified community composition of soil 649

bacteria through their direct influence on C and N dynamics.650

651

652

Conclusions653

654

Our study clearly demonstrated the multiple benefits of combined use of Azo/Rh with either655

PSB plus PR or SSP, MOP and compost in sustaining higher yields, better N, P and Zn 656

assimilation by crops and improved soil quality under RLR rotation in acidic soil. These 657

bacterial bioinoculants based INM formulations with incorporation of crop residues of RLR 658

rotation in rainfed cropping system promoted more biological nitrogen fixation, better soil 659

aggregation and earthworm activities and thereby regulated a better C and N dynamics in 660

soils. The fungal/bacterial biomass C ratio in soil was found to be a better index of C and N 661

dynamics for measurement of short-term changes in acidic soil under RLR rotation. Results of 662

changes in bacterial community compositions in our experiment revealed the need of future 663

study to investigate impacts of continuous use of bioinoculants on microbial community 664

structure and its relation with soil functioning in cropping systems. We conclude that the INM 665

formulation containing compost, Azospirillum/Rhizobium with either phosphate-solubilizing 666

bacteria plus phosphate rock or SSP and MOP emerges as a superior nutrient management 667
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option for rice-legume-rice rotation to counteract the factors associated with low productivity 668

of the rainfed rice production systems in light texture acidic soils of the Brahmaputra basin.669

670
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Fig. 1 Harvest index of rice crops influenced by different nutrient management treatments in 837

rice-legume-rice rotation. Values that differ significantly (one-way ANOVA, P<0.05) within 838

each cluster of dendrograms are followed by different letters. Azo is Azospirillum; Rh is 839
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Rhizobium; PSB is phosphate solubilizing bacteria; PR is phosphate rock; SSP is single super-840

phosphate; MOP is muriate of potash.   841

Fig. 2 Nitrogenase activity in roots of Sali rice (A), pea (B) and Ahu rice (C) influenced by 842

different nutrient management treatments under rice-legume-rice rotation. Nitrogenase 843

activity in roots of Sali rice and French bean of 1st year crop cycle were not determined. Each 844

value on the line graph represents mean nitrogenase activity in roots of 12 plants from four 845

replicated plots. Values that differ significantly (one-way ANOVA, P<0.01) on each line 846

graph are followed by different letters. Azo is Azospirillum; Rh is Rhizobium; PSB is847

phosphate solubilizing bacteria; PR is phosphate rock; SSP is single super-phosphate; MOP is 848

muriate of potash.   849

Fig. 3 Microbial biomass C (MBC), bacterial biomass C (BBC) and fungal biomass C (FBC) 850

influenced by different nutrient management treatments determined after harvest of six crops 851

in rice-legume-rice rotation. Values that differ significantly (one-way ANOVA, P<0.05) 852

within each parameter are followed by different letters. Azo is Azospirillum; Rh is Rhizobium; 853

PSB is phosphate solubilizing bacteria; PR is phosphate rock; SSP is single super-phosphate; 854

MOP is muriate of potash.   855

Fig. 4 Denaturing gradient gel electrophoresis (DGGE) profiles of 16S rRNA gene fragments 856

obtained by PCR amplification using bacterial primer sets (Muyzer et al. 1993) in soils of 857

different nutrient management treatments. (A) an image of ethidium bromide stained DGGE 858

gel and (B) hierarchical cluster plot based on similarity matrix of DGGE profiles. Joints of859

the branches of the dendrogram indicate the percentage similarity based on unweighted pair 860

group method with arithmetic means (UPGMA). Azo is Azospirillum; Rh is Rhizobium; PSB 861

is phosphate solubilizing bacteria; PR is phosphate rock; SSP is single super-phosphate; MOP 862

is muriate of potash.863



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Control

Urea+SSP+MOP

Compost

Compost+Azo/Rh+PSB+PR+MOP

Compost+Azo/Rh+SSP+MOP

Compost+urea+PSB+PR+MOP

b
b

a
a

bc
b

bc
bc

b

a

a0.40

0.44

0.48

H
ar

ve
st

 in
d

ex

0.30

0.36

Sali rice Ahu rice

H
ar

ve
st

 in
d

ex

Figure1



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

a a
ab

b b
a

b
a

b

c c
b

0.2

0.6

1

1.4

1.8 Sali rice, 2002 Sali rice, 2003
N

it
ro

ge
n

as
e 

ac
ti

vi
ty

 (


m
ol

e 
C

2H
4

h
-1

10
0 

m
l-1

ri
ce

 r
oo

ts
)

a a

b

c c

a

a
a

b
bc c

b
40

80

120

160 Pea, 2002-03 Pea, 2003-04

N
it

ro
ge

n
as

e 
ac

ti
vi

ty
 (


m
ol

e 
C

2H
4

h
-1

p
la

n
t-1

)

