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Abstract 

Recent technological developments of multibeam echosounder systems (MBES) allow 

mapping of benthic habitats with unprecedented detail. MBES can now be employed in 

extremely shallow waters, challenging data acquisition (as these instruments were often 

designed for deeper waters) and data interpretation (honed on datasets with resolution 

sometimes orders of magnitude lower). With extremely high-resolution bathymetry and co-

located backscatter data, it is now possible to map the spatial distribution of fine scale benthic 

habitats, even identifying the acoustic signatures of single sponges. In this context, it is 

necessary to understand which of the commonly used segmentation methods is best suited to 

account for such level of detail. At the same time, new sampling protocols for precisely geo-

referenced ground truth data need to be developed to validate the benthic environmental 

classification. This study focuses on a dataset collected in a shallow (2–10 m deep) tidal 

channel of the Lagoon of Venice, Italy. Using 0.05-m and 0.2-m raster grids, we compared a 

range of classifications, both pixel- based and object-based approaches, including manual, 

Maximum Likelihood Classifier, Jenks Optimization clustering, textural analysis and Object 

Based Image Analysis. Through a comprehensive and accurately geo-referenced ground truth 

dataset, we were able to identify five different classes of the substrate composition, including 

sponges, mixed submerged aquatic vegetation, mixed detritic bottom (fine and coarse) and 

unconsolidated bare sediment. We computed estimates of accuracy (namely Overall, User 
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and Producer Accuracies) by cross tabulating predicted and reference instances. Overall, 

pixel based segmentations produced the highest accuracies and that the accuracy assessment 

is strongly dependent on the choice of classes for the segmentation. Tidal channels in the 

Venice Lagoon are extremely important in terms of habitats and sediment distribution, 

particularly within the context of the new tidal barrier being built. However, they had 

remained largely unexplored until now, because of the surveying challenges. The application 

of this remote sensing approach, combined with targeted sampling, opens a new perspective 

in the monitoring of benthic habitats in view of a knowledge-based management of natural 

resources in shallow coastal areas.  

Keywords: Benthic habitat mapping, high-resolution sonar, image segmentation, very 

shallow water, multibeam, Venice Lagoon 

1. Introduction 

Estuaries and coastal ecosystems are amongst the most productive and valuable environments 

on Earth (Guelorget and Perthuisot, 1992, Costanza et al., 1997, Barbier et al. 2011, Kirwan 

and Megonigal, 2013). These ecosystems are particularly susceptible to anthropogenic 

pressure, with 13 of the 15 world biggest cities located close to the coast (Kennish, 2000; 

McGlathery et al., 2007; Halpern et al., 2008; Brown and Blondel, 2009). Large national and 

international programs have started to map these ecosystems, e.g.  Mapping European 

Seabed Habitats (MESH) (http://www.searchmesh.net), MESH Atlantic 

(http://www.meshatlantic.eu), EU Seamap (http://jncc.defra.gov.uk/page-5040), MAREANO 

(http://mareano.no/en), UK SeaMap  (McBreen et al., 2011), the Irish INFOMAR program 

(http://www.infomar.ie), the Gulf of Maine Mapping Initiative 

(http://www.gulfofmaine.org/gommi), the Victorian marine habitat mapping project  in 

Australia (http://hdl.handle.net/10536/DRO/DU:30010514). Accurate mapping of seafloor 

geomorphology and composition is the basis of marine spatial planning and the 

implementation of fact-based legislative frameworks (e.g. for the designation of Marine 

Protected Areas). However, currently, only 5 to 10% of the seabed has been mapped in detail, 

the majority of which is deeper than 10 m (Blondel, 2009; NOAA, 2014).  This is a concern, 

particularly in view of European legislative frameworks (i.e. Water Framework Directive, 

2000: 60/EC; Marine Strategy Framework Directive, 2008/56/EC; Habitats Directive, 

92/43/EEC), as an estimate (based on the EMODNet (2015) bathymetry portal data) shows 

that 9% of EU  coastal waters (bathymetry up to 100 m) are shallower than 10 m. 
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In the present analyses, we consider habitats as including the physical and environmental 

conditions (mainly of the seafloor) together with the co-inhabitant biota at a given scale (in 

line with the definitions set forth by Udvardy, 1959, inter alia, and in line with the 

recommendations set by MESH, 2008). The exploration and mapping of coastal and shallow 

benthic habitats (depths < 30 m) is significantly limited if using conventional surveying 

technologies. Satellite and aerial remote sensing techniques have been employed to map the 

broad-scale spatial organization of littoral ecosystems (e.g. Wang and Philpot, 2007), 

although water turbidity and lowered light penetration strongly restrict the potential of such 

applications (Lehman and Lachavanne, 1997, Blondel, 2012). Conversely, acoustic remote 

sensing techniques are constrained by the shallow depths, which limit available coverage 

away from the surveying platforms and can be affected by strong multiple reflections from 

the sea surface if using systems designed for deeper waters. Recent developments in 

underwater acoustic technology can now produce results with a resolution approaching that 

of photography. Benthic habitat maps based on acoustic data are now commonly used within 

the context of ecosystem-based management (e.g. Ierodiaconou, 2007, Erdey-Heydorn, 2008, 

Ierodiaconou, 2011 Brown et al. 2011, Lucieer et al. 2013).  

In particular, multibeam echo sounder systems (MBES) allow co-registering bathymetry and 

backscatter data. MBES can be designed to operate at very high frequencies (up to 400 kHz) 

and with tuneable pulse lengths and repetitions, yielding high-resolution measurements over 

relatively large areas of the seabed (Kenny et al. 2003, Parnum and Gavrilov, 2011). High-

resolution MBES has led to a better detection of benthic habitats sensu lato, allowing a 

continuous fine-scale mapping of their distribution (Brown et al. 2011). Whilst MBES have 

been used extensively in shallow and deep waters, their application in very shallow waters 

(herein defined as < 10 m depth) is only very recent (e.g. Huvenne et al., 2007; De Falco et 

al., 2010, Micallef et al., 2012).  

In this study, we use very high-resolution MBES data (0.05- and 0.2- m grids), combined 

with in situ observations to map and classify a very shallow benthic environment in the 

Lagoon of Venice. This lagoon is the largest in the Mediterranean (about 550 km², with a 

mean depth of only 1.2 m). Its tidal channels are virtually unexplored systems with high 

biodiversity and distinctive biotic communities (Vatova, 1940, Occhipinti-Ambrogi, 2000, 

Corriero et al., 2007, Sigovini et al., 2014). Up to now, most of the benthic research has been 

carried out in the mud-flats (e.g. Tagliapetra et al., 1998; Pranovi et al., 2000; Sfriso et al., 

2001; Maggiore et al., 2007) which account for the largest lagoon surface area and are 

logistically easier to access and sample. Tidal channels occupy 15% of the open-lagoon 
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surface with an area of about 64 km². Their depths range from less than 1 m up to a 

maximum of 50 m. 

The combination of large areas and very high resolution data justifies the use of automated 

habitat classification. There have been fast and recent developments in integrating analyses of 

the acoustic data (bathymetry and/or imagery) with available ground truth, and different 

manners of presenting habitat maps have been proposed (see Brown et al., 2011, for a 

review). Promising quantitative and objective new approaches have been developed, using 

mixed methods, i.e. pixel-, field and object-based image analyses) (e.g. Brown and Blondel, 

2009; Brown et al., 2011, Ierodiaconou et al., 2011; Lucieer and Lamarche, 2011; Micallef et 

al., 2012; Diesing et al., 2014; McGonigle and Collier, 2014). 

