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Abstract

Discovery of association rulesis a prototypical problem
in data mining. The current algorithms proposed for data
mining of association rules make repeated passes over the
database to determine the commonly occurring itemsets (or
set of items). For large databases, the I/O overhead in scan-
ning the database can be extremely high. In this paper we
show that random sampling of transactionsin the database
is an effective method for finding association rules. Sam-
pling can speed up the mining process by more than an order
of magnitudeby reducing I/O costsand drastically shrinking
the number of transaction to be considered. \WWe may also be
ableto makethe sampled databaseresident in main-memory.
Furthermore, we show that sampling can accurately repre-
sent the data patternsin the database with high confidence
We experimentally eval uate the effectiveness of sampling on
different databases, and study the relationship between the
performance, and the accuracy and confidence of the chosen
sample.

1. Introduction

With large volumes of routine business data having been
collected, business organizations are increasingly turning to
the extraction of useful information from such databases.
Such high-level inference process may provide information
on customer buying patterns, shelving criterionin supermar-
kets, stock trends, etc. Datamining isan emerging research
area, whose goal isto extract significant patterns or interest-
ing rules from such large databases. It combinesresearchin
machine learning, statistics and databases. In this paper we
will concentrate on the discovery of association rules.

The problem of mining association rules over basket data
was introduced in [1]. Basket data usually consists of a
record per customer with atransaction date, along with items
bought by the customer. Themain computation step consists
of finding the frequently occurring item sets viaan iterative
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process. For disk resident databases, the 1/0O overhead in
scanning the database during each iteration can be extremely
high for large databases.

Random sampling from databases has been successfully
used in query size estimation. Such information can be
used for statistical analyses of databases, where approxi-
mate answerswould suffice. It may also be used to estimate
selectivities or intermediate result sizes for query optimiza-
tion [11]. In the context of association rules, sampling can
be utilized to gather quick preliminary rules. This may help
the user to direct the data mining process by refining the
criterion for “interesting” rules.

In this paper we show that random sampling of transac-
tionsin the database is an effective way for finding associa-
tion rules. We empirically compare theory and experimen-
tation, present results on the percentage of errorsand correct
rules derived at different sampling values, the performance
gains, and also the rel ationship between performance, accu-
racy and confidence of the sample size. More specifically,
we make the following contributions:

¢ Sampling can reduce /O costs by drastically shrink-
ing the number of transaction to be considered. We
show that sampling can speed up the mining process
by more than an order of magnitude.

¢ Sampling can provide great accuracy with respect to
the association rules. We show that the theoretical
results (using Chernoff bounds) are extremely conser-
vative, and that experimentally we can obtain much
better accuracy for a given confidence, or we can do
with a smaller sample size for a given accuracy.

We begin by formally presenting the problem of finding
association rules in section 2. Section 3 presents an analy-
sis of random sampling from databases. The effectiveness
of sampling is experimentally analyzed in section 4, and
section 6 presents our conclusions.

2. Data mining for association rules

We now present the formal statement of the problem of
mining association rules over basket data. The discussion



below closely followsthat in[1, 3].

LetZ = {i1,42, - - -, im } beaset of m distinct attributes,
also called items. A set of itemsis called an itemset, and an
itemset with £ itemsiscalled ak-itemset. Eachtransaction
T' in the database D of transactions, has a unique identi-
fier T'ID, and contains a set of items, such that 7" C 7.
An association rule is an expression A = B, where item-
sets A,B C Z,and AN B = (). Eachitemset is said to
have a support s if s% of the transactionsin D contain the
itemset. The association rule is said to have confidence ¢
if ¢% of the transactions that contain A also contain B,
i.e, ¢ = support(AU B)/support(A), i.e., the conditional
probability that transactions contain the itemset B, given
that they containitemset A.

The data mining task for association rules can be broken
into two steps. The first step consists of finding all large
itemsets, i.e., itemsets that occur in the database with a
certain user-specified frequency, called minimum support.
Thesecond step consi sts of forming implication rulesamong
the large itemsets [3]. In this paper we only deal with the
computationally intensivefirst step.

Many agorithms for finding large itemsets have been
proposed in the literature [1, 7, 3, 10, 12, 6, 13, 2]. In this
paper we will use the Apriori algorithm [2] to evaluate the
effectivenessof sampling for datamining. We chose Apriori
sinceit fast and has excellent scale-up properties. Wewould
like to observe that our results are about sampling, and as
such independent of the mining algorithm used.

