
Evaluation of Sampling for Data Mining of Association Rules
�

Mohammed Javeed Zaki, Srinivasan Parthasarathy, Wei Li, Mitsunori Ogihara
Computer Science Department, University of Rochester, Rochester NY 14627�

zaki,srini,wei,ogihara � @cs.rochester.edu
Abstract

Discovery of association rules is a prototypical problem
in data mining. The current algorithms proposed for data
mining of association rules make repeated passes over the
database to determine the commonly occurring itemsets (or
set of items). For large databases, the I/O overhead in scan-
ning the database can be extremely high. In this paper we
show that random sampling of transactions in the database
is an effective method for finding association rules. Sam-
pling can speed up the mining process by more than an order
of magnitude by reducing I/O costs and drastically shrinking
the number of transaction to be considered. We may also be
able to make the sampled database resident in main-memory.
Furthermore, we show that sampling can accurately repre-
sent the data patterns in the database with high confidence.
We experimentally evaluate the effectiveness of sampling on
different databases, and study the relationship between the
performance, and the accuracy and confidence of the chosen
sample.

1. Introduction

With large volumes of routine business data having been
collected, business organizations are increasingly turning to
the extraction of useful information from such databases.
Such high-level inference process may provide information
on customer buying patterns, shelving criterion in supermar-
kets, stock trends, etc. Data mining is an emerging research
area, whose goal is to extract significant patterns or interest-
ing rules from such large databases. It combines research in
machine learning, statistics and databases. In this paper we
will concentrate on the discovery of association rules.

The problem of mining association rules over basket data
was introduced in [1]. Basket data usually consists of a
record per customer with a transaction date, along with items
bought by the customer. The main computation step consists
of finding the frequently occurring item sets via an iterative�

This work was supported in part by an NSF Research Initiation Award
(CCR-9409120) and ARPA contract F19628-94-C-0057.

process. For disk resident databases, the I/O overhead in
scanning the database during each iteration can be extremely
high for large databases.

Random sampling from databases has been successfully
used in query size estimation. Such information can be
used for statistical analyses of databases, where approxi-
mate answers would suffice. It may also be used to estimate
selectivities or intermediate result sizes for query optimiza-
tion [11]. In the context of association rules, sampling can
be utilized to gather quick preliminary rules. This may help
the user to direct the data mining process by refining the
criterion for “interesting” rules.

In this paper we show that random sampling of transac-
tions in the database is an effective way for finding associa-
tion rules. We empirically compare theory and experimen-
tation, present results on the percentage of errors and correct
rules derived at different sampling values, the performance
gains, and also the relationship between performance, accu-
racy and confidence of the sample size. More specifically,
we make the following contributions:� Sampling can reduce I/O costs by drastically shrink-

ing the number of transaction to be considered. We
show that sampling can speed up the mining process
by more than an order of magnitude.� Sampling can provide great accuracy with respect to
the association rules. We show that the theoretical
results (using Chernoff bounds) are extremely conser-
vative, and that experimentally we can obtain much
better accuracy for a given confidence, or we can do
with a smaller sample size for a given accuracy.

We begin by formally presenting the problem of finding
association rules in section 2. Section 3 presents an analy-
sis of random sampling from databases. The effectiveness
of sampling is experimentally analyzed in section 4, and
section 6 presents our conclusions.

2. Data mining for association rules

We now present the formal statement of the problem of
mining association rules over basket data. The discussion

1

below closely follows that in [1, 3].
Let ���	��
 1 �
 2 ������
���� be a set of � distinct attributes,

also called items. A set of items is called an itemset, and an
itemset with � items is called a � -
������������ . Each transaction�

in the database � of transactions, has a unique identi-
fier

�! #"
, and contains a set of items, such that

�%$ � .
An association rule is an expression &('*) , where item-
sets & �),+(� , and &.-/)0�%1 . Each itemset is said to
have a support � if � % of the transactions in � contain the
itemset. The association rule is said to have confidence 2
if 2 % of the transactions that contain & also contain) ,
i.e., 23�4��5#67698;:<��=�&?>@)BADC7��576#6E8;:<��=F&GA , i.e., the conditional
probability that transactions contain the itemset) , given
that they contain itemset & .

