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Abstract

Scan-line optimization via cost accumulation has be-

come very popular for stereo estimation in computer vision

applications and is often combined with a semi-global cost

integration strategy, known as SGM.

This paper introduces this combination as a general and

effective optimization technique. It is the first time that this

concept is applied to 3D medical image registration.

The presented algorithm, SGM-3D, employs a coarse-

to-fine strategy and reduces the search space dimension for

consecutive pyramid levels by a fixed linear rate. This al-

lows it to handle large displacements to an extent that is

required for clinical applications in high dimensional data.

SGM-3D is evaluated in context of pulmonary motion

analysis on the recently extended DIR-lab benchmark that

provides ten 4D computed tomography (CT) image data

sets, as well as ten challenging 3D CT scan pairs from the

COPDgene study archive. Results show that both registra-

tion errors as well as run-time performance are very com-

petitive with current state-of-the-art methods.

1. Introduction

Accurate, robust, and run-time efficient non-linear image

registration is a requirement for many clinical applications.

For example, pulmonary motion estimation in 4D CT data

has recently received much attention due to its great po-

tential for breathing induced motion correction in radiation

therapy [6]. Figure 1 illustrates the general application con-

text of 3D lung CT registration that is used for evaluation

purposes in this paper.

Many methods in this field follow a variational approach

and often utilize prior knowledge, such as lung segmenta-

tion masks [1, 17, 16, 24, 22, 26], an initial solution from an

affine-linear pre-registration [24], a sparse set of landmark

pairs for initialization [22], or they incorporate a diffeomor-

phic motion assumption into the energy model [1, 26] and

perform symmetric registration [1, 13]. Results of a recent

challenge and study presented in [20] established a compre-

hensive overview of general state-of-the-art methods. More

details on current1 state-of-the-art approaches, which serve

as methods of comparison in this paper are given in the eval-

uation Section 4.3.

In contrast to variational registration schemes, discrete

methods, which are formulated as an optimal labeling prob-

lem, constitute ‘an important new trend in medical im-

age registration’ [10]. Recently published discrete ap-

proaches [13, 14, 9, 10] however, are exclusively based on

Markov random fields (MRF) and utilize some sort of

sparse graph node distribution, either by selecting statisti-

cally descriptive image locations or in form of a uniform

sampling across the image domain. Those methods are tar-

geted to update control points of a dense transformation

model.

An alternative to MRF approaches is scan-line optimiza-

tion, which was introduced in [25] as a simplified version of

scan-line dynamic programming for the task of stereo esti-

mation [21]. It has recently become very popular in combi-

nation with a semi-global integration strategy [18], known

as semi-global stereo matching (SGM). Due to its computa-

tional efficiency and robustness, SGM is nowadays utilized

in many industrial applications, such as commercial driver

assistance systems [8].

Scan-line optimization is almost exclusively applied for

disparity estimation in rectified stereo pairs, i.e. finding an

optimal 1D displacement field in 2D images. However, a

few methods address dynamic programming for 2D motion

estimation, e.g. [23, 28], but the first method that was able to

deal with reasonable large 2D displacement fields was pro-

posed in [12] and was then extended for scene flow estima-

tion in [11]. Still, both methods are restricted to deal with

displacement vectors of only 25 and 10 pixels, respectively.

To overcome even large pixel displacements on high resolu-

tion images, a recently published method called f SGM [15]

embeds scan-line optimization for 2D optical flow estima-

tion into a pyramidal scheme. At the time of publica-

tion, f SGM ranked second on the KITTI Vision Benchmark

Suite2 ahead of all submitted variational approaches.

This paper is motivated by the promising results pre-

1 published within the last 12 months
2 http://www.cvlibs.net/datasets/kitti/
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(a) Lung at end-inspiration (b) Lung at end-expiration (c) Lung overlay before registration (d) Lung overlay after registration

Figure 1. Illustration of 3D lung CT data in context of image registration for pulmonary motion analysis. Images 1(a) and 1(b) show

coronal views of lung CT images at end-inspiration and end-expiration. Image 1(c) visualizes intensity differences due to unaligned lung

structures when images 1(a) and 1(b) are overlaid. Those structures need to be registered via a non-linear transformation. The resulting 3D

vector field is interpreted as the lung motion of an inhalation/exhalation cycle of the patient. Figure 1(d) shows the intensity differences

after image registration with SGM-3D.

sented in [15] and introduces SGM-3D, a novel discrete

optimization algorithm for dense 3D medical image reg-

istration. It employs the pyramidal concept of f SGM, but

couples it with a linear search space reduction strategy.