However, there have been very few comparisons (e.g. Diesing et al., 2014; Calvert et al., 

2014; Galparsoro et al., 2015), all focusing on lower-resolution (> 1 m) data. The very high 

grid resolutions (< 5 cm) afforded by new systems and new applications, like in the Lagoon 

of Venice, are setting new challenges for benthic habitat mapping. 

In the present study, we apply a few different methods well-established in the realm of 

classification of remotely sensed data. They were chosen either because of their widespread 

availability within commercial and open access GIS platforms or because they were 

successfully applied before. In our choice, we considered both backscatter intensity and 

textural parameter methods, to see which image characteristic is best to identify the seafloor 

types of interest. Our aim is therefore to assess which backscatter segmentation method is 

most suitable to map very fine scale, heterogeneous benthic habitats. At the same time, we 

investigate the effect of pixel size at varying resolutions (i.e. 0.05 and 0.2 m) on classification 

results. This is supplemented with a combination of ground truth information including free-

diving observations, underwater photography and video and benthos samples at the most 

relevant points.  

2. Material and Methods 

2.1 Study Site 

The study site is located in the northern part of the Venice Lagoon, Italy (Fig. 1). The 

Scanello channel is a natural tidal channel, part of a complex tidal system of tidal creeks and 

coastal salt marshes. The channel flows as a side-branch of a main navigation channel into a 

salt marsh area. The channel shows an erosion-deposition pattern characteristic of 

meandering tidal channels (Perrillo, 2009). The channel follows a gentle sloping gradient 

from north to south. Its bathymetry is complex, with geomorphologic features like scours, 

ripple-like structures, flat zones, point bars and pools (Darlymple and Rhodes, 1995).  
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Following a short straight section of about 200 m, the channel bends to the North for about 

300 m, where it separates into two smaller branches flowing into an extremely shallow tidal 

flat with depths < 1 m. These branches are characterized by the relative highest ruggedness, 

quantified with the Benthic Terrain Modeler for ArcGIS (Wright et al. 2005, Lundblad et al., 

2006) as a Vector Ruggedness Measure (VRM) between 3 × 10
-3

 and 10
-2

 (Fig. 1C). Their 

VRM isotropic distribution suggests the presence of biogenic features (Ferrini and Flood, 

2006). The dune-like fields in the main branch of the channel also have a high ruggedness. 

Conversely, the rest of the channel is quite smooth (VRM ruggedness between 10
-5

 and 3 × 

10
-3

).  

2.2. Data acquisition and processing 

2.2.1. Geophysical data 

Bathymetry and backscatter imagery of the Scanello channel were acquired in November 

2013 with a Kongsberg EM-2040 DC dual-head system. The MBES was pole-mounted on 

the vessel RV Litus, a 10-m long boat with 1.5-m draft. The MBES has 800 beams (400 per 

swath) and a frequency that can range from 200 to 400 kHz. During the survey, the frequency 

was set to 360 kHz. This was the highest frequency that allowed overlapping of the dual-head 

system swaths, including in extremely shallow waters. A Seapath 300 positioning system was 

used with a Fugro HP differential Global Positioning System (DGPS, accurate to 0.20 m) and 

motion unit to register pitch, roll, heave and yaw corrections (0.02° roll and pitch accuracy, 

0.075° heading accuracy). The sound velocity was measured continuously with a Valeport 

mini SVS sensor close to the transducers. During the survey, sound velocity profiles were 

also collected with an AML oceanographic Smart-X sound velocity profiler.  Data logging, 

real-time quality control and real-time display were carried out with the Kongsberg native 

data acquisition and control software SIS (Seafloor Information System). Tidal corrections 

were obtained using the hydrodynamic model SHYFEM, which models the values of water 

level all over the lagoon (Umgiesser et al., 2004). It computes the sea level at each virtual tide 

gauge using the wind and sea level data from all tidal stations in the lagoon and at the inlets, 

resulting in errors < 0.01 m. All the corrections are referred to the local datum Punta Salute 

1897. CARIS HIPS and SIPS (v8.1) were used to account for sound velocity variations, tides 

and basic quality controls in the derivation of bathymetric data. Backscatter mosaics were 

created combining the georeferenced backscatter rasters (GeoBaR) of each survey line 

generated by the Geocoder algorithm that corrects the system settings, transmission loss, 

insonification area and incidence angle (Fonseca and Calder, 2005). GeoBaRs were produced 
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after applying to the raw backscatter data the CARIS adaptive Angle Varying Gain (AVG) 

correction to remove the angular artefacts of sediment from the imagery and the Despeckle 

option to remove isolated pixels (Caris, 2009). The bathymetric grids and backscatter mosaics 

were exported from CARIS as text files with grid resolutions of 0.05 and 0.2 m. They were 

converted to 32-bit raster files using R (raster Package by Hijmans et al. 2014). The 

raster files were then imported in ArcGIS (v10.2) (ESRI 2015) for further analysis.  

2.2.1.1. Manual segmentation 

The backscatter images have a dynamic range of NG grey levels, forming a complex, 

multifaceted mosaic characterized by distinct spatial arrangements of acoustic reflectivities. 

A visual discrimination of the backscatter imagery and the bathymetry and its derivatives was 

carried out to identify spatially homogenous units. By digitizing the borders of these acoustic 

regions of the study area, we obtained two classified vector polygon layers. Two hierarchical 

levels were defined and mapped: (i) Large spatially homogenous “acoustic macro-regions” 

(area > 5 m
2
) and (ii) small (area < 5 m

2
) acoustic objects.  

2.2.1.2. Texture analysis with TexAn  

Grey Level Co-occurrence Matrices (GLCMs) have been shown to be the most adaptable 

tools for textural analyses of sonar imagery (Blondel, 1996, 2000; Gao et al., 1998; Micallef 

et al., 2012). GLCMs express the relative frequency of occurrence PD(i,j) of two points, with 

respective grey levels i and j, at Euclidean distances D from each other (D is the inter-pixel 

displacement). Co-occurrences were averaged over all orientations (by 45° steps). Two 

textural indices, entropy and homogeneity, are sufficient to describe the GLCMs and resolve 

most textures visible in sonar imagery (Blondel, 1996; Blondel et al., 1998; Blondel and 

Gómez Sichi, 2009). Entropy measures the lack of spatial organisation inside the computation 

window, akin to roughness, whereas homogeneity quantifies the amount of local 

dissimilarities inside the computation window (Blondel, 1996), i.e. the local organisation. 

Textural analyses were carried out using the software TexAn (Blondel, 2000; Blondel and 

Gómez Sichi, 2009). 

The MBES mosaic was converted to 8-bit grey levels (0 to 255), by linear scaling from the 

calibrated backscatter levels (- 40 dB to -5 dB), yielding 0.13 dB per grey level. This had the 

effect of smoothing out small dB variations of no physical significance, especially 

considering typical MBES accuracy (≤ 1 dB).  TexAn parameters were optimized to separate 

the distinctive backscatter signatures identified in Table 1, according to their respective 

entropy and homogeneity values. This was investigated by varying NG from 256 down to 8 
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grey levels, and calculating GLCMs over square windows of length WD (from 10 to 80 

pixels, by increasing steps of 10 pixels), systematically varying D from 5 to (WD – 5) pixels. 

The entropy and homogeneity grids were in turn exported as 8-bit rasters. The final 

classification was obtained by applying the Maximum Likelihood Classifier (MLC) (in 

ArcGIS-v10.2) to these rasters and to the 3x3 mean filtered backscatter grid. 