The data mining task for association rules can be broken
into two steps. The first step consists of finding all large
itemsets, i.e., itemsets that occur in the database with a
certain user-specified frequency, called minimum support.
The second step consists of forming implication rules among
the large itemsets [3]. In this paper we only deal with the
computationally intensive first step.

Many algorithms for finding large itemsets have been
proposed in the literature [1, 7, 3, 10, 12, 6, 13, 2]. In this
paper we will use the Apriori algorithm [2] to evaluate the
effectiveness of sampling for data mining. We chose Apriori
since it fast and has excellent scale-up properties. We would
like to observe that our results are about sampling, and as
such independent of the mining algorithm used.

2.1. The Apriori algorithm

The naive method of finding large itemsets would be
to generate all the 2 � subsets of the universe of � items,
count their support by scanning the database, and output
those meeting minimum support criterion. It is not hard to
see that the naive method exhibits complexity exponential
in � , and is quite impractical. Apriori follows the basic
iterative structure discussed earlier. However the key obser-
vation used is that any subset of a large itemset must also be
large. In the initial pass over the database the support for all
single items (1-itemsets) is counted. During each iteration
of the algorithm only candidates found to be large in the
previous iteration are used to generate a new candidate set
to be counted during the current iteration. A pruning step
eliminates any candidate which has a small subset. Apriori
also uses specialized data structures to speed up the count-
ing and pruning (hash trees and hash tables, respectively.)
The algorithm terminates at step � , if there are no large � -
itemsets. Let HJI denote the set of Large � -itemsets and KLI
the set of candidate � -itemsets. The general structure of the
algorithm is given in figure 1. We refer the reader to [2] for
more detail on Apriori, and its performance characteristics.

We now present a simple example of how Apriori works.

H 1 �M� large 1-itemsets � ;
for (�@� 2; H I#N 1 O�P1 ; �RQSQ)K I = Set of New Candidates;

for all transactions �3T��
for all � -subsets � of �

if (�GTUK I) �7V 2<8;59WX�YQZQ ;H I �	��2[T\K I9] 2;V^2_8;5EWX�a` minimum support � ;
Set of all large itemsets = b I H I ;

Figure 1. The Apriori algorithm

Let the database, �c�%� � 1 �,= 1 � 4 � 5 A � � 2 �0= 1 � 2 A � � 3 �= 3 � 4 � 5 A � � 4 �(= 1 � 2 � 4 � 5 A�� . Let the minimum support valuedMe � 2. Running through the iterations, we getH 1 � �#� 1 � � � 2 � � � 4 � � � 5 �7�K 2 � �#� 1 � 2 � � � 1 � 4 � � � 1 � 5 � � � 2 � 4 � � � 2 � 5 � � � 4 � 5 �;�H 2 � �#� 1 � 2 � � � 1 � 4 � � � 1 � 5 � � � 4 � 5 �7�K 3 � �#� 1 � 4 � 5 �#�H 3 � �#� 1 � 4 � 5 �#�
Note that while forming K 3 by joining H 2 with itself, we

get three potential candidates, � 1,2,4 � , � 1,2,5 � , and � 1,4,5 � .
However only � 1,4,5 � is a true candidate, and the first two
are eliminated in the pruning step, since they have a 2-
subset which is not large (the 2-subset � 2,4 � , and � 2,5 �
respectively).

3. Random sampling for data mining

Random sampling is a method of selecting W units out of
a total f , such that every one of the gEhi distinct samples
has an equal chance of being selected. In this paper we
consider sequential random sampling without replacement,
i.e., the records are selected in the same order as they appear
in the database, and a drawn record is removed from further
consideration.