The evaluation in Section 4 shows that it currently ranks

amongst the best performing algorithms with respect to both

registration accuracy and run-time performance. This high-

lights the application potential of scan-line optimization for

a clinical environment and indicates, that it can successfully

be applied to general labeling problems in high dimensional

data and is not restricted to stereo estimation.

This paper is structured as follows. Section 2 in-

troduces scan-line optimization for image registration in

n-dimensional data. Implementation details for the 3D med-

ical case are given in Section 3, followed by a performance

evaluation and discussion in Section 4. Section 5 concludes

this paper.

2. Scan-Line Optimization

This section gives a formal and general introduction to

pyramidal scan-line optimization in context of non-linear

motion estimation. This technique is still uncommon for

optical flow estimation in computer vision applications and

a novelty in 3D medical image registration.

2.1. Basic Notations

Let Ir and It be two consecutive frames of an image se-

quence, defined on an n-dimensional discrete image grid

Ω ⊂ N
n with I : Ω −→ R. Ir and It are referred to as

reference and target image, with respective image domains

Ωr and Ωt. A point p ∈ Ω describes a position (or pixel) on

the image grid and I[p] refers to the intensity of an image

I at p. The output is a pixel discrete n-dimensional vector

field

u : Ωr −→ Z
n, p 7−→ u[p] (1)

that describes the pixel displacement from Ir to It. For the

task of 3D medical image registration it is n = 3.

2.2. Label Set and Search Space

Let L = {0, ..., lmax − 1} ⊂ N be a set of labels of

non-negative integers. Each label l ∈ L is associated with

one unique displacement vector d ∈ Z
n. A unique corre-

spondence between a label l and a displacement vector d is

defined by a bijective discrete mapping

ϑ : L −→ S, l 7−→ ϑ(l) = d (2)

and its inverse mapping

ϑ−1 : S −→ L, d 7−→ ϑ−1(d) = l (3)

where S ⊂ Z
n is defined by a vector f ∈ N

n with positive

integer entries fi as the finite offset domain of all possible

displacements with

S =
{

d ∈ Z
n : |d1| ≤ f1 ∧, ...,∧ |dn| ≤ fn

}

(4)

and is referred to as search space.

2.3. Pixel Matching Cost and Local Matching

To establish correspondences between pixels of refer-

ence and target image, a cost function ρ is required that

defines the matching cost for a pixel pair (p,q) ∈ Ωr ×Ωt.

In practice, a cost function is used to establish a

cost matrix that holds for each pixel p ∈ Ωr all matching

costs of a finite set of pixels q ∈ Ωt. In this paper, a generic

cost matrix is defined as

C(p, l) = ρ(p,p+ û[p] + ϑ(l)) (5)
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where ρ : Ωr × Ωt −→ R assigns a matching cost between

the two pixels p ∈ Ωr and p + û[p] + ϑ(l) ∈ Ωt that

represents their dissimilarity.

A fixed initial motion field û defines for every pixel

p ∈ Ωr the origin in Ωt around which all matchings costs

within the search space S are calculated via ϑ(l). An initial

motion field û refers in this paper to an upscaled scan-line

optimization result from a lower pyramid level, but can of

course be of arbitrary origin.

In the following, the notation Cp,û[l] is used for

C(p, û, l) to highlight that a cost matrix Cû holds for all

pixels p ∈ Ωr a cost vector Cp,û with lmax matching costs,

which depend on a fixed prior solution û, and is indexed by

labels l ∈ L.

The displacement field u that minimizes locally the pixel

matching costs over the entire image domain is then defined

for every pixel p ∈ Ωr as

u[p] = û[p] + ϑ

(

argmin
k∈L

{

Cp,û[k]
}

)

(6)

In words, the cost matrix establishes at each pixel p ∈ Ωr

the matching cost for all displacement vectors, which are

defined by the sum of an initial solution û[p] and the

vector ϑ(l). The label k ∈ L, that indexes the minimum

matching cost in Cp,û defines the displacement vector ϑ(k)
that updates the initial solution û[p].