2.2.1.3. Jenks’ Optimization clustering  

The Jenks’ Optimization clustering is an easy to implement tool in ArcGIS (v10.2) to classify 

rasters. Given a certain number of classes, the method seeks to reduce the variance within 

classes and maximize the variance between classes. From the ground truth dataset, we 

visually derived five habitat classes (sensu lato) (Table 1). To assess the optimal number of 

backscatter clusters independently, we computed the Jenks classification (also referred to as 

Fisher-Jenks algorithm) altering k (number of classes) from 2 to 6 with the R Package 

ClassInt (Bivand et al. 2009). This procedure is similar to computing the Within Group 

Sum of Squared Distances plot in a K-Means cluster analysis. We then compared the 

partitions by deriving the Goodness of Variance Fit (GVF) index finding that five classes 

gave optimal fit. We then applied Jenks’ Optimization clustering in ArcGIS (v10.2) to both 

datasets.  

However, per-pixel classifiers may cluster together disparate features “looking and sounding 

the same” as pointed out by Lucieer et al., (2013) amongst others. In our case, the class of 

lowest backscatter groups together large patches (> 1 m²) and small objects (< 1 m²) 

representing different seafloor properties. To overcome this problem, we converted this 

backscatter class into polygon features. By querying polygon size (with a threshold of 1 m²), 

after applying a 3 × 3 mean filter, we separated small and roughly circular backscatter objects 

from large patches of very low backscatter.  

2.2.1.4. Maximum Likelihood Classifier 

The MLC is amongst the most firmly established pixel-based parametric algorithms of 

remotely sensed imagery classification (Lu and Weng, 2007). Assuming a Gaussian 

distribution of the data, the algorithm partitions the dataset into groups defined by a given set 

of training samples. The MLC calculates the class membership probability and assigns each 

pixel to the group having the highest membership probability. Mean and covariance are 

extrapolated from the training samples. 
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We used the Maximum Likelihood Classifier Tool in the Spatial Analyst Toolbox in ArcGIS 

(v10.2) to perform a per-field supervised classification. Similarly to Seo et al. (2014), we 

digitised a set of training fields (parcels) over the ground truth locations (digitisation of field 

records). Given the spatial homogeneity of the backscatter patches surrounding the ground 

truth locations we used 1-m² square polygon fields to map all classes except the sponge class, 

for which circular and irregular fields were used. Signature files were produced using the 

Create Signature Tool in ArcGIS. Hierarchical Cluster Analysis was used to assess the 

dissimilarity of the training samples. 

2.2.1.5. Object Based Image Analysis with eCognition  

Object based-image analysis (OBIA) is a relatively novel application to remotely sensed 

seafloor data, with several studies showing its potential (Lucieer and Lamarche, 2011; 

Diesing et al. 2014). OBIA is a two-step image processing technique that involves 

segmentation and classification. The segmentation separates the image into image objects of 

variable sizes, based on their spectral and spatial characteristics. The maximum allowed 

heterogeneity for the segmented objects defines the scale and constrains their dimensions. In 

turn, the objects are classified using different algorithms (Benz et al., 2004). This analysis 

was carried out with the eCognition© software, using multibeam backscatter with resolutions 

of 0.05 m and 0.2 m. After trying different scale values for the multiresolution segmentation, 

we found the best results by setting the scale to 5 and 15 for the 0.05 m and the 0.2 m 

resolution images, respectively. The image object Shape was set to 0.1 and Compactness to 

0.5 in accordance with Lucieer et al. (2013) and Stephen and Diesing (2014). The value of 

the Shape parameter can range from 0.1 to 0.9 and defines the proportion between colour and 

shape criteria of homogenous area. Shape 0.1 means that the objects are more optimized for  

backscatter intensity than for its spatial homogeneity. Another parameter, compactness 

measures the ratio between the image object border length and the root mean square (RMS) 

of all pixel values within the segment (Benz et al., 2004). 

The supervised classification was carried out in two steps, considering first the class 

“Sponges” and then the other classes. The sponge backscatter areas are characterized by a 

roughly circular shape, a very low acoustic return and a bathymetric positive relief. 

Therefore, only for the class sponges, we added also the layer bathymetry to the analysis. The 

Template Matching (TM) algorithm was used to recognize sponge patterns. In the Template 

Editor, a template object was produced starting from a set of ground truth data related 

samples. The template is determined by means of a cross correlation layer (CCL) of the 
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sample characteristics in the feature space. The CCL values can range from -1 to 1, where 1 

means that the template is 100% representative of the class under investigation.  

To classify the remaining objects, we investigated many supervised classifiers available in 

eCognition, namely Classification and Regression Trees (CART), Support Vector Machine 

(SVM), Random Forest (RF), Bayes and K-Nearest Neighbour (KNN). The classifications 

were based on the GLCM entropy and mean backscatter values of the objects .In the 

statistical evaluation of the object features, GLCM entropy and mean backscatter gave the 

best class separation. The best classification results were obtained with the KNN classifier. 

This technique assigns the object to a certain class when the majority of the K closest samples 

belong to that class (Bremner et al, 2005). The value giving the best results for the 

classification was K = 1. 

2.2.2 Ground truth data 

The ground truth dataset comprised (i) sediment grab samples, (ii) underwater photography 

(drop-frame camera and transects) and (iii) underwater video transects collected within three 

400 m² quadrats (Fig.2) for a total of 124 samples (Tab.2). Sampled point locations were 

strategically selected to include all the characteristic textural patterns identified from the 

backscatter imagery. We consider our samples to be representative of the various backscatter 

intensities, given the local consistency of the patterns targeted. The data were acquired at 

slack water to reduce positioning errors. The samples point locations were mapped with 

different buffers according to their method of acquisition. We estimated DGPS positioning 

errors of 0.5 m for the samples extracted from the underwater video transects, and 1 m for the 

sediment grabs and underwater photography (drop-frame camera and transects) 

2.2.2.1 Grab samples 

Ten sediment samples were collected with a Van Veen Grab (7L). The fine fraction (< 2 mm) 

was measured on a subsample of the top 5 cm by laser diffraction analysis (LISST 100X). 

Sediments were classified according to Wentworth (1922). The coarse (> 2 mm) fraction is 

mainly composed of fragmented shells. This bioclastic component was classified according to 

a semi-quantitative scale, which includes: no shell detritus, fine (and sparse) shell detritus, 

coarse (and dense) shell detritus. Sparse and dense refer to the detritus’ spatial arrangement. 

Fine shell detritus is mostly composed of the shells of the Gastropod Bittium sp., whereas 

coarser detritus typically includes whole and fragmented valves, including large (> 10 cm in 
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length) dead oyster shells of Crassostrea gigas (Thunberg, 1793), with some degree of 

cementation. These samples are reported in Fig. 2 (coloured triangles).  

2.2.2.2 Underwater imagery 

The photographic surveys were performed on 22/11/2013 and 10/12/2013, around neap tides 

and slack water. Two 10-m transects were positioned over the study area. They were arranged 

roughly along the direction of the current, over a range of depths (from 6 m to 1.7 m). 

Coordinates of the transect extremities were measured with a DGPS. Pictures of 25 cm × 20 

cm photoquadrats were collected (moving upstream) every 5 m on both sides of the transects, 

by professional technical divers (State Police Divers, Venice Unit).   

A Go-Pro (HERO-3) camera was installed on an aluminum frame allowing operating on 

board by dropping the tool from the boat (drop-frame camera). Seven photoquadrats (25 cm × 

20 cm) were collected over a range of bathymetries on 22 and 23/07/2014. Underwater 

videos were acquired using a free diver-operated Go-Pro (HERO-3) camera on 22/07/2014 

over 3 areas of 20 m × 20 m (see Fig. 2), following five parallel transects in the north-south 

direction (diving site). A transect line was positioned straight on the seabed along the north-

south axis to be followed by the diver. Initial and final transect coordinates were acquired 

with the DGPS system. We extracted and classified images out of the video transects, one for 

each meter of the line. Underwater imagery deemed unsuitable, mainly owing to water 

turbidity, was discarded.  