3.1. Sampling algorithm

For generating samples of the database, we use the
Method A Algorithm presented in [15], which is simple and
very efficient for large sample size, W . A simple algorithm
for sampling generates an independent uniform random vari-
ate for each record to determine whether that record should
be chosen for the sample. If � records have been chosen
from the first � records, then the next record will be cho-
sen with the probability =jWlk��mADCX=jfnko��A . This algorithm,
called Method S [9], generates p�=qfUA random variates, and
also runs in p�=qfUA time. Method A significantly speeds up
the sampling process by efficiently determining the number

of records to be skipped over before the next one is chosen
for the sample. While the running time is still pm=jfUA , onlyW random variates are generated.

3.2. Chernoff bounds

Let r denote the support of an itemset

. We want to

select W transactions out of the total f in the Database� . Let the random variable s�tu� 1 if the
 -th transac-
tion contains the itemset

(s�tR� 0, otherwise). Clearly,v =Fs t � 1 A@�wr for
B� 1 � 2 ���� W . We further assume

that all s 1 � s 2 ������ s i are independent 0-1 random vari-
ables. The random variable x giving the number of trans-
actions in the sample containing the itemset

, has a bi-

nomial distribution of W trials, with the probability of suc-
cess r (note: the correct distribution for finite populations
is the Hypergeometric distribution, although the Binomial
distribution is a satisfactory approximation [4]). Moreover,xy�{z it s�t , and the expected value of X is given as| �c}l~ xl���w}@~^z itF� 1 s�t����cz itF� 1 }l~ s�t����wW�r , since}@~ s�t���� 0 v =Fs%� 0 A�Q 1 v =Fs%� 1 AJ�4r .

For any positive constant, 0 ���S� 1, the Chernoff
bounds [5] state thatv =Fxn�M= 1 kZ��ADW�r�A�� � N�� 2 i��<� 2 (1)v =Fxn`M= 1 Q���ADW�r�A�� � N�� 2 i��<� 3 (2)

Chernoff bounds provide information on how close is the
actual occurrence of an itemset in the sample, as compared
to the expected count in the sample. This aspect, which
we call as the accuracy of a sample, is given by 1 k�� . The
bounds also tell us the probability that a sample of size W will
have a given accuracy. We call this aspect the confidence
of the sample (defined as 1 minus the expression on the
right hand size of the equations). Chernoff bounds give
us two set of confidence values. Equation 1 gives us the
lower bound – the probability that the itemset occurs less
often than expected (by the amount W�r��), while equation 2
gives us the upper bound – the probability that the itemset
occurs more often than expected, for a desired accuracy. A
low probability corresponds to high confidence, and a low �
corresponds to high accuracy. It is not hard to see that there
is a trade-off between accuracy and confidence for a given
sample size. This can been seen immediately, since �R� 0
maximizes the right hand side of equations 1,2, while �L� 1
minimizes it.

3.3. Sample size selection

Given that we are willing to accommodate a certain ac-
curacy, ��� 1 k?� , and confidence g�� 1 k?2 of the sample,
the Chernoff bounds can be used to obtain a sample size.

We’ll show this for equation 1, by plugging in 23�P� N�� 2 i��_� 2,
to obtain

W��	k 2 ln =j2_A�C�=jrX� 2 A (3)

If we know the support for each itemset we could come
up with a sample size WE� for each itemset

. We would

still have the problem of selecting a single sample size
from among the WE� . One simple heuristic is to use the
user specified minimum support threshold for r . The ra-
tionale is that by using this we guarantee that the sam-
ple size contains all the large itemsets contained in the
original database. For example, let the total transactions
in the original database f�� 3 � 000 � 000. Let’s say we
desire a confidence g(� 0 V 9 =j2U� 0 V 1 A , and an accuracy��� 0 V 99 =q�a� 0 V 01 A . Let the user specified support thresh-
old be 1%. Using these values in equation 3, we obtain
a sample size of W�� 4 � 605 � 170. This is even greater
than the original database! The problem is that the sample
size expression is independent of the original database size.
Moreover the user specified threshold is also independent of
the actual itemset support in the original database. Hence,
using this value may be too conservative, as shown above.
In the next section we will compare experimental results
obtained versus the theoretical predictions using Chernoff
bounds.