2.1. The Apriori algorithm

The naive method of finding large itemsets would be
to generate all the 2™ subsets of the universe of m items,
count their support by scanning the database, and output
those meeting minimum support criterion. It isnot hard to
see that the naive method exhibits complexity exponential
in m, and is quite impractical. Apriori follows the basic
iterative structure discussed earlier. However the key obser-
vation used isthat any subset of alargeitemset must also be
large. Intheinitial pass over the database the support for all
single items (1-itemsets) is counted. During each iteration
of the algorithm only candidates found to be large in the
previous iteration are used to generate a new candidate set
to be counted during the current iteration. A pruning step
eliminates any candidate which has a small subset. Apriori
also uses specialized data structures to speed up the count-
ing and pruning (hash trees and hash tables, respectively.)
The agorithm terminates at step ¢, if there are no large ¢-
itemsets. Let Ly denotethe set of Large k-itemsetsand Cy,
the set of candidate k-itemsets. The general structure of the
algorithm is givenin figure 1. We refer the reader to [2] for
more detail on Apriori, and its performance characteristics.

We now present asimple example of how Apriori works.

L; = {large 1-itemsets };
for (k=2 Lk 1#0;k++)
C} = Set of New Candidates,
for all transactionst € D
for all k-subsets s of ¢
if (s € Ck) s.count + +;
Ly, = {c € Ck|e.count > minimum support};
Set of all largeitemsets= | J, Lx;

Figure 1. The Apriori algorithm

Let the database, P = {71 = (1,4,5), 1> = (1,2),73 =
(3,4,5),Ta = (1,2,4,5)}. Let the minimum support value
M S = 2. Running through the iterations, we get

Ly = {{1},{2},{4},{5}}

C2 = {{1,2},{1,4},{1,5},{2,4},{2,5},{4,5}}
Ly = {{1,2},{1,4},{1,5},{4,5}}

Cs = {{14,5}}

Lz = {{1,45}}

Notethat whileforming C3 by joining L, withitself, we
get three potential candidates, {1,2,4},{1,2,5}, and {1,4,5}.
However only {1,4,5} is atrue candidate, and the first two
are eliminated in the pruning step, since they have a 2-
subset which is not large (the 2-subset {2,4}, and {2,5}
respectively).

3. Random sampling for data mining

Random sampling is a method of selecting » units out of
atotal N, such that every one of the CY distinct samples
has an equal chance of being selected. In this paper we
consider sequential random sampling without replacement,
i.e., therecords are selected in the same order asthey appear
in the database, and a drawn record is removed from further
consideration.

3.1. Sampling algorithm

For generating samples of the database, we use the
Method A Algorithm presented in [15], whichissimpleand
very efficient for large sample size, n. A simple algorithm
for sampling generatesan independent uniform random vari-
ate for each record to determine whether that record should
be chosen for the sample. If m records have been chosen
from the first ¢ records, then the next record will be cho-
sen with the probability (n — m)/(N —t). Thisalgorithm,
called Method S[9], generates O(N) random variates, and
asorunsin O(N) time. Method A significantly speeds up
the sampling process by efficiently determining the number



of recordsto be skipped over before the next one is chosen
for the sample. While the running timeis still O(N), only
n random variates are generated.

3.2. Chernoff bounds

Let 7 denote the support of an itemset /. We want to
select n transactions out of the total V in the Database
D. Let the random variable X; = 1 if the i-th transac-
tion contains the itemset / (X; = O, otherwise). Clearly,
P(X; =1) = rfori = 1,2,---n. We further assume
that all X1, X>,---, X,, are independent 0-1 random vari-
ables. The random variable X giving the number of trans-
actions in the sample containing the itemset 7, has a bi-
nomial distribution of n trials, with the probability of suc-
cess 7 (note: the correct distribution for finite populations
is the Hypergeometric distribution, although the Binomial
distribution is a satisfactory approximation [4]). Moreover,
X = > 7 X;, and the expected value of X is given as
p = EX] = E[}75_1 Xs] = 3i_; E[Xi] = nr, since
EX;]=0-P(X=0+1-P(X=1=r.