2.3 Evaluation of selected mapping method 

We estimated the accuracies of the models investigated by means of the confusion or error 

matrix, widely promoted and used in remote sensing literature (Foody, 2002). This matrix 

describes the pattern of class allocation made relative to the ground truth reference data, by 

cross-tabulating them with the predicted seafloor cover maps. To estimate the accuracies of 

the models we accounted on a total 100 samples excluding the 24 samples selected to train 

the supervised classifications (OBIA and MLC) (Table 2). For the TexAn analysis, 5 training 

zones were extracted within the 24 training samples from the locations of 5 drop-frames. We 

computed Overall, User and Producer accuracies from the raw contingency matrices. User 

Accuracy provides an estimate of the probability that a pixel belonging to a certain class in 

the classified map is that class in the real world. The Producer Accuracy is the probability 

that a certain seafloor class is classified as such. The Overall Accuracy provides a global 

estimate of how well a classifier performed, since it is the percentage of cases correctly 
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allocated. Moreover we calculated the Cohen s kappa coefficient (Foody, 2002). Despite 

manual segmentation remains amongst the most commonly used, we avoided its accuracy 

assessment as we retained it to be overly subjective. 

3. Results  

3.1 Seabed composition classes 

Using 0.05-m and 0.20-m MBES grids, we observed very-fine scale heterogeneity, also 

reflected in the ground truth data (Table 1 and Fig. 2). The resolution used in this study 

allows us to observe patterns at different scales and hierarchical levels. We define five seabed 

classes in terms of main substrate features and habitat forming biota.  These classes are 

distributed in patches of different size (down to less than 1 m²). 

The following classes of subtidal seabed were identified:  

1) ‘Sponges’: massive, cushion-shaped demosponges together with associated macroalgal 

canopy (mainly Rodophyta and Phaeophyceae) on a bed of dead oysters of the non-

indigenous species Crassostrea gigas (Thunberg, 1973); in Table 1 and Fig. 3, it is 

represented in red.  

2) ‘Fine shell detritus’: patches of fine and sparse shell detritus (mostly the gastropod Bittium 

sp.) with abundant filter-feeders infauna, including Sabellidae polychaetes; in Table 1 and in 

Fig. 2, it is represented in grey.  

3) ‘Coarse shell detritus’: patches of coarse and dense shell detritus (mostly whole or 

fragmented bivalve shells) with some degree of cementation and intensely colonised by both 

infauna and epifauna, mostly suspension- and filter-feeders, such as Sabellidae and 

Terebellidae polychaetes, anemones, ascidians; in Table 1 and in Fig. 3, it is represented in 

blue.  

4) ‘Submerged Aquatic Vegetation (SAV)’: the class includes macroalgae and algal turfs on 

fine sediments, as well as canopy-forming macroalgae (mainly Rodophyta and 

Phaeophyceae) on dead oyster beds and cemented coarse shell detritus; the physical 

proximity between sponges and algal canopy causes a relatively noisy classification of 

sponges in the pixel-based methods; in Table 1 and in Fig. 3, it is represented in green.  

5) ‘Bare muddy bottom’: patches of bare mud and sandy mud with benthic diatom film 

(BDF) and burrows of the thalassinid decapod Upogebia sp.; in Table 1 and Fig. 3, it is 

represented in black.  

6) ‘MBES artefacts’: they represent the nadir artefact and artefacts due to the presence of 

bubbles under the transducers and to multiple reflections at the channel banks.  
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3.2 Mosaic Segmentation results  

3.2.1 Manual segmentation 

The manual segmentation identified 6 classes at both resolutions (Fig. 4b): three large-scale 

spatially (relatively) homogeneous ‘acoustic macro-regions’ and three fine-scale acoustic 

object classes. At the large scale we found a class identifying the detritic bottom (coarse and 

fine) (in turquoise in Fig. 4b); a class corresponding to bare muddy sediments (in black in Fig 

4b); a class describing the patches of SAV distributed across the channel`s branches and in 

the SW bend (in green in Fig 4b and 4b1). At the fine scale, we detected sponges (in red in 

Fig. 4b and 4b1), patches of SAV and patches of detritic bottom. Two unclassified patterns 

were also discriminated. Draping the backscatter over the bathymetry reveals that these are 

ripple-like isotropic features.  

3.2.2 Texture analyses with TexAn 

Entropy and homogeneity were calculated for the 6 distinctive acoustic signatures identified 

in Table 1, used as training zones. For the 0.05-m resolution mosaic, optimal separation was 

achieved for NG = 64 grey levels, WD = 80 pixels, SZ = 50 pixels (Fig. 3, left). There is very 

good separation between training zones. This means the acoustic textures are best 

distinguished for areas 4 meters across, looking at variations over 2.5 meters approximately, 

and with backscatter variations with a 0.5-dB intervals (as the full backscatter range of 35 dB 

is divided into 64 levels). Conversely, for the 0.20-m resolution mosaic, optimal separation 

was achieved for NG = 256 grey levels, WD = 40 pixels, D = 5 pixels (Fig. 3 right). 

Similarly, the separation between training zones is very good. This means the acoustic 

textures are best distinguished for areas 8 m across looking at variations over 1 m 

approximately with backscatter variations within a 0.13-dB range  

The class ‘bare muddy bottom’ (in black) has relatively less texture than the others, and it 

shows medium entropy and homogeneity, well clustered. It is distinct from but relatively 

close to the class ‘coarse shell detritus’ (in blue), which shows slightly higher entropy (i.e. 

slightly higher roughness) and slightly higher homogeneity (i.e. slightly lower textural 

organization, due to the presence of the coarse shells whose acoustic returns ‘degrade’ the 

underlying pattern). The class ‘fine shell detritus’, logically shows higher textural roughness 

(i.e. higher entropy) and higher homogeneity (i.e. lower textural organization again, as the 

textures are broken up by the small shells or, rather, the slight increases in acoustic 

reflectivity that they bring, depending on shell density within each pixel). All three classes 
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are very well constrained in terms of entropy and homogeneity, with little intra-class 

variation. The SAV class shows more variation in both entropy and (mostly) homogeneity. 

The ‘sponge’ class again logically shows higher entropy and a higher homogeneity (lower 

textural organization, corresponding to the presence of the very small structures breaking up 

the overall organization of the general textures. Finally, the class ‘MBES artifacts’ shows 

high homogeneities, associated to the breakdown of organization within the image, and 

entropies spanning the range of the other classes, in line with previous TexAn studies. 

3.2.2.1 MLC with TexAn-grids 

Including entropy and homogeneity layers to the MLC allows the following observations: 

Five classes were discriminated at 0.20-m resolution (omitting the sponge class) whereas at 

0.05-m, 6 classes were mapped. At 0.20-m resolution, only the class coarse shell detritus (in 

Blue in Fig. 4F) appears to be coherent with the other classification methods. The remaining 

classes are strongly influenced by nadir artefacts and misclassification occurs almost at all 

places. Fine shell detritus (in Grey) covers most of the study extent, even in places where the 

backscatter return clearly suggests the presence of fine and unconsolidated sediments (i.e. 

very low backscatter). In this analysis, MBES artefacts were underestimated for the 0.20-m 

grids whereas using 0.05-m they were misclassified.  

The method was not able to adequately separate the bare bottom classes (Grey, Blue and 

Black), nor to map the SAV class adequately. At 0.05-m resolution, sponges have been 

mapped in part. However, it is difficult to observe any coherence between their thematic 

appearance and the original backscatter datum. This may result from the windowing 

procedure (see the Discussion).  