4. Experimental evaluation

In this section we describe the experiments conducted
in order to determine the effectiveness of sampling. We
demonstrate that it is a reasonably accurate technique in
terms of the associations generated by the sample, as com-
pared to the associations generated by the original database.
At the same time sampling can help reduce the execution
time by more than an order of magnitude.

4.1. Experimental framework

All experiments were conducted on a 233Mhz DEC Al-
phaserver 2100 processor, with 256MB of main memory.
The databases are stored on an attached 2GB disk, and data
is obtained from the disk via an NFS file server. We used
four different databases to evaluate the effectiveness of sam-
pling. These are:� SYNTH800, SYNTH250: These are synthetic databases
which mimic the transactions in a retailing environment.
Each transaction has a unique ID followed by a list of
items bought in that transaction. We obtained the database�

10 V 6 V " 800 � , by setting the number of transactions] �] � 800 � 000, average transaction size] �] � 10, aver-
age maximal potentially large itemset size]] � 6. For�

10 V 4 V " 250 � ,] �] � 250000,] �] � 10,]] � 4. For

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 L

ar
ge

 k
-I

te
m

se
ts

�

Itemset Size (k)

SYNTH800: minimum support = 0.25%

ORIG
SAMP0.5%

ACT0.5%
SAMP1%

ACT1%
SAMP5%

ACT5%
SAMP10%

ACT10%

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 L

ar
ge

 k
-I

te
m

se
ts

�

Itemset Size (k)

SYNTH250: minimum support = 0.50%

ORIG
SAMP0.5%

ACT0.5%
SAMP1%

ACT1%
SAMP5%

ACT5%
SAMP10%

ACT10%

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 L

ar
ge

 k
-I

te
m

se
ts

�

Itemset Size (k)

ENROLL: minimum support = 1.0%

ORIG
SAMP1%

ACT1%
SAMP5%

ACT5%
SAMP10%

ACT10%

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 L

ar
ge

 k
-I

te
m

se
ts

�

Itemset Size (k)

TRBIB: minimum support = 1.5%

ORIG
SAMP5%

ACT5%
SAMP10%

ACT10%
SAMP25%

ACT25%

Figure 2. Itemset size vs. number of large itemsets

both databases the number of maximal potentially large
itemsets] H] � 2000, and the number of items fw� 1000.
We refer the reader to [3] for more detail on the database
generation.� ENROLL: This is a database of student enrollments for
a particular graduating class. Each transaction consists of a
student ID followed by information on the college, major,
department, semester, and a list of courses taken during that
semester. There are 39624 transactions, 3581 items and the
average transaction size is 9.� TRBIB: This is a database of the locally available techni-
cal report bibliographies in computer science. Each item is a
key-word which appears in a paper title,and each transaction
has a unique author ID followed by a set of such key-words
(items). There are 13793 transactions, 10363 items, and the
average transaction size is 22.

4.2. Accuracy measurements

We report experimental results for the databases de-
scribed above. Figure 2 shows the number of large itemsets
found during the different iterations of the &�6E:;
j8;:;
 algo-
rithm, for the different databases, and sample size. In the
graphs, ORIG indicates the actual number of large item-
sets generated when the algorithm operates on the entire

database. SAMP � refers to the large itemsets generated
when using a sample of size � % of the entire database.
ACT � refers to the number of itemsets generated by SAMP �
that are true large itemsets in the original database. The
number of false large itemsets is given as (SAMP ��k
ACT �). From figure 2 we can observe that the general trends
of sampled databases resemble actual results. Smaller sam-
ple sizes tend to over-estimate the number of large itemsets,
i.e., they find more false large itemsets. On the other hand,
larger sample sizes tend to give better results in terms of
fidelity or the number of true large itemsets This is indicated
by the way ACT. � comes closer to ORIG as � (the sample
percentage) is increased.