2.4. Cost Accumulation and Integration

Let Cp,û and Cq,û be two cost vectors of length lmax at

adjacent pixels of a cost matrix Cû calculated with respect

to a cost function ρ. Energy minimization at an individ-

ual pixel location, as defined in Equation (6), does not en-

force any consistency between adjacent displacement vec-

tors u[p] and u[q].

Consider a new cost vector Sp,û defined by

Sp,û[l] = Cp,û[l] + Cq,û[l], i.e. the sum of the corre-

spondence costs of the current pixel p and the neighboring

pixel q. Because Sp,û incorporates the matching costs of q,

the likelihood that Sp,û has its cost minimum at the same

label as Cq,û is greater than for Cp,û. In other words, the

solutions for p and q are more likely to be consistent. The

data costs at q can therefore be interpreted as regularization

costs for the pixel matching costs at p.

Scan-line optimization via cost accumulation is based on

that principle, i.e. data costs of previous pixels along a scan-

line are considered to regularize data costs at the current

pixel in order to enforce consistent solutions.

The general approach for scan-line optimization recur-

sively defines an accumulation matrix Sû of pixel matching

costs, which are integrated along multiple 1D paths that run

across the image domain Ωr. The vector Spi,û holds the

accumulated costs, which are used for regularization at the

subsequent pixel along the path. It is defined for a pixel lo-

cation pi and all labels l ∈ L and is based on the scan-line

segment p0,p1, . . . ,pi, where p0 is located at the image

border, and pi ∈ Ωr. The cost at Spi,û[l] is then recursively

defined for i = 1, 2, . . . , n, as

Spi,û[l] = Cpi,û[l] +

min

{

χ
(

Spi−1,û, φ)[l]−mink∈L

(

Spi−1,û[k]
)

T

(7)

with Sp0,û[l] = Cp0,û[l]. χ is a generic cost restriction

function that reduces the accumulated costs of the previous

pixel, based on the spatial relationship between labels inside

the search space domain S.

The function φ : Zn × L −→ Linv maps corresponding

labels of matching costs for the same displacement vector.

This is required in case that initial flow vectors differ for

two consecutive pixels.

Let Linv = L ∪ {linv}, where linv is a unique label that

refers to an invalid displacement. The function φ is then

defined with Equations (2) and (3) and with v ∈ Z
n as

φ(v, l) =

{

ϑ−1(v + ϑ(l)), if v + ϑ(l) ∈ S

linv otherwise
(8)

where linv is associated with a high constant matching

cost cinv. The function φ is applied in Equation (13).

Generally speaking, scan-line accumulation is based on

adding up two cost vectors. The regularization costs adjust

the data costs at the current pixel, and the data costs update

the regularization costs for subsequent processing.

The truncation threshold T defines the maximum regu-

larization cost. An additional cost restriction function χ im-

poses cost limits based on the proximity of labels within S.

This limits relative cost differences of spatially close labels.

Subtracting the minimum cost value of the last pixel keeps

regularization costs at a certain level and ensures that accu-

mulation costs can either increase or decrease, depending

on the data cost distribution.

2.4.1 Semi-Global Scan-Line Integration

This paper employs the cost integration strategy of

SGM [18], which means that a global minimum is approx-

imated in a semi-global fashion to enforce consistency not

only along 1D scan-lines but over the entire (here 3D) image

domain Ωr. In SGM, accumulated costs of multiple scan-

lines following different directions ∆ are integrated into an

integration matrix, which is defined for every p ∈ Ωr as

Ap,û[l] =
∑

∆

S∆

p,û[l] (9)
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where the angles between directions ∆ are evenly spaced

and it is ensured that pixel matching costs are accumulated

in opposite directions for symmetry purposes. The final so-

lution is established as in Equation (6) as

u[p] = û[p] + ϑ

(

argmin
k∈L

{

Ap,û[k]
}

)

(10)

In practice, the integration matrix is directly used as accu-

mulation matrix, i.e. A = S, and accumulation directions

are chosen to run at least along the image axes.

3. Implementation Details

The particular choices for cost function ρ and cost re-

striction function χ of Equations (5) and (7) are specified

for the 3D medical image registration context.