3.2.3 Jenks clustering with vectorization 

The Jenks clustering procedure combined with vectorization strategies identified 6 classes at 

both resolutions (Fig. 4c). Noticeably, the distribution of the SAV and detritic bottom 

(including coarse and fine shell detritus) classes follows a similar pattern to the manual 

delineation. A major difference compared to the latter is the separation of coarse and fine 

shell detritus with Jenks’ method. Spatial units representative of bare muddy bottoms are 

distributed accordingly but their patchiness is better captured. To a degree, the distribution of 

sponges is also consistent with the manual delineation; with differences evident in the SW 

bend of the channel. This procedure also identified MBES artifacts as an individual cluster, 

allowing us to map their occurrence and discard them from any habitat interpretation.  
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3.2.4 MLC classification 

The MLC classification separated 6 classes at both resolutions. We observed the strongest 

coherence with the other methods in the distribution of bare muddy bottoms and coarse shell 

detritus (black and blue classes in figure 4d, 4d1 and Table 1). Using the 0.2-m grid, SAV 

patches appear significantly larger than with the other methods, covering a large part of the 

main body of the channel as well as the northern branches. At 0.05-m resolution, sponges are 

neatly mapped in the branches. However, there appears to be a strong misallocation of other 

features in the study area resulting in the misclassification of MBES artifacts into sponges 

and of detritic bottoms into SAV.  

3.2.5 OBIA analysis with eCognition 

The OBIA analysis using the TM and KNN algorithms identified 5 classes. The TM 

classification confidently identified the distribution of the sponge class (in red Fig 4E and 

4E1). For the 0.05-m dataset, the created template matched 223 objects with a CCL value of 

0.69. For the 0.20-m dataset, the algorithm matched 149 image objects with a CCL value of 

0.78. The remaining classes, mapped by the KNN, are particularly similar to the manual 

segmentation. 

3.2.6 Validation of segmentation methods 

We estimated the Overall accuracies for all methods for the five thematic classes considered 

so far, for four thematic classes (obtained putting together Sponges and SAV) and for three 

thematic classes (obtained putting together Sponges and SAV and Fine detritus and Coarse 

detritus) (Fig.5 and Table A1, A2, A3 of the Appendix where also the raw confusion matrices 

are reported). This estimate allowed us not only to assess which classification method 

performed better, but also to understand the impact of the classes’ choice on the accuracy and 

the way a habitat is ultimately thematically represented.  

Overall, the pixel based methods (Jenks and MLC) performed better (even with a larger 

number of classes), while the texture and object based methods (OBIA, TexAn) provided 

significantly better accuracies when we group the classes together (Fig. 5).  

The Jenks classification gave the best results in terms of Overall accuracy, varying in the 

different cases from 0.6 for the 0.2-m grid and five classes to 0.83 for the 0.05-m grid and 

three classes. Similarly the kappa values varied from 0.5 to 0.72. Only for the case of the 

0.05-m grid and four classes, the MLC classification performed slightly better than Jenks.  
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On the other hand OBIA analyses had an overall agreement ranging from 0.51 in the case of 

the 0.2-m grid and five classes up to 0.66 for 0.05-m grid and three classes. The kappa 

coefficient for OBIA was quite stable varying from 0.38 to 0.46. Concerning TexAn, the 

Overall accuracy and the kappa coefficient were similar to what would be expected by chance 

for five classes, while it improved for three classes (Figure 5).  

Overall we obtain better accuracies for the 0.05-m resolution compared to the 0.20-m 

resolution. This may be due to the fact that the 0.05 grid represents better the continuous 

variations in the seafloor surface and the indeterminate boundaries among classes, that are 

lost through the ‘hard’ classification (Lucieer and Lucieer, 2009, Foody, 2002). Moreover if 

the 0.20m pixels represent areas containing more than one class, the mixed pixels could be an 

important cause of misclassification, particularly where the seafloor mosaic is complex and 

heterogeneous (Foody, 2002). In all cases, accuracies and kappa coefficients increased as the 

number of classes decreased. For further analysis of the accuracy assessment User and 

Producer accuracy estimates are reported in the Appendix 

4.  Discussion 

4.1 Relative success of segmentation methods 

Recent publications proposed comparative approaches to the segmentation of MBES products 

(e.g. Diesing et al. 2014 and Calvert et al. 2014). In this work, we investigated the potential 

application of very high resolution backscatter segmentation in extremely shallow areas, 

seldom explored with acoustic methods. Through MBES data and geo-referenced seabed 

imagery, we characterised an extremely shallow benthic environment.  

Ferrini and Flood (2006) suggested that backscatter intensity alone cannot be used to 

quantitatively predict seabed characteristics. Other studies carried out in Australia (e.g. 

Ierodiaconou et al. 2011; Lucieer et al., 2013) needed to analyze backscatter as well as 

bathymetry to improve the classification of the benthic substrata. In our study, the use of 

bathymetry is not strictly necessary since: a) the substrate is not only bare sandy sediment as 

in Ferrini and Flood (2006) and b) the resolution of the backscatter was such that we could 

identify the characteristic acoustic signature of single biogenic features (like individual 

sponges, or clumps depending on the nature of the method) and map their distribution 

throughout the study area.  

The Lagoon of Venice presents high heterogeneity at different scales and complex horizontal 

and vertical environmental gradients (Sigovini, 2011; Tagliapietra et al., 2009). Lagoon 
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bottom is known to be characterized by large and fine scale gradients as well as a mosaic of 

morphologies and habitats with a patchy distribution (Garcıa-Charton and Pe`rez-Ruzafa, 

1998 and 2000; Perez-Ruzafa et al. 2007). Habitat margins (or ‘borders’ between 

units/patches) are often vaguely defined. This feature calls for the application of 

segmentation methods which depict this textural intricacy (Fortin et al, 1995; Fortin et al. 

2000). In this regard, we have seen that manual segmentation can detect fine-scale biotic 

features and discriminate seafloor macro-regions. However, when the user exercises 

digitization over a broad study extent, subtle grey-level variations remain easily undetected. 

For example, in our case, the manual segmentation failed to distinguish among fine and 

coarse mixed bioclastic detritus. When the resolution of the analysis is enhanced, it is easier 

for the observer to discriminate seafloor features down to single objects. For example, with 

the manual segmentation, it was possible to map the sponge distribution. This requires a two-

phase digitization approach, though, in which objects with different size are mapped in steps. 

This is time-consuming, non-repeatable, imprecise and strongly dependent upon user 

expertise and the extent of the observation (Micallef et al., 2012, Diesing et al., 2014).  

Similarly, we argue that TexAn may produce more reliable results with coarser data 

resolutions and in larger-scale studies (Huvenne et al. 2002 and 2007). Computation windows 

need to be large enough to encompass textural variations of interest, and small enough that do 

not mix different textural signatures. For the 0.20-m grid, best results were obtained for areas 

8 m across (respectively 4 m for the 0.05-m resolution dataset). Textural variations were best 

distinguished over scales of 1 m approximately (respectively 2.5 m). Whereas TexAn could 

adequately cope with the high backscatter resolution (0.13-dB per grey level), this method 

extracted information of different nature compared to the clustering-based methods. TexAn 

identified areas in which sponges occur, rather than mapping out individual sponges or 

clumps. This averages out a significant amount of data points given the fine resolution of the 

data herein used, resulting in the mapping of relatively large areas. Textural analysis was also 

strongly influenced by nadir linear artifacts due to their highly homogeneous signature. 

Coverage of a large area of extremely shallow seafloor requires the mosaicking of many 

narrow swaths, hence many nadir pixels; sonars with larger swaths (deeper water) will not 

encounter this problem to the same extent. 