More detailed results are shown in figure 3, which shows
the percentage of true and false itemsets generated for dif-
ferent values of sampling and minimum support. The values
of minimum support were chosen so that there were enough
large � -itemsets, for �l�[� 2. For example, for SYNTH800
and SYNTH250, only large 1-itemsets were found at sup-
port more than 1%. Therefore, only support values less than
those were considered. Furthermore, support values were
chosen so that we don’t generate too many large itemsets.
For example, for ENROLL at 1% sampling size, we get a
sample of 396 transactions. For support of 0.5%, we must
find all itemsets which occur at least 2 times, in effect find-

75

80

85

90

95

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

%
 o

f T
ru

e
La

rg
e

Ite
m

se
ts

�

Minimum Support (Percentage)

SYNTH800

0.5% Sampling
1% Sampling
5% Sampling

10% Sampling
25% Sampling

0

10

20

30

40

50

60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

%
 o

f F
al

se
 L

ar
ge

 It
em

se
ts

�

Minimum Support (Percentage)

SYNTH800

0.5% Sampling
1% Sampling
5% Sampling

10% Sampling
25% Sampling

86

88

90

92

94

96

98

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 o

f T
ru

e
La

rg
e

Ite
m

se
ts

�

Minimum Support (Percentage)

SYNTH250

0.5% Sampling
1% Sampling
5% Sampling

10% Sampling
25% Sampling

0

10

20

30

40

50

60

70

80

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 o

f F
al

se
 L

ar
ge

 It
em

se
ts

�

Minimum Support (Percentage)

SYNTH250

0.5% Sampling
1% Sampling
5% Sampling

10% Sampling
25% Sampling

88

90

92

94

96

98

100

0 1 2 3 4 5 6 7 8 9 10

%
 o

f T
ru

e
La

rg
e

Ite
m

se
ts

�

Minimum Support (Percentage)

ENROLL

1% Sampling
5% Sampling

10% Sampling
25% Sampling

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9 10

%
 o

f F
al

se
 L

ar
ge

 It
em

se
ts

�

Minimum Support (Percentage)

ENROLL

1% Sampling
5% Sampling

10% Sampling
25% Sampling

78

80

82

84

86

88

90

92

94

96

1 2 3 4 5 6 7 8

%
 o

f T
ru

e
La

rg
e

Ite
m

se
ts

�

Minimum Support (Percentage)

TRBIB

5% Sampling
10% Sampling
25% Sampling

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8

%
 o

f F
al

se
 L

ar
ge

 It
em

se
ts

�

Minimum Support (Percentage)

TRBIB

5% Sampling
10% Sampling
25% Sampling

Figure 3. % of True and false large itemsets vs. % threshold for various sample sizes

ing all possible large itemsets. Thus only support values
greater than 0.5% were used.

The figure shows that at higher sampling size we generate
a higher percentage of true large itemsets, and a smaller
number of false large itemsets. It is interesting to note that
in all cases we found more than 80% of all the large itemsets.
We further observe that for other than very small sampling
size, we can keep the false large itemsets under 20%.

4.3. Performance

Figure 4 shows the speedup obtained for the databases on
different minimum support and different sampling size val-
ues. The speedup is relative to the algorithm execution time
on the entire database. For SYNTH800 we obtain a speedup
of more than 20 at small sample size and high support. For
SYNTH250 we get more than 10 speedup in the same range.
The performance at lower support is poor due to the large
number of false large itemsets found. At higher sampling
we get lower performance, since the reduction in database
I/O is not that significant, and due to the introduction of
more inaccuracies. For the smaller databases (ENROLL
and TRBIB), at small sample size, we get no speedup, due
to the large number of false large itemsets generated. We
can observe that there is a trade-off between sampling size,
minimum support and the performance. The performance
gains are negated due to either a large number of false large
itemsets at very low support or due to decreased gains in I/O
vs. computation. We can conclude that in general sampling
is a very effective technique in terms of performance, and
we can expect it to work very well with large databases, as
they have higher computation and I/O overhead.

4.4. Confidence: comparison with chernoff bounds

In this section we compare the Chernoff bound with
experimentally observed results. We show that for the
databases we have considered the Chernoff bound is very
conservative.