3.1. The Census Cost Function

The census cost function is employed to establish pixel

matching costs and is based on the census transform, which

was introduced in [29]. The census transform is a binary

representation of all intensity differences between a refer-

ence pixel and its immediate neighbourhood. It is based

on ordering statistics; it encodes the spatial relationship be-

tween the considered pixels. A binary signature vectorψ(x)
is assigned to an image position x and is calculated based

on the ordinal characteristic of I[x] in relation to intensities

within a defined neighbourhood Nx of x. It is generated as

follows:

ψ(x) =
(

Φ
[

I(x) ≥ I(y)
]

)

y∈Nx

∈ {0, 1}|Nx| (11)

where Φ[·] returns 1 if true, and 0 otherwise. The matching

cost ρ is the Hamming distance of two signature vectors

which are {0, 1}-sequences of length |Nx|. This distance is

calculated as

ρcensus(a,b) =

|Nx|
∑

i=1

(

ψr(a)⊕ ψt(b)
)

i
(12)

where ⊕ refers to an ‘exclusive or’ operation (XOR) be-

tween two binary signatures. The final matching cost is the

sum of all 1’s in the resulting signature vector. Its compo-

nents are indexed by the subscript i.

3.2. Truncated Linear Regularization

A truncated linear cost restriction function is chosen for

SGM-3D. The following efficient implementation is based

on a distance transformation concept and was proposed by

Felzenszwalb and Huttenlocher [7].

The cost vector χ
(

Spi−1,û, φ)[l] of Equation (7) is cal-

culated for every l ∈ L in a forward and a backward pass as

follows:

Sfw

p,û[ϑ
−1( (d1, d2, d3) )] =

min



























Sp,û[φ( û[pi]− û[pi−1], ϑ
−1( (d1, d2, d3) ) )]

Sfw

p,û[ϑ
−1( (d1 − 1, d2, d3) )] + Tλ

Sfw

p,û[ϑ
−1( (d1, d2 − 1, d3) )] + Tλ

Sfw

p,û[ϑ
−1( (d1, d2, d3 − 1) )] + Tλ

(13)

where di run from −fi + 1, . . . , fi, for i = 1, 2, 3. The

backward pass is defined as:

Sbw

p,û[ϑ
−1( (d1, d2, d3) )] =

min



























Sfw

p,û[ϑ
−1( (d1, d2, d3) )]

Sbw

p,û[ϑ
−1( (d1 + 1, d2, d3) )] + Tλ

Sbw

p,û[ϑ
−1( (d1, d2 + 1, d3) )] + Tλ

Sbw

p,û[ϑ
−1( (d1, d2, d3 + 1) )] + Tλ

(14)

where di run backwards from fi − 1, . . . ,−fi. The imple-

mentation of Spi,û[l] of Equation (7) is

Spi,û[l] = Cpi,û[l] +

min

{

Sbw

pi−1,û
[l]−mink∈L

(

Spi−1,û[k]
)

TλTτ

(15)

where Tλ represents the slope of the linear restriction func-

tion χ and the factor Tτ defines the upper limit of the regu-

larization costs.

4. Performance Evaluation

The performance of SGM-3D is evaluated for all pub-

licly available thoracic CT data sets, provided as benchmark

data by the DIR-lab3 of The University of Texas M.D. An-

derson Cancer Center (Houston, USA).

4.1. Dirlab Benchmark Data

The DIR-lab provides currently two sets of benchmark

data. The first set contains ten thoracic 4D CT images con-

sisting of ten 3D CT scans, which are used for the treatment

planning process of thoracic tumors at the Anderson Cancer

Center of The University of Texas [5, 3]. The dimensions

of the 4D data range from 256×256×94 and 512×512×136

pixels, with a resolution between 0.97×0.97×2.5 mm3 and

1.16×1.16×2.5 mm3.

The second set originates from the National Heart Lung

Blood Institute COPDgene study archive4 and contains ten

3 http://www.dir-lab.com
4 http://www.copdgene.org
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(a) Visualization of the estimated 3D motion field (b) Visualization of the 300 registered landmarks

Figure 2. Image 2(a) visualizes the 3D vector field obtained by SGM-3D for the COPD data set 04, which is the data set with the worst

performance for SGM-3D. The color is defined by the hue color scale and ranges from red to blue, indicating large (≥ 42 mm) to small

motion amplitudes. Image 2(b) shows the corresponding set of landmark pairs. Blue refers to a landmark of the reference image. The

corresponding landmark in the target image is either colored in green or red, depending on whether the registration error is above (red) or

below (green) an error threshold of 2.5mm.

inspiratory/expiratory breath-hold 3D CT image pairs [4].