A

B

a a b

0N
it

ro
ge

n
as

e 
ac

ti
vi

ty
 (

a
b

c bc

a
a

b
bc c

a

a
a

bc
c

c

ab

a
a

0.2

0.6

1

1.4

1.8
Ahu rice, 2002 Ahu rice, 2003

Ahu rice, 2004

C
on

tr
ol

 

U
re

a:
S

S
P

:M
O

P

C
om

p
os

t+
A

zo
/R

h
+

P
S

B
+

P
R

+
M

O
P 

C
om

p
os

t

C
om

p
os

t+
A

zo
/R

h
+

S
S

P
+

M
O

P 

C
om

p
os

t+
U

re
a+

P
S

B
+

P
R

+
M

O
P 

N
it

ro
ge

n
as

e 
ac

ti
vi

ty
 (


m
ol

e 
C

2H
4

h
-1

10
0 

m
l-1

ri
ce

 r
oo

ts
)

C

Figure2



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

FBC BBC MBC

60

80

100

120

a

b
b b b

b

60

80

100

120

140

160

c c
c

a

a

b
b b b

F
B

C
 a

n
d

 B
B

C
 (
g

 g
-1

d
ry

 s
oi

l)

M
B

C
 (
g

 g
-1

d
ry

 s
oi

l)

20

40

20

40

60

a a

c

b

F
B

C
 a

n
d

 B
B

C
 (

M
B

C
 (

C
on

tr
ol

 

U
re

a:
S

S
P

:M
O

P

C
om

p
os

t+
A

zo
/R

h
+

P
S

B
+

P
R

+
M

O
P 

C
om

p
os

t

C
om

p
os

t+
A

zo
/R

h
+

S
S

P
+

M
O

P 

C
om

p
os

t+
U

re
a+

P
S

B
+

P
R

+
M

O
P 

Figure3



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

A
1          2          3         4          5          6          7         8         9        10        11       12        

Compost (Lane 4 & 9)

Urea:SSP:MOP (Lane 3 & 10)

Compost+Azo/Rh+PSB+PR+MOP (Lane 6 & 7)

Compost+Azo/Rh+SSP+MOP (Lane 5 & 8)

Control  (Lane 1 & 12)

Compost+urea+PSB+PR+MOP  (Lane 2 & 11)

1.00 0.80 0.58 0.27 0.00

B

Figure4



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

Table 1 Crop cycle and year, fertilizer application rate and form applied to nine crops in rice-legume-rice rotation during 2001-2004

Crop cycle 
& year

Season Crop Variety Planting 
date

Harvesting 
date

Fertilizer rate§ Form of fertilizer† Compost
(Mg ha-1)

1st Year 

2001-02

Kharif Sali rice Ranjit Aug. 14 Dec. 09 40:20:20 Urea:SSP:MOP 3

Rabi French bean Contender Feb. 05 Apr. 05 20:30/15:20 Urea:SSP/PR:MOP 2

Summer Ahu rice Luit Apr. 20 July 11 40:20/10:20 Urea:SSP/PR:MOP 3

2nd year

2002-03

Kharif Sali rice Ranjit July 28 Nov. 28 40:20/10:20 and 5 Urea:SSP/PR:MOP 
and ZnSO4

3

Rabi Pea Boneville Nov. 15 Apr. 01 20:30/15:20 Urea:SSP/PR:MOP 2

Summer Ahu rice Luit Apr. 07 July 04 40:20/10:20 Urea:SSP/PR:MOP 3

3rd year

2003-04

Kharif Sali rice Ranjit Aug. 14 Dec. 10 40:20/10:20 Urea:SSP/PR:MOP 3

Rabi Pea Azad Nov. 19 Apr. 05 20:30/15:20 Urea:SSP/PR:MOP 2

Summer Ahu rice Luit Apr. 25 July 27 40:20/10:20 Urea:SSP/PR:MOP 3
§Applied rates were based on N:P2O5:K2O:ZnSO4 kg ha-1, ZnSO4 was applied only to the Sali rice crop of the 2nd year crop cycle. 
†PR was applied @ ½ of the recommended rate of SSP to all the PSB applied plots instead of SSP. PR was not applied to the Sali rice 
of 1st year crop cycle. PR is phosphate rock; SSP is single super-phosphate; MOP is muriate of potash.
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Table 2 Effect of bacterial bioinoculants based integrated nutrient management on grain yields of nine crops in rice-legume-rice rotation§