Consider equations 1 and 2. For different values of
accuracy, and for a given sampling size, for each itemset

, we can obtain the theoretical confidence value by simply
evaluating the right hand side of the equations. For example,
for the upper bound the confidence g�� 1 kB� N�� 2 i��<� 3. Recall
that confidence provides information about an item’s actual
support in the sample being away from the expected support
by a certain amount (W�rX�). We can also obtain experimental
confidence values as follows. We take � samples of size W ,
and for each item we compute the confidence by evaluating
the left hand side of the two equations, as follows. Let �
denote the sample number, 1 ��� �.� . Let¡ ��=j�FA¢��£ 1 if =jW�r¤k¥x�AL`.W�r�� in sample �

0 otherwise

¦ ��=q�FAa� £ 1 if =Fx�kZW�r�A¢`�W�rX� in sample �
0 otherwise

The confidence can then be calculated as 1 k�z �§ � 1

¦ ��=j��ADC#� ,
for the upper bound, and 1 k�z �§ � 1

¡ ��=j�FA�C#� , for the lower
bound.

99.6
¨

99.7
¨

99.8
¨

99.9
¨0

©20

40

60
ª80
«100
¬120

140
¬

Probability Dist.

Chernoff

0
©

50
®

100
0
©20
¯40

60
ª80
«100
¬120

140
¬160
¬180
¬

Probability Dist.

F
re

q
u

e
n

cy

Experimental
° SYNTH: Probability Distribution of 1-itemsets
±

Figure 5. Probability distribution: experiment
vs. chernoff

Figure 5 compares the distributionof experimental confi-
dence to the one obtained by Chernoff upper bounds, for all� 1-itemsets or single items. It is possible (though imprac-
tical) to do this analysis for all the 2 � itemsets, however we
present results for only single items. This should give us an
indication whether the sample faithfully represents the orig-
inal database. The results shown are for the SYNTH250
database with ��� 0 V 01, W�� 2500 (1% of total database
size), and the number of samples taken, ��� 100. We can
see that the probability distribution across all items varies
from 0.30 to 0.60 for the experimental case, with a mean
probability close to 0.43. The Chernoff bounds produce a
distribution clustered between 0.998 and 1.0, with an aver-
age probability of 0.9992. Chernoff bounds indicate that it is
very likely that the sample doesn’t have the given accuracy,
i.e., with high probability, the items will be overestimated
by a factor of 1.01. However, in reality, the probability of
being over-estimated is only 0.43. The obvious difference
in confidence depicts the limitation of Chernoff bounds in
this setting. This was observed in all three of the databases
we looked at.

Figure 6 gives a broader picture of the large gap between
Chernoff bounds and experimentally obtained effectiveness
of sampling. For all three databases we plot the mean of the

0

5

10

15

20

25

0 5 10 15 20 25

S
pe

ed
up²

% Sampling

SYNTH800

0.1% Minimum Support
0.25% Minimum Support

0.5% Minimum Support
0.75% Minimum Support

2

3

4

5

6

7

8

9

10

11

12

0 5 10 15 20 25

S
pe

ed
up²

% Sampling

SYNTH250

0.1% Minimum Support
0.25% Minimum Support

0.5% Minimum Support
0.75% Minimum Support

1% Minimum Support

0

1

2

3

4

5

6

7

0 5 10 15 20 25

S
pe

ed
up²

% Sampling

ENROLL

0.25% Minimum Support
0.5% Minimum Support

0.75% Minimum Support
1% Minimum Support
5% Minimum Support

10% Minimum Support
25% Minimum Support

0

1

2

3

4

5

6

7

5 10 15 20 25

S
pe

ed
up²

% Sampling

TRBIB

1.5% Minimum Support
2.5% Minimum Support

5% Minimum Support
7.5% Minimum Support

Figure 4. Sampling performance

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25 0.3

M
ea

n
P

ro
ba

bi
lit

y
=

(1
-M

ea
n

C
on

fid
en

ce
)