The dimension of the image pairs are 512×512×102/135

with a resolution between 0.586×0.586×2.5 mm3 and

0.742×0.742 ×2.5 mm3.

Each scan pair of the COPDgene study (in the follow-

ing referred to as COPD data) and each end-inspiration/-

expiration pair of the 4D CT data sets comes with 300 pub-

licly available anatomical landmark pairs to be used for

quantitative evaluations. These landmarks were manually

annotated by medical experts and are usually located at

prominent bifurcations of the bronchial or vessel trees. The

registration error is calculated as the Euclidean distance be-

tween a landmark pair in world coordinates. Figure 2 shows

an example of a registration result and the corresponding set

of landmark pairs.

However, there are two slightly different evaluation ap-

proaches in current literature. The first approach adds the

corresponding 3D displacement vector to the 3D position

of the reference landmark and calculates the Euclidean dis-

tance to the position of the target landmark. This straight

forward approach is in the following referred to as direct

evaluation. The DIR-lab shifts the translated reference

landmark to the closest pixel center on the image grid be-

fore calculating the Euclidean distance. This snap-to-pixel

evaluation is based on the argument that human observers

select discrete pixel locations in image pairs when identi-

fying the landmark sets. This paper follows snap-to-pixel

evaluation for the 4D CT data and direct evaluation for the

COPD data. The reason for this is based on the fact that

the best published results in current literature follow these

approaches on respective data sets.

4.2. Algorithm Configuration

SGM-3D is a coarse-to-fine approach that employs

Gauss pyramids with a fixed number of three pyramid lev-

els, where ℓ = 1 refers to the finest level. The displacement

field at the coarsest level is initialized with zero, and the re-

sult of each level is used as initial solution for the scan-line

optimization at the next higher image resolution.

The search space S, as defined in Equation (4), represents

a 3D cube with a dimension that is set to (2 · fm+1)3, with

f1 = f2 = f3 = fm. In order to cope with the memory

complexity, the search space is linearly decreasing for each

pyramid level with fm = 3 · ℓ.

To restrict the registration process to lung regions only,

binary lung segmentation masks are generated to crop the

input images and to set image intensities outside the lungs to

zero. This is a common strategy to deal with strong motion
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4D CT w / o observer SGM-3D cEPE cTVL1 NLR SWE

# registr. error [new approach] [16] [17] [24] [26]

01 3.89 (2.78) 0.85 (1.24) 0.76 (0.92) 0.80 (0.92) 0.78 (0.92) 0.78 (0.91) 0.87 (0.93)

02 4.34 (3.90) 0.70 (0.99) 0.72 (0.87) 0.77 (0.92) 0.78 (0.92) 0.74 (0.87) 0.84 (0.95)

03 6.94 (4.05) 0.77 (1.01) 0.94 (1.07) 0.92 (1.10) 0.93 (1.09) 0.94 (1.07) 1.02 (1.13)

04 9.83 (4.86) 1.13 (1.27) 1.24 (1.26) 1.22 (1.24) 1.24 (1.30) 1.26 (1.26) 1.35 (1.27)

05 7.48 (5.51) 0.92 (1.16) 1.15 (1.42) 1.21 (1.47) 1.22 (1.43) 1.22 (1.48) 1.39 (1.47)

06 10.89 (6.97) 0.97 (1.38) 0.90 (0.98) 0.90 (1.00) 0.94 (0.99) 0.97 (1.03) 1.25 (1.14)

07 11.03 (7.43) 0.81 (1.32) 0.89 (0.95) 0.98 (1.01) 1.01 (0.96) 0.91 (1.00) 1.19 (1.12)

08 14.99 (9.01) 1.03 (2.19) 1.13 (1.40) 1.16 (1.45) 1.11 (1.28) 1.07 (1.24) 2.55 (3.70)