For any positive constant, 0 < ¢ < 1, the Chernoff
bounds [5] state that

6—62nr/2 (1)
6—62nr/3 (2)

P(X < (1-¢)nT)
P(X > (14 ¢)n1)

IN A

Chernoff bounds provide information on how close is the
actual occurrence of an itemset in the sample, as compared
to the expected count in the sample. This aspect, which
we call asthe accuracy of asample, isgivenby 1 — e. The
boundsalsotell usthe probability that asample of sizen will
have a given accuracy. We call this aspect the confidence
of the sample (defined as 1 minus the expression on the
right hand size of the equations). Chernoff bounds give
us two set of confidence values. Equation 1 gives us the
lower bound — the probability that the itemset occurs less
often than expected ( by the amount nr¢), while equation 2
gives us the upper bound — the probability that the itemset
occurs more often than expected, for a desired accuracy. A
low probability correspondsto high confidence, and alow ¢
correspondsto high accuracy. It isnot hard to see that there
is a trade-off between accuracy and confidence for a given
sample size. This can been seen immediately, sincee = 0
maximizesthe right hand side of equations 1,2, whilee = 1
minimizesit.

3.3. Sample size selection

Given that we are willing to accommodate a certain ac-
curacy, A = 1— ¢, and confidence C = 1— ¢ of the sample,
the Chernoff bounds can be used to obtain a sample size.

We' Il show thisfor equation 1, by pluggingine = e=€77/2,
to obtain

n=-2In(c)/(r€%) (3)

If we know the support for each itemset we could come
up with a sample size n; for each itemset /. We would
gtill have the problem of selecting a single sample size
from among the n;. One simple heurigtic is to use the
user specified minimum support threshold for 7. The ra
tionale is that by using this we guarantee that the sam-
ple size contains al the large itemsets contained in the
origina database. For example, let the total transactions
in the original database N = 3,000,000. Let's say we
desire a confidence C = 0.9(¢ = 0.1), and an accuracy
A =0.99(e = 0.01). Let the user specified support thresh-
old be 1%. Using these values in equation 3, we obtain
a sample size of n = 4,605,170. This is even greater
than the original database! The problem is that the sample
size expression is independent of the original database size.
M oreover the user specified threshold is al so independent of
the actual itemset support in the origina database. Hence,
using this value may be too conservative, as shown above.
In the next section we will compare experimental results
obtained versus the theoretical predictions using Chernoff
bounds.

4. Experimental evaluation

In this section we describe the experiments conducted
in order to determine the effectiveness of sampling. We
demonstrate that it is a reasonably accurate technique in
terms of the associations generated by the sample, as com-
pared to the associations generated by the original database.
At the same time sampling can help reduce the execution
time by more than an order of magnitude.

4.1. Experimental framework

All experiments were conducted on a 233Mhz DEC Al-
phaserver 2100 processor, with 256MB of main memory.
The databases are stored on an attached 2GB disk, and data
is obtained from the disk via an NFS file server. We used
four different databases to eval uate the eff ectiveness of sam-
pling. Theseare:

e SYNTHB800, SYNTH250: These are synthetic databases
which mimic the transactions in a retailing environment.
Each transaction has a unique ID followed by a list of
items bought in that transaction. We obtained the database
7'10.16.D800K, by setting the number of transactions
|D| = 800, 000, average transaction size |7 = 10, aver-
age maximal potentially large itemset size |I| = 6. For
T10.14.D250K, |D| = 250000, |T'| = 10, |I| = 4. For
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Figure 2. Itemset size vs. number of large itemsets

both databases the number of maximal potentially large
itemsets |L| = 2000, and the number of items N = 1000.
We refer the reader to [3] for more detail on the database
generation.

¢ ENROLL: Thisis a database of student enrollments for
a particular graduating class. Each transaction consists of a
student ID followed by information on the college, major,
department, semester, and alist of courses taken during that
semester. There are 39624 transactions, 3581 items and the
average transaction sizeis 9.

¢ TRBIB: Thisisadatabase of the locally available techni-
cal report bibliographiesin computer science. Eachitemisa
key-word which appearsin apaper title, and eachtransaction
has a unique author 1D followed by a set of such key-words
(items). There are 13793 transactions, 10363 items, and the
average transaction sizeis 22.

4.2. Accuracy measurements

We report experimental results for the databases de-
scribed above. Figure 2 showsthe number of large itemsets
found during the different iterations of the Apriori ago-
rithm, for the different databases, and sample size. In the
graphs, ORIG indicates the actual number of large item-
sets generated when the algorithm operates on the entire

database. SAMPz refers to the large itemsets generated
when using a sample of size % of the entire database.
ACTz referstothenumber of itemsetsgenerated by SAM Pz
that are true large itemsets in the original database. The
number of false large itemsets is given as (SAMPz —
ACTz). Fromfigure2we can observethat the general trends
of sampled databases resemble actual results. Smaller sam-
ple sizes tend to over-estimate the number of large itemsets,
i.e., they find more false large itemsets. On the other hand,
larger sample sizes tend to give better results in terms of
fidelity or the number of true large itemsets Thisisindicated
by the way ACT.z comes closer to ORIG as z (the sample
percentage) is increased.