Epsilon = (1-Accuracy)

SYNTH800: Upper Bound

T.1%
E.1%

T.10%
E.10%
T.20%
E.20%
T.30%
E.30%
T.40%
E.40%
T.50%
E.50%

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

M
ea

n
P

ro
ba

bi
lit

y
=

(1
-M

ea
n

C
on

fid
en

ce
)

Epsilon = (1-Accuracy)

SYNTH250: Upper Bound

T.1%
E.1%

T.10%
E.10%
T.20%
E.20%
T.30%
E.30%
T.40%
E.40%
T.50%
E.50%

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ea

n
P

ro
ba

bi
lit

y
=

(1
-M

ea
n

C
on

fid
en

ce
)

Epsilon = (1-Accuracy)

ENROLL: Upper Bound

T.1%
E.1%

T.10%
E.10%
T.20%
E.20%
T.30%
E.30%
T.40%
E.40%
T.50%
E.50%

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ea

n
P

ro
ba

bi
lit

y
=

(1
-M

ea
n

C
on

fid
en

ce
)

Epsilon = (1-Accuracy)

TRBIB: Upper Bound

T.1%
E.1%

T.10%
E.10%
T.20%
E.20%
T.30%
E.30%
T.40%
E.40%
T.50%
E.50%

Figure 6. Accuracy vs. mean confidence for single items

confidence or probability distribution for different accura-
cies (1 k³�). The mean confidence obtained from Chernoff
bounds is marked as T. � , and that obtained experimentally
is marked as E. � . Different values of the sample size � are
plotted (from 1% to 50%), and results for only the upper
bound are shown. For all the three databases the upper and
lower bounds give similar results. There is a small differ-
ence in the Chernoff bound values due to the asymmetry in
equations 1 and 2. This is also true for the experimental re-
sults. For both cases the lower bounds give a slightly higher
confidence for the same value of accuracy, as expected from
the Chernoff bounds.

For SYNTH800 and SYNTH250 we observe that as the
accuracy is compromised (as � increases) the mean confi-
dence across all items increases exponentially (therefore,
only � values upto 0.5 are shown). Furthermore, as the sam-
ple size increases, the curve falls more rapidly, so that we
have higher confidence even at relatively higher accuracies.
For SYNTH800 we get higher confidence for higher accu-
racy, when compared to SYNTH250. For both ENROLL
and TRBIB we get the same general trends, however the
increase in confidence for lower accuracies is not as rapid.
This is precisely what we expect. For example, consider
the right hand side of Chernoff upper bounds (equation 2),� N�� 2 i��<� 3 �´g . For a given � and r (the support for an item),
a higher value of W gives us high confidence, as it results
in a lower value for g . For a given sampling percentage,
since SYNTH800 and SYNTH250 are large, we expect a
higher confidence than that for ENROLL or TRBIB (for
example, with sampling = 10%, �@� 0 V 1, and rZ� 0 V 01,
we get W¥� 80000, gU� 0 V 07 for SYNTH800; WU� 25000,gµ� 0 V 43 for SYNTH250; W.� 3962, g.� 0 V 88 for EN-
ROLL; and WZ� 1379, gZ� 0 V 96 for TRBIB). We get the
same effect for the experimental results.

We can observe that for all three databases, the experi-
mental results predict a much higher confidence, than that
using Chernoff bounds. Furthermore, from the above anal-
ysis we would expect sampling to work well for larger
databases. The distribution of the support of the itemsets in
the original database also influences the sampling quality.

5. Related Work

Many algorithms for finding large itemsets have been pro-
posed in the literature since the introduction of this problem
in [1] (AIS algorithm). The Apriori algorithm [2] reduces
the search space effectively, by using the property that any
subset of a large itemset must itself be large. The DHP
algorithm [12] uses a hash table in pass � to do efficient
pruning of =j�GQ 1 A -itemsets to further reduce the candidate
set. The Partition algorithm [13] minimizes I/O by scanning
the database only twice. In the first pass it generates the set
of all potentially large itemsets, and in the second pass their

support is obtained. Algorithms using only general-purpose
DBMS systems and relational algebra operations have also
been proposed [6, 7].