09 7.92 (3.98) 0.75 (1.09) 0.91 (0.93) 1.00 (0.97) 0.98 (1.00) 1.03 (1.01) 1.23 (1.16)

10 7.30 (6.35) 0.86 (1.45) 0.83 (0.92) 0.99 (1.28) 0.94 (1.03) 0.98 (1.10) 1.15 (1.25)

Øerr 8.46 (6.58) 0.88 (1.31) 0.95 (1.07) 0.99 (1.13) 0.99 (1.09) 0.99 (1.10) 1.29 (1.41)

Øtime – – 98 s 46 s 110 s 104 s 64 min

Table 1. A list of the currently lowest published landmark-based mean registration errors after registration of the end-inspiration to end-

expiration images of the DIR-lab 4D CT data sets. Standard deviations are given in small brackets. All values are in mm, following the

snap-to-pixel evaluation.

discontinuities that often occur near lung borders.

The data resolution specifications in Section 4.1 high-

light that CT data usually features a high spatial resolution

along the x- and y-axis but often has a significantly lower

resolution along the z-axis. To deal with the anisotropic na-

ture of the data, a census neighborhood of 5×5×3 is used to

reduce the spatial impact of the data term along the z-axis.

Additionally, the COPD data is scaled down by 50% along

the x- and y-axis as pixel resolution differences are particu-

larly high for this data set.

The result of each level is first filtered by a 3×3×3 me-

dian filter, followed by a 5×5×5 Gauss filter with σ = 1.0.

The parameters that define the truncated linear cost reg-

ularization are set to Tλ = 14.8 and Tτ = 14.8 and six

scan-line directions along the image axes were chosen.

4.3. Result Tables and Methods of Comparison

Tables 1 and 2 list mean registration errors of SGM-3D

for each data set of the 4D CT benchmark and the COPD

benchmark, along with some of the lowest reported error

values in current literature. The minimum error value for

each data set is highlighted with bold letters and a gray

background. In case of two identical mean values, the min-

imum is identified by the standard deviation, which is given

in brackets behind each error value.

The mean landmark distances, which are obtained with-

out registration, are listed in the first column and give an

indication of the mean motion amplitudes for each data set.

The larger those values, the bigger the assumed lung defor-

mation and the harder the registration task.

The observer error in the second column of the tables is

provided by the DIR-lab website5 and describes the mean

landmark deviation that resulted from multiple annotations

of a defined subset of landmarks by three different human

observers. The registration goal is to get close or below this

error value.

In the following, the methods of comparison are de-

scribed. cTVL1 [17] and cEPE [16] refer to methods, which

minimize an L1 energy and employ total variation regular-

ization following the numerical schemes of Zach et al. [30]

(cTVL1) and Brox et al. [2] (cEPE). Both methods utilize

the census cost function in the data term. The error values

of SWE [26] are taken from [17]. It is a diffeomorphic vari-

ational scheme that minimizes a normalized variant of the

sum of squared intensity differences and employs diffusion

regularization. The method currently ranks amongst the top

ten methods on the EMPIRE10 website6, which started off

as a pulmonary image registration challenge in 2010 [20],

and continues as another benchmark for performance eval-

uation in that field.

The method named NLR currently ranks fourth on

EMPIRE10. It is described in [24] as a variational ap-

proach, which is based on second order regularization and

a data term that penalizes deviations of gradient orienta-

tions. It employs affine linear transformation prior to non-

linear registration. The method LMP [22] can be consid-

ered as a straight forward extension to NLR. It generates a

pre-registration based on a sparse set of thin plate splines

5 http://www.dir-lab.com/ReferenceData.html
6 http://empire10.isi.uu.nl
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COPD w / o observer SGM-3D NLR gsyn LMP TPS

# registr. error [new approach] [24, 22] [22, 27, 1] [22] [22]

01 26.33 (11.44) 0.65 (0.73) 1.22 (2.73) 1.39 (1.40) 1.21 (1.36) 1.26 (1.23) 3.69 (3.79)

02 21.79 (6.47) 0.70 (0.99) 2.48 (3.79) 2.36 (2.79) 3.01 (4.46) 2.02 (2.29) 4.10 (3.60)

03 12.64 (6.40) 0.58 (0.87) 1.01 (0.93) 1.18 (0.81) 1.24 (1.08) 1.14 (0.70) 1.56 (1.07)