Similarly to the other methods, the pixel-based MLC segmentation was successful in 

discriminating classes with homogeneous grey level values (i.e. coarse shell detritus and 

sponges). Nonetheless, the classes with very heterogeneous backscatter were mostly (i.e. 
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SAV) confused with bare muddy bottom and sponges due to their shared spectral attributes. 

As an attempt to improve the results, the sponge class variance was reduced by digitizing 

irregular polygons to encompass their characteristic backscatter signature.  

Moreover, combining together the class sponge and class SAV improves the classification 

(see Figure 5 and the raw confusion matrices in the Appendix). Investigating the effect of 

training sample size and shape on fine scale backscatter imagery will inevitably contribute to 

a more robust use of MLC classifications. However as the method assumes Gaussian 

distribution of the data, it may be not adequate for mapping of heterogeneous backscatter 

signatures as in nature normal distributions are often not the case (Reimann and Filzmoser, 

2000).  

Micallef et al. (2012) suggested that including textural indices in the MLC may strengthen 

the classification. To check this, we performed a second MLC using the TexAn results for 

homogeneity and entropy and applied a Principal Component Analysis (PCA) at both 

resolutions investigated. For the 0.05-m dataset, the PCA revealed that backscatter explains 

89.2 %, homogeneity 1.3 % and entropy 9.4 % of seafloor variability. For the 0.2-m dataset, 

backscatter explained 52.6 %, homogeneity 0.5 % and entropy 46.8 %, respectively. As the 

scale increases, other variables than backscatter alone tend to become more important. This is 

probably because the number of backscatter outliers decreases, limiting the range of possible 

backscatter values and stabilising the textural indices. 

With regard to the OBIA analysis, one of its major advantages is that the image is processed 

by taking into account collections of pixels which together constitute image objects. The 

objects contain more information than single pixels, having their own statistics, shape, size, 

relations and hierarchy. Images separated into objects better reflect the way in which the 

human brain recognizes patterns (e.g. Hay and Castilla, 2006) and possibly, the patchy nature 

and spatial configuration of various natural systems. Similarly to others (i.e. Lüdtke et al. 

2012; Stephens and Diesing, 2014), we noticed that the KNN performs well when the image 

is preceded by small scale multiresolution segmentation. However, our investigation shows 

that increasing the K parameter decreased diversity of class distribution, resulting in a less 

accurate classification. For example, with K = 2, the number of classes was only 3 and from 

K = 5, only two classes were mapped.   The TM was useful at mapping sponges showing 

promising results in a context of seabed monitoring and automatization of classification 

routines in habitat mapping studies. In our case in many places high values of CCL matched 

segments that were in neighbourhood or near to the border of the real sponges segments. In 
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this method however, the poor accuracy obtained for the sponges may be related to the 

template quality which is affected by complex parameters, like ground truth tolerance, size 

and others. The template was also designed more on the largest ground truth sponges and the 

latter did not overlap with the smaller ground truth transects within the diving site. There are 

many ways to improve the TM processing, like creating few sizes of very high quality 

templates or connecting the TM with suitable features of OBIA segments, like elliptic fit or 

specified for sponges range of mean backscatter intensity. Nonetheless, it is important to 

underline that for the sponge class in this analysis, the CCL value represents an accuracy 

metric of its own as it expresses the degree to which sponge templates have been correctly 

matched. Clearly, positional accuracy of very small scale features hinders the statistical 

accuracy assessment by means of confusion matrices. 

Jenks’ clustering method combined with vectorization produced good results for our study 

area. For the most part, the predicted distribution of habitats is consistent with the ground 

truth data. Goodness of Variance Fit proved to be a valuable index to select clustering local 

optima. Including vectorization strategies, we could overcome the critical issue of seabed 

features looking and sounding the same. In this way, we could separate sponges from patches 

of unconsolidated fine sediments without any specialized data processing methods.   

Yet the quantitative assessment using confusion matrices suggests that we were not able to 

fully calibrate the data to the ground truth information (not for all classes). This is an issue 

inherent to the very fine resolution of the grids herein used and calls for labour intensive and 

costly ground truth protocols which will be focus of our future research. Furthermore it is 

important to consider the temporal dynamicity of the study site which clearly represents a 

further source of incompatibility between ground truth and acoustic data. This is due to 

ecological processes (which so far remain unquantified) such as the growth or death of 

sponges and SAV, which can drastically modify the seascape. 

Interestingly, we researched the effect of merging classes on the final accuracy estimates. 

Similarly to Rattray et al. (2013), we merged the sponge and SAV classes producing the 

equivalent of the ALG/INV class there defined as a mixed class at the interface of algal and 

invertebrate dominated reef habitats and recomputed the analysis over the contingency 

matrices for all methods. This shows that accuracies can be greatly improved, but at the cost 

of describing the habitat under study in more general terms, losing the possibility to map the 

distribution of single sponges.  
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As such, while the very high resolution backscatter allows for a full appreciation of the 

complexity of the system under study (its substrate composition) and conveys a great amount 

of information comparing to coarser resolution datasets, from the perspective of thematic 

classification, there is a limitation in the way the system is ultimately depicted. Thereby, 

there is a clear trade-off between the strength of the accuracy and the amount and type of 

features which are mapped. This implies that a compromise will inherently be present when 

seabed type and features are mapped simultaneously within the classification approach. 

Nonetheless, our results show that simple clustering of MBES backscatter can be a very 

efficient way to describe and acknowledge the investigated distribution of benthic habitats in 

the environmental context.  

4.1 Temporal variability 

The tidal channel under study is subject to dynamical processes which lead to temporal 

changes of the substrate. As we were not able to assess the temporal variability of the system, 

we consider our product to be a ‘snapshot in time’ as defined in Brown et al. (2011). This 

observation also emphasises the importance of collecting ground truth samples 

complementary to the acoustic survey in comparable amounts of time (which was not always 

possible in our study, with some samples gathered 7 months after the survey). This is 

particularly true in view of habitat modifications given by seasonal environmental changes 

such as vegetation growth, which can drastically modify the seascape, particularly in shallow 

and highly productive estuaries (Valiela et al. 1997).  

5. Conclusion 

In this study, we present the results of benthic habitat mapping through very high-resolution 

MBES data and ground truth samples in an extremely shallow environment. Benthic habitat 

mapping in these environments, particularly in lagoons, has been rarely carried out due to a 

range of logistic issues. Lagoon channels present specific operational challenges of which 

strong currents, high turbidity and vessel traffic. Thus, up to now, these environments have 

been almost unexplored. Using MBES and ground-truth data, it has been possible not only to 

explore and map a tidal channel benthic substrate, but also to map ecologically noteworthy 

biogenic features such as sponges. In our study, we compared different approaches of 

unsupervised and supervised classification to assess the advantages and limits of each method 

and their efficacy in correctly identifying very fine scale features and broader classes. We 

discussed the relative merits of each method and particularly, discussed the issues relating to 
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high accuracy MBES data, ground truth positioning error and their effect on statistically 

derived accuracies.  

The mapping of tidal environment substrata is of high relevance, also from a legal 

perspective, as it may form the basis of policy-making processes and the implementation of 

educated decisions, particularly for the designation of Marine Protected Areas (MPAs). 