A theoretical analysis of sampling (using Chernoff
bounds) for association rules was presented in [2, 10]. We
look at this problem in more detail empirically, and compare
theory and experimentation. In [8] the authors compare sam-
ple selection schemes for data mining. They make a claim
for collecting the sample dynamically in the context of the
subsequent mining algorithm to be applied. A recent pa-
per [14] presents an association rule mining algorithm using
sampling. A sample of the database is obtained and all as-
sociation rules in the sample are found. These results are
then verified against the entire database. The results are thus
exact and not approximations based on the sample. They
also use Chernoff bounds to get sample sizes, and lowered
minimum support values for minimizing errors. Our work is
complementary to their approach, and can help in determin-
ing a better support value or sample size. We show results
on the percentage of errors and correct rules derived at dif-
ferent sampling values, the performance gains, and also the
relationship between performance, accuracy and confidence
of the sample size.

6. Conclusions

We have presented experimental evaluation of sampling
for three separate databases to show that it can be an effec-
tive tool for data mining. The experimental results indicate
that sampling can result in not only performance savings
(such as reduced I/O cost and total computation), but also
good accuracy (with high confidence) in practice, in contrast
to the confidence obtained by applying Chernoff bounds.
However, we note that there is a trade-off between the per-
formance of the algorithm and the desired accuracy or confi-
dence of the sample. A very small sample size may generate
many false rules, and thus degrade the performance. With
that caveat, we claim that for practical purposes we can use
sampling with confidence for data mining.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association
rules between sets of items in large databases. In ACM
SIGMOD Intl. Conf. Management of Data, May 1993.

[2] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I.
Verkamo. Fast discovery of association rules. In Advances
in Knowledge Discovery and Data Mining, U. Fayyad, G.
Piatetsky-Shapiro, P. Smyth, R. Uthurusamy (Eds.). AAAI
Press, Melo Park, CA, 1996.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules. In 20th VLDB Conference, Sept. 1994.

[4] W. G. Cochran. Sampling Techniques. John Wiley & Sons,
1977.

[5] T. Hagerup and C. Rüb. A guided tour of chernoff bounds.
In Information Processing Letters, pages 305–308. North-
Holland, 1989/90.

[6] M. Holsheimer, M. Kersten, H. Mannila, and H. Toivonen. A
perspective on databases and data mining. In 1st Intl. Conf.
Knowledge Discovery and Data Mining, Aug. 1995.

[7] M. Houtsma and A. Swami. Set-oriented mining of associa-
tion rules. In RJ 9567. IBM Almaden, Oct. 1993.

[8] G. John and P. Langley. Static versus dynamic sampling for
data mining. In 2nd Intl. Conf. Knowledge Discovery and
Data Mining, Aug. 1996.

[9] D. E. Knuth. The Art of Computer Programming. Volume 2.
Seminumerical Algorithms. Addison-Wesley, 1981.

[10] H. Mannila, H. Toivonen, and I. Verkamo. Efficient algo-
rithms for discovering association rules. In AAAI Wkshp.
Knowledge Discovery in Databases, July 1994.

[11] F. Olken and D. Rotem. Random sampling from database
files - a survey. In 5th Intl. Conf. Statistical and Scientific
Database Management, Apr. 1990.

[12] J. S. Park, M. Chen, and P. S. Yu. An effective hash based
algorithm for mining association rules. In ACM SIGMOD
Intl. Conf. Management of Data, May 1995.

[13] A. Savasere, E. Omiecinski, and S. Navathe. An efficient
algorithm for mining association rules in large databases. In
21st VLDB Conference, 1995.

[14] H. Toivonen. Sampling large databases for association rules.
In 22nd VLDB Conference, 1996.

[15] J. S. Vitter. An efficient algorithm for sequential random
sampling. In ACM Trans. Mathematical Software, volume
13(1), pages 58–67, Mar. 87.