04 29.58 (12.95) 0.71 (0.96) 2.42 (3.56) 1.57 (1.39) 1.38 (1.14) 1.62 (1.60) 4.39 (3.89)

05 30.08 (13.36) 0.65 (0.87) 1.93 (3.24) 1.44 (1.14) 1.31 (1.19) 1.47 (1.26) 3.63 (3.31)

06 28.46 (9.17) 1.06 (2.38) 1.45 (2.42) 2.08 (2.92) 1.49 (2.25) 1.38 (1.46) 2.69 (2.94)

07 21.60 (7.74) 0.65 (0.78) 1.05 (1.43) 1.18 (1.13) 1.24 (1.24) 1.22 (1.30) 2.25 (2.18)

08 26.46 (13.24) 0.96 (3.07) 1.16 (1.79) 1.65 (1.98) 2.09 (3.32) 1.63 (2.16) 3.47 (3.76)

09 14.86 (9.82) 1.01 (2.54) 0.81 (0.67) 1.13 (1.09) 1.18 (1.25) 1.12 (1.14) 2.20 (2.34)

10 21.81 (10.51) 0.87 (1.65) 1.28 (1.29) 1.44 (1.23) 1.63 (2.05) 1.45 (1.31) 4.00 (3.16)

Øerr 23.36 (10.11) 0.82 (1.54) 1.48 (2.19) 1.54 (1.59) 1.58 (1.93) 1.43 (1.45) 3.20 (3.00)

Table 2. A list of the currently lowest published mean landmark-based registration errors after registration of the breath-hold pairs of the

DIR-lab COPD data sets. Standard deviations are given in small brackets. All values are in mm, following the direct evaluation. The values

for comparison are taken from the study [22].

following [19] and uses those pre-calculated landmarks as

additional constraint for the non-linear registration step. Er-

ror values for TPS refer to the result without non-linear reg-

istration.

gsyn [27] refers to a diffeomorphic variational method

that uses cross-correlation and regularization via Gauss

smoothing within a symmetric registration framework. It

ranks first on EMPIRE10 since the initial challenge phase

in 2010. Comparative values for this method were gener-

ated by Polzin et al. for the study in [22], using the pub-

licly available ANTs7 library with the algorithm configu-

ration reported for EMPIRE10 in [27]. It is so far the only

work with published result values for the challenging COPD

benchmark data.

4.4. Discussion for 4D CT Data

Comparing mean registration errors of Table 1, we see

that there are no big differences between the listed methods,

not in terms of registration accuracy and, with the exception

of SWE, not in terms of run-time performance.

Considering that the majority of these methods are only

0.1 mm away from the mean observer error, the challenge of

this benchmark may be considered as close to being solved.

However, it is an important reference benchmark in current

literature and therefore included in this paper. It will stay

relevant as a baseline benchmark, and it is safe to assume

that registration results for the COPD benchmark will soon

become the next challenge for performance evaluation in

pulmonary image registration.

7 http://stnava.github.io/ANTs/

4.5. Discussion for COPD Data

Initial mean registration errors, which are listed in the

first column of Tables 1 and 2, indicate that displacement

vectors of the COPD benchmark are on average three times

larger than those of the 4D CT benchmark. The COPD data

is therefore significantly more challenging than the data of

the current 4D CT reference benchmark.

All listed methods perform very good in general, with the

exception of TPS, which was listed in [22] only as a baseline

result. SGM-3D in particular yields very good performance

on most COPD data sets. However, registration errors for

data sets 04 and 05, which exhibit the largest motion ampli-

tudes, are significantly higher compared to all other varia-

tional based methods. This is likely to be due to the result-

ing larger deformations of the lung structures. Variational

methods based on image warping have in this case a natural

advantage over matching based methods. This argument is

supported by the fact that gsyn, which employs a symmetric

registration approach, outperforms NLR and LMP in those

particular cases.

5. Conclusions

This paper presented SGM-3D, the first method based on

scan-line optimization that was successfully applied to pul-

monary motion estimation in context of 3D medical image

registration. SGM-3D is competitive with current state-of-

the-art methods, even on the challenging and only recently

released COPD benchmark. This result indicates further,

that scan-line optimization has the potential to be applied to

general labeling problems in high dimensional data.
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