More detailed results are shown in figure 3, which shows
the percentage of true and false itemsets generated for dif-
ferent values of sampling and minimum support. Thevalues
of minimum support were chosen so that there were enough
large k-itemsets, for £ >= 2. For example, for SYNTH800
and SYNTH250, only large 1-itemsets were found at sup-
port morethan 1%. Therefore, only support values|essthan
those were considered. Furthermore, support values were
chosen so that we don’t generate too many large itemsets.
For example, for ENROLL at 1% sampling size, we get a
sample of 396 transactions. For support of 0.5%, we must
find all itemsets which occur at least 2 times, in effect find-
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ing all possible large itemsets. Thus only support values
greater than 0.5% were used.

Thefigure showsthat at higher sampling sizewe generate
a higher percentage of true large itemsets, and a smaller
number of false large itemsets. It isinteresting to note that
in all caseswefound morethan 80% of all thelargeitemsets.
We further observe that for other than very small sampling
size, we can keep the false large itemsets under 20%.

4.3. Performance

Figure 4 showsthe speedup obtained for the databases on
different minimum support and different sampling size val-
ues. The speedup isrelative to the algorithm execution time
on theentire database. For SY NTH800 we obtain aspeedup
of more than 20 at small sample size and high support. For
SYNTH250 we get more than 10 speedup in the samerange.
The performance at lower support is poor due to the large
number of false large itemsets found. At higher sampling
we get lower performance, since the reduction in database
I/O is not that significant, and due to the introduction of
more inaccuracies. For the smaller databases (ENROLL
and TRBIB), at small sample size, we get no speedup, due
to the large number of false large itemsets generated. We
can observe that thereis a trade-off between sampling size,
minimum support and the performance. The performance
gains are negated due to either alarge number of falselarge
itemsetsat very low support or dueto decreased gainsin 1/0O
vs. computation. We can conclude that in general sampling
is a very effective technique in terms of performance, and
we can expect it to work very well with large databases, as
they have higher computation and 1/0 overhead.

4.4. Confidence: comparison with chernoff bounds

In this section we compare the Chernoff bound with
experimentally observed results. We show that for the
databases we have considered the Chernoff bound is very
conservative.

Consider equations 1 and 2. For different values of
accuracy, and for a given sampling size, for each itemset
1, we can obtain the theoretical confidence value by simply
evaluating the right hand side of the equations. For example,
for the upper bound the confidenceC = 1—e=<n7/3, Recall
that confidence provides information about an item’s actual
support in the sample being away from the expected support
by acertain amount (n7¢). We can also obtain experimental
confidence values as follows. We take s samples of size n,
and for each item we compute the confidence by evaluating
the left hand side of the two equations, as follows. Let :
denote the sample number, 1 < 2 < s. Let

I _ [ 1 if(nt—=X)>nte insample:
1) =1 0 othewise

[ 1 if(X—=nr)>nre insample:
hi()) = { 0 otherwise

The confidence canthenbecalculatedas1— " | hy(2)/s,
for the upper bound, and 1 — >~ I;(2)/s, for the lower
bound.
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Figure 5 comparesthe distribution of experimental confi-
dence to the one obtained by Chernoff upper bounds, for all
m l-itemsets or singleitems. It is possible (though imprac-
tical) to do thisanalysisfor all the 2™ itemsets, however we
present resultsfor only singleitems. This should giveusan
indication whether the sample faithfully representsthe orig-
inal database. The results shown are for the SYNTH250
database with ¢ = 0.01, n = 2500 (1% of total database
size), and the number of samples taken, s = 100. We can
see that the probability distribution across all items varies
from 0.30 to 0.60 for the experimental case, with a mean
probability close to 0.43. The Chernoff bounds produce a
distribution clustered between 0.998 and 1.0, with an aver-
ageprobability of 0.9992. Chernoff boundsindicatethatitis
very likely that the sample doesn't have the given accuracy,
i.e., with high probability, the items will be overestimated
by afactor of 1.01. However, in reality, the probability of
being over-estimated is only 0.43. The obvious difference
in confidence depicts the limitation of Chernoff bounds in
this setting. Thiswas observed in all three of the databases
we looked at.