Following on observations by Franco et al. (2006), our results show that tidal channels 

possess a range of habitats extremely valuable for the lagoon biodiversity (i.e. nursery 

grounds, bio-physical coupling, etc.). A deeper understanding of virtually unexplored habitats 

provides crucial information on the occurrence and distribution of ecologically important 

biogenic features. This assessment opens a totally new perspective in the knowledge-based 

management of natural resources in very shallow coastal areas. 
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Figure captions 
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Figure 1 - Geographical setting: a) The Lagoon of Venice; (ESRI LPK aerial satellite 

imagery at 30 cm resolution, with inset general setting); b)  Shaded bathymetry of the 

Scanello channel (DTM resolution 0.05 m, 5 times vertical exaggeration), set against a 

synoptic satellite image of its immediate surroundings. The satellite image is dated 25
th

 

November 2013.); c) Vector ruggedness measure (VRM) calculated over a 5×5 neighborhood 

(Benthic Terrain Modeler, Wright et al. 2005).  

 

 

 

Figure 2 - Left: Backscatter map of the study area, with the locations of drop frames, three 

diving sites, grab samples and photo-transects. Black, Grey and Blue triangles show the 

locations of grab samples.  Center: close-up view of the backscatter at diving site 3, with the 

location of the images extracted from the video transects.  Right: examples of video transect 

image. The colour of the circle in the photographs represents the corresponding class. 
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Figure 3 – Textural separation between the 6 distinct acoustic signatures identified in Table 

1, for the 0.05-m resolution mosaic (left) and the 0.20-m resolution mosaic (right). See text 

for details. 
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Figure 4 – Top row: Backscatter data and classification results with the different methods 

using the 0.2-m grid. Bottom row: 20 m × 20 m spatial unit backscatter and segmentations at 

0.05-m resolution. Refer to text and Table 1 for explanation of abbreviations and classes. 
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Figure 5. Overall accuracy and kappa coefficient for each segmentation method ant its 

dependence on the number of classes: the red colour represents the 5 classes (sponges, fine 

detritus, coarse detritus, SAV and bare mud), green the 4 classes (sponges+SAV, fine 

detritus, coarse detritus and bare mud), blue the 3 classes (sponges+ SAV, fine + coarse 
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detritus, bare mud) segmentations. Solid and dashed lines represent the 0.2 m and 0.05 m grid 

resolution, respectively. Values are reported in Table A1, A2 and A3 of the appendix. 

 

Table captions 

Table 1 - Distinctive backscatter signatures present within the study area and correspondent 

classes and ground-truth images. 
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Table 2 – Summary of the type of samples, their number and how the used in this study  

sample 

type/use grabs video-transects photo-transects drop-frames total 

training 4 14 0 6 24 

accuracy 6 77 10 7 100 

total 10 91 10 13 124 
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Appendix 1 - Accuracy assessment  

Table A1. User, Producer and Overall accuracies for the different classification methods into 

five classes for the 0.05 m and 0.2m grid resolution 

Method  Class/Accuracy 
005 m Grids 02 m Grids 

Producer User Overall kappa Producer User Overall kappa 

Jenks 

Sponges 0.9 0.82 

0.71 0.63 

0.93 0.6 

0.6 0.49 

Fine Det. 0.46 0.84 0.24 0.5 

Coarse Det. 0.9 0.57 0.95 0.57 

SAV 0.87 0.76 0.58 0.64 

Bare Mud 0.38 0.67 0.54 0.78 

MLC 

Sponges 0.75 0.55 

0.65 0.55 

0.8 0.37 

0.54 0.42 

Fine Det. 0.4 0.75 0.3 0.5 

Coarse Det. 0.87 0.82 0.77 0.72 

SAV 0.69 0.52 0.67 0.48 

Bare Mud 0.42 0.56 0.23 0.56 

OBIA 

Sponges 0 0 

0.52 0.38 

1 0.28 

0.51 0.38 

Fine Det. 0.24 0.5 0.2 0.59 

Coarse Det. 0.92 0.66 0.9 0.57 

SAV 0.55 0.92 0.55 0.72 

Bare Mud 0.23 0.23 0.34 0.23 

TexAn 

Sponges 0 0 

0.45 0.32 

0.13 0.05 

0.18 0.04 

Fine Det. 0.26 0.84 0.15 1 

Coarse Det. 1 0.22 0.5 0.04 

SAV 0.49 0.8 0.45 0.16 

Bare Mud 0.62 0.89 0 0 
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Table A2. User, Producer and Overall accuracies for the different classification methods into 

four classes (obtained unifying sponges and SAV) for the 0.05 m and 0.2m grid resolution 

Method  Class/Accuracy 
005 m Grids 02 m Grids 

Producer User Overall kappa Producer User Overall kappa 

Jenks 

Sponges+SAV 0.88 0.79 

0.71 0.58 

0.81 0.72 

0.65 0.49 
Fine Det. 0.45 0.83 0.23 0.5 

Coarse Det. 0.9 0.56 0.95 0.56 

Bare Mud 0.38 0.67 0.54 0.78 

MLC 

Sponges+SAV 0.94 0.7 

0.73 0.61 

0.86 0.51 

0.58 0.42 
Fine Det. 0.39 0.75 0.3 0.5 

Coarse Det. 0.87 0.81 0.77 0.72 

Bare Mud 0.42 0.56 0.23 0.56 

OBIA 

Sponges+SAV 0.74 0.68 

0.61 0.43 

0.72 0.6 

0.55 0.36 
Fine Det. 0.24 0.5 0.2 0.58 

Coarse Det. 0.91 0.66 0.9 0.56 

Bare Mud 0.22 0.22 0.33 0.22 

TexAn 

Sponges+SAV 0.8 0.7 

0.58 0.42 

0.47 0.28 

0.26 0.07 
Fine Det. 0.26 0.83 0.19 1 

Coarse Det. 1 0.22 0.5 0.03 

Bare Mud 0.62 0.89 0 0 

 

 

Table A3. User, Producer and Overall accuracies for the different classification methods into 

three classes (sponges + SAV, fine + coarse detritus, bare mud) for the 0.05 m and 0.2m grid 

resolution 

Method  Class/Accuracy 
005 m Grids 02 m Grids 

Producer User Overall kappa Producer User Overall kappa 

Jenks 

Sponges+SAV 0.88 0.79 

0.83 0.72 

0.81 0.72 

0.77 0.61 
Fine + Coarse 

Det. 
0.95 0.91 0.8 0.82 

Bare Mud 0.38 0.67 0.54 0.78 

MLC 

Sponges+SAV 0.94 0.7 

0.81 0.68 

0.86 0.51 

0.68 0.49 
Fine + Coarse 

Det. 
0.81 0.98 0.78 0.89 

Bare Mud 0.42 0.56 0.23 0.56 

OBIA 

Sponges+SAV 0.74 0.68 

0.66 0.41 

0.72 0.6 

0.64 0.37 
Fine + Coarse 

Det. 
0.67 0.73 0.62 0.77 

Bare Mud 0.22 0.22 0.33 0.22 

TexAn Sponges+SAV 0.8 0.7 0.76 0.59 0.47 0.28 0.59 0.17 
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Fine + Coarse 

Det. 
0.76 0.8 0.62 0.91 

Bare Mud 0.62 0.89 0 0 

 

 

Table B1. Raw confusion matrices for the accuracy assessment at five thematic classes 

J05 

1. 

sponges 

2. fine 

det. 

3. coarse 

det. 

4. 

sav 

5. bare 

mud 

n.classified 

pixels 

1. sponges 18 0 0 0 4 22 

2. fine det. 0 10 2 0 0 12 

3. coarse det. 2 10 18 0 2 32 

4. sav 0 2 0 19 4 25 

5. bare mud 0 0 0 3 6 9 

  20 22 20 22 16 100 

J02 

1. 

sponges 

2. fine 

det. 

3. coarse 

det. 