                    
                     Crop
Nutrient
management

1st year crop cycle (2001-2002) 2nd year crop cycle (2002-2003) 3rd year crop cycle (2003-2004)
Sali 
rice

French 
bean

Ahu
rice

Total Sali 
rice

Pea Ahu
rice

Total Sali 
rice

Pea Ahu 
rice

Total

Grain yield (Mg ha-1)

Control 2.35a 0.019a 1.60a 3.97a 2.81a 0.34a 1.59a 4.74a 2.39a 0.15a 2.35a 4.89a

Urea:SSP:MOP 2.53ab 0.095b 2.08ab 4.71b 3.74b 0.50ab 2.19b 6.43b 2.67ab 1.21b 2.44a 6.32b

Compost 2.64b 0.094b 1.92ab 4.65b 3.51b 0.61ab 2.33bc 6.45b 2.78b 1.16b 2.53a 6.46b

Compost+Azo/Rh
+PSB+PR+MOP

2.96c 0.098b 2.33bc 5.39c 3.75b 0.81b 2.34bc 6.90bc 2.82b 1.29b 3.21b 7.33c

Compost+Azo/Rh
+SSP+MOP

2.74bc 0.135c 2.08ab 4.96bc 3.70b 0.77ab 2.56cd 7.03c 2.86b 1.30b 3.08b 7.24c

Compost+urea+
PSB+PR+MOP

2.64b 0.110bc 2.59c 5.34c 3.76b 0.52ab 2.79d 7.07c 2.83b 1.03b 3.67c 7.53c

§Each value represents mean yield from four replicated plots and values that differ significantly (one-way ANOVA, P<0.05) within 
each column are followed by different letters. Grain yield was reported at 120 g kg-1 moisture content. Azo is Azospirillum; Rh is 
Rhizobium; PSB is phosphate solubilizing bacteria; PR is phosphate rock; SSP is single super-phosphate; MOP is muriate of potash.  
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Table 3 Removal of N and P by crops and apparent N and P balances in soil at 0-15 cm and 15-30 cm depth after harvest of six crops during 2 
year crop cycle in rice-legume-rice rotation§

Nutrient 
management

Soil total N (kg ha-1) N (kg ha-1) 
removed by 

the six 
crops

Apparent loss/ 
gain of soil total 

N (kg ha-1) at
0-15 and 15-30 

cm depth 

Soil total P (kg ha-1) P (kg ha-1) 
removed by 
the six crops

Apparent loss/ 
gain of soil total 

P (kg ha-1) at 
0-15 and 15-30 

cm depth 

At beginning 
of Sali rice, 

2001

At harvest 
of Ahu rice, 

2003

At beginning 
of Sali rice, 

2001

At harvest 
of Ahu rice, 

2003

Control 2381.1a 2189.2 92.2a -99.7 460.1a 398.8 22.8a -38.5
1233.5a 1338.0 +4.8 220.0a 248.1 -10.4

Urea:SSP:MOP 2414.7a 2259.7 139.2b -215.8 450.0a 391.6 38.4bc -76.7
1253.5a 1525.3 +56.0 224.0a 312.1 +11.4

Compost 2387.5a 2305.4 132.5b -183.4 459.0a 408.1 34.5b -52.8
1243.0a 1603.0 +177.0 230.0a 275.2 -7.6

Compost+Azo/Rh

+PSB+PR+MOP

2391.8a 2325.1 151.2c -159.3 468.6a 442.2 43.0c -63.5
1240.5a 1653.4 +253.6 226.0a 287.9 -1.6

Compost+Azo/Rh

+SSP+MOP

2393.9a 2320.2 149.3c -168.2 479.7a 450.6 42.7c -79.6
1245.5a 1679.8 +236.1 228.0a 313.6 +6.0

Compost+urea+

PSB+PR+MOP

2427.4a 2325.1 159.6c -376.5 469.7a 439.0 41.3c -69.5
1260.5a 1779.7 +142.7 221.0a 289.7 -0.8

§Values in plain and bold fonts depict 0-15 cm and 15-30 cm soil depth, respectively and also values with – and + signs indicate loss and gain, 
respectively. Values that differ significantly (one-way ANOVA, P<0.05) within each column are followed by different letters.
Variation in soil total N content at depth 0-15 cm or 15-30 cm throughout the experimental field at the beginning of Sali rice 2001 was  2.1%. 
Variation in soil total P content at depth 0-15 cm or 15-30 cm throughout the experimental field at the beginning of Sali rice 2001 was  6.4%. 
Azo is Azospirillum; Rh is Rhizobium; PSB is phosphate solubilizing bacteria; PR is phosphate rock; SSP is single super-phosphate; MOP is 
muriate of potash.
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Table 4 Changes in DTPA extractable Zn in soil at 0-15 cm depth after completion of first year rice-legume-rice rotation and apparent DTPA
extractable Zn balance in soil during growth of Sali rice 2002*