Figure 6 givesabroader picture of the large gap between
Chernoff bounds and experimentally obtained effectiveness
of sampling. For all three databases we plot the mean of the
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confidence or probability distribution for different accura-
cies (1 — ¢). The mean confidence obtained from Chernoff
bounds is marked as T.z, and that obtained experimentally
ismarked as E.z. Different values of the sample size = are
plotted (from 1% to 50%), and results for only the upper
bound are shown. For al the three databases the upper and
lower bounds give similar results. There is a small differ-
ence in the Chernoff bound values due to the asymmetry in
equations 1 and 2. Thisisalso true for the experimental re-
sults. For both cases thelower bounds give adlightly higher
confidencefor the same value of accuragy, as expected from
the Chernoff bounds.

For SYNTH800 and SY NTH250 we observe that as the
accuracy is compromised (as e increases) the mean confi-
dence across al items increases exponentialy (therefore,
only e valuesupto 0.5 are shown). Furthermore, as the sam-
ple size increases, the curve falls more rapidly, so that we
have higher confidence even at relatively higher accuracies.
For SYNTHB800 we get higher confidence for higher accu-
racy, when compared to SYNTH250. For both ENROLL
and TRBIB we get the same general trends, however the
increase in confidence for lower accuracies is not as rapid.
This is precisely what we expect. For example, consider
the right hand side of Chernoff upper bounds (equation 2),
e=€n7/3 = C. For agiven ¢ and 7 (the support for an item),
a higher value of n gives us high confidence, as it results
in a lower value for C. For a given sampling percentage,
since SYNTH800 and SYNTH250 are large, we expect a
higher confidence than that for ENROLL or TRBIB (for
example, with sampling = 10%, ¢ = 0.1, and = = 0.01,
we get n = 80000, C = 0.07 for SYNTHS800; » = 25000,
C = 0.43 for SYNTH250; n = 3962, C = 0.88 for EN-
ROLL; and n = 1379, C = 0.96 for TRBIB). We get the
same effect for the experimental results.

We can observe that for all three databases, the experi-
mental results predict a much higher confidence, than that
using Chernoff bounds. Furthermore, from the above anal-
ysis we would expect sampling to work well for larger
databases. The distribution of the support of the itemsetsin
the original database also influences the sampling quality.

5. Related Work

Many a gorithmsfor finding largeitemsetshave been pro-
posed in the literature since the introduction of this problem
in[1] (AIS agorithm). The Apriori agorithm [2] reduces
the search space effectively, by using the property that any
subset of a large itemset must itself be large. The DHP
algorithm [12] uses a hash table in pass & to do efficient
pruning of (k + 1)-itemsets to further reduce the candidate
set. The Partition algorithm [13] minimizes1/O by scanning
the database only twice. Inthefirst passit generates the set
of al potentially large itemsets, and in the second passtheir

support isobtained. Algorithmsusing only general-purpose
DBMS systems and relational algebra operations have also
been proposed [6, 7].

A theoretical analysis of sampling (using Chernoff
bounds) for association rules was presented in [2, 10]. We
look at thisproblem in more detail empirically, and compare
theory and experimentation. In [8] the authors comparesam-
ple selection schemes for data mining. They make a claim
for collecting the sample dynamically in the context of the
subsequent mining algorithm to be applied. A recent pa-
per [14] presents an association rule mining algorithm using
sampling. A sample of the database is obtained and al as-
sociation rules in the sample are found. These results are
then verified against the entiredatabase. Theresultsarethus
exact and not approximations based on the sample. They
also use Chernoff bounds to get sample sizes, and lowered
minimum support valuesfor minimizing errors. Our work is
complementary to their approach, and can help in determin-
ing a better support value or sample size. We show results
on the percentage of errors and correct rules derived at dif-
ferent sampling values, the performance gains, and a so the
relationship between performance, accuracy and confidence
of the sample size.

6. Conclusions

We have presented experimental evaluation of sampling
for three separate databases to show that it can be an effec-
tivetool for data mining. The experimental results indicate
that sampling can result in not only performance savings
(such as reduced 1/O cost and total computation), but also
good accuracy (with high confidence) in practice, in contrast
to the confidence obtained by applying Chernoff bounds.
However, we note that there is a trade-off between the per-
formance of the algorithm and the desired accuracy or confi-
dence of thesample. A very small samplesize may generate
many false rules, and thus degrade the performance. With
that caveat, we claim that for practical purposes we can use
sampling with confidence for data mining.
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