4. 

sav 

5. bare 

mud 

n.classified 

pixels 

1. sponges 13 1 1 5 2 22 

2. fine det. 0 6 0 5 1 12 

3. coarse det. 1 12 18 0 1 32 

4. sav 0 7 0 16 2 25 

5. bare mud 0 0 0 2 7 9 

  14 26 19 28 13 100 

MLC005 

1. 

sponges 

2. fine 

det. 

3. coarse 

det. 

4. 

sav 

5. bare 

mud 

n.classified 

pixels 

1. sponges 12 0 0 6 4 22 

2. fine det. 0 9 3 0 0 12 

3. coarse det. 1 5 26 0 0 32 

4. sav 2 6 1 13 3 25 

5. bare mud 1 3 0 0 5 9 

  16 23 30 19 12 100 

MLC02 

1. 

sponges 

2. fine 

det. 

3. coarse 

det. 

4. 

sav 

5. bare 

mud 

n.classified 

pixels 

1. sponges 8 2 1 4 7 22 

2. fine det. 0 6 4 2 0 12 

3. coarse det. 1 6 23 0 2 32 

4. sav 0 3 2 12 8 25 

5. bare mud 1 3 0 0 5 9 

  10 20 30 18 22 100 
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OBIA005 

1. 

sponges 

2. fine 

det. 

3. coarse 

det. 

4. 

sav 

5. bare 

mud 

n.classified 

pixels 

1. sponges 0 6 2 9 5 22 

2. fine det. 0 6 0 4 2 12 

3. coarse det. 1 5 21 5 0 32 

4. sav 0 2 0 23 0 25 

5. bare mud 0 6 0 1 2 9 

  1 25 23 42 9 100 

OBIA02 

1. 

sponges 

2. fine 

det. 

3. coarse 

det. 

4. 

sav 

5. bare 

mud 

n.classified 

pixels 

1. sponges 6 9 0 4 3 22 

2. fine det. 0 7 2 3 0 12 

3. coarse det. 0 7 18 7 0 32 

4. sav 0 6 0 18 1 25 

5. bare mud 0 6 0 1 2 9 

  6 35 20 33 6 100 

TEXAN005 

1. 

sponges 

2. fine 

det. 

3. coarse 

det. 

4. 

sav 

5. bare 

mud 

n.classified 

pixels 

1. sponges 0 8 0 13 1 22 

2. fine det. 0 10 0 2 0 12 

3. coarse det. 0 18 7 6 1 32 

4. sav 0 2 0 20 3 25 

5. bare mud 0 1 0 0 8 9 

  0 39 7 41 13 100 

TEXAN02 

1. 

sponges 

2. fine 

det. 

3. coarse 

det. 

4. 

sav 

5. bare 

mud 

n.classified 

pixels 

1. sponges 1 20 0 1 0 22 

2. fine det. 0 12 0 0 0 12 

3. coarse det. 2 27 1 2 0 32 

4. sav 2 18 1 4 0 25 

5. bare mud 3 4 0 2 0 9 

  8 81 2 9 0 100 
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Table B2. Raw confusion matrices for the accuracy assessment at four thematic classes 

J05 1. sponges 2. fine det. 3. coarse det. 5. bare mud n.classified pixels 

1. 

sponges+sav 37 2 0 8 47 

2. fine det. 0 10 2 0 12 

3. coarse det. 2 10 18 2 32 

5. bare mud 3 0 0 6 9 

  42 22 20 16 100 

      J02 1. sponges 2. fine det. 3. coarse det. 5. bare mud n.classified pixels 

1. 

sponges+sav 34 8 1 4 47 

2. fine det. 5 6 0 1 12 

3. coarse det. 1 12 18 1 32 

5. bare mud 2 0 0 7 9 

  42 26 19 13 100 

MLC005 1. sponges 2. fine det. 3. coarse det. 5. bare mud n.classified pixels 

1. 

sponges+sav 33 6 1 7 47 

2. fine det. 0 9 3 0 12 

3. coarse det. 1 5 26 0 32 

5. bare mud 1 3 0 5 9 

  35 23 30 12 100 

MLC02 1. sponges 2. fine det. 3. coarse det. 5. bare mud n.classified pixels 

1. 

sponges+sav 24 5 3 15 47 

2. fine det. 2 6 4 0 12 

3. coarse det. 1 6 23 2 32 

5. bare mud 1 3 0 5 9 

  28 20 30 22 100 

OBIA005 1. sponges 2. fine det. 3. coarse det. 5. bare mud n.classified pixels 

1. 

sponges+sav 32 8 2 5 47 

2. fine det. 4 6 0 2 12 

3. coarse det. 6 5 21 0 32 

5. bare mud 1 6 0 2 9 

  43 25 23 9 100 
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OBIA02 1. sponges 2. fine det. 3. coarse det. 5. bare mud n.classified pixels 

1. 

sponges+sav 28 15 0 4 47 

2. fine det. 3 7 2 0 12 

3. coarse det. 7 7 18 0 32 

5. bare mud 1 6 0 2 9 

  39 35 20 6 100 

TEXAN005 1. sponges 2. fine det. 3. coarse det. 5. bare mud n.classified pixels 

1. 

sponges+sav 33 10 0 4 47 

2. fine det. 2 10 0 0 12 

3. coarse det. 6 18 7 1 32 

5. bare mud 0 1 0 8 9 

  41 39 7 13 100 

TEXAN02 1. sponges 2. fine det. 3. coarse det. 5. bare mud n.classified pixels 

1. 

sponges+sav 8 20 1 0 29 

2. fine det. 0 12 0 0 12 

3. coarse det. 4 27 1 0 32 

5. bare mud 5 4 0 0 9 

  17 63 2 0 82 
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Table B3. Raw confusion matrices for the accuracy assessment at three thematic classes 

J05 1. sponges 2. fine det. 5. bare mud n.classified pixels 

1 sponges+sav 37 2 8 47 

2. fine det. + coarse det. 2 40 2 44 

5. bare mud 3 0 6 9 

  42 42 16 100 

     J02 1. sponges 2. fine det. 5. bare mud n.classified pixels 

1. sponges+sav 34 9 4 47 

2. fine det. + coarse det. 6 36 2 44 

5. bare mud 2 0 7 9 

  42 45 13 100 

MLC005 1. sponges 2. fine det. 5. bare mud n.classified pixels 

1. sponges+sav 33 7 7 47 

2 fine det. + coarse det. 1 43 0 44 

5. bare mud 1 3 5 9 

  35 53 12 100 

MLC02 1. sponges 2. fine det. 5. bare mud n.classified pixels 

1. sponges+sav 24 8 15 47 

2. fine det. + coarse det. 3 39 2 44 

5. bare mud 1 3 5 9 

  28 50 22 100 

OBIA005 1. sponges 2. fine det. 5. bare mud n.classified pixels 

1. sponges+sav 32 10 5 47 

2. fine det. + coarse det. 10 32 2 44 

5. bare mud 1 6 2 9 

  43 48 9 100 

OBIA02 1. sponges 2. fine det. 5. bare mud n.classified pixels 

1. sponges+sav 28 15 4 47 

2. fine det. + coarse det. 10 34 0 44 

5. bare mud 1 6 2 9 

  39 55 6 100 

TEXAN005 1. sponges 2. fine det. 5. bare mud n.classified pixels 
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1. sponges+sav 33 10 4 47 

2. fine det. + coarse det. 8 35 1 44 

5. bare mud  0 1 8 9 

  41 46 13 100 

TEXAN02 1. sponges 2. fine det. 5. bare mud n.classified pixels 

1. sponges+sav 8 21 0 29 

2. fine det. + coarse det. 4 40 0 44 

5. bare mud 5 4 0 9 

  17 65 0 82 
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Highlights 

 

>We show that MBES can be used to explore extremely shallow (<