Nutrient 
management

DTPA extractable Zn 
(kg ha-1)

Changes in 
DTPA-Zn 

(kg ha-1) after 
1st year crop 

cycle

Zn (kg ha-1) 
added to Sali

rice, 2002

Zn (kg ha-1) 
removed by 

Sali rice, 
2002

DTPA extractable 
Zn (kg ha-1) at 

harvest of Sali rice, 
2002

Apparent loss/gain 
of DTPA-Zn 

(kg ha-1) at 0-15 
cm depth †

At transplant 
of Sali rice, 

2001§

At harvest of 
Ahu rice, 

2002
(a) (b) (a-b) (c) (e) (d) (b+c) – (d+e)

Control 1.40a 0.98a -0.42 1.14 0.28a 0.96a +0.88

Urea:SSP:MOP 1.33a 1.12ab -0.11 1.14 0.45c 1.23ab +0.55

Compost 1.47a 1.32bc -0.15 1.14 0.37b 1.39b +0.70

Compost+Azo/Rh
+PSB+PR+MOP

1.31a 1.62cd +0.31 1.14 0.50c 2.24c +0.02

Compost+Azo/Rh
+SSP+MOP

1.52a 1.74d +0.22 1.14 0.44bc 2.29cd +0.15

Compost+urea+
PSB+PR+MOP

1.49a 1.53cd +0.04 1.14 0.49c 2.66d -0.48

§ Variation of DTPA extractable Zn contents at soil depth 0-15 cm throughout the experimental field at transplant of Sali rice 2001 was  8.7%; 
† Values with – and + signs indicate loss and gain, respectively.
*Values that differ significantly (one-way ANOVA, P<0.05) within each column are followed by different letters.
Azo is Azospirillum; Rh is Rhizobium; PSB is phosphate solubilizing bacteria; PR is phosphate rock; SSP is single super-phosphate; MOP is 
muriate of potash.

Table4



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

Table 5 Effects of bacterial bioinoculants based integrated nutrient management on soil pH, organic C, water stable aggregation, aggregates size 
distribution, number of casts of earthworms and Bray’s P content in soil after growth of six crops in rice-legume-rice rotation§

Nutrient 
management

Unit change 
in pH 

at 0-15 cm 
soil depth 

% change in organic C † Water stable 
aggregation 
of soil (%)

Mass of soil in aggregate class ¶ 

(%)
No. of 

earthworms’
casts m-2

Bray’s P 
(kg ha-1) at 

harvest of Ahu 
rice 2003

At 0-15 cm 
depth

At 15-30 cm 
depth

2.0 mm -
0.25 mm

0.25 mm -
0.53 mm

< 0.53
mm

Control -0.08 -14.8 +5.6 70.0a 26.60a 27.23a 34.22c 158.3a 17.1a

Urea:SSP:MOP -0.21 -11.4 +5.6 73.7ab 27.12a 29.51a 30.36bc 455.6b 20.8b

Compost -0.10 -11.4 +13.9 76.7b 29.07ab 31.82a 22.37b 847.2c 20.3b

Compost+Azo/Rh
+PSB+PR+MOP

-0.05 -4.5 +25.0 84.0c 33.33b 40.06b 10.10a 738.9c 29.6d

Compost+Azo/Rh
+SSP+MOP

-0.09 -1.1 +33.3 87.3c 34.50b 41.96b 9.98a 452.8b 23.5c

Compost+urea+
PSB+PR+MOP

-0.18 -6.8 +22.2 82.5c 33.62b 42.55b 9.01a 416.7b 23.2c

§Values that differ significantly (One-way ANOVA, P0.05) within each column are followed by different letters. 
 Values with - sign indicates unit drop from the initial soil pH 4.80.
† Values with - and + signs indicate loss and gain, respectively over the initial total organic C contents 8.8 and 6.7 g kg-1 soil at 0-15 and 15-30 cm 
depth, respectively.     
¶ Values for mass of soil in aggregates class > 2.0 mm are not shown in the table as there was no statistical significance different among 
treatments. 
Azo is Azospirillum; Rh is Rhizobium; PSB is phosphate solubilizing bacteria; PR is phosphate rock; SSP is single super-phosphate; MOP is 
muriate of potash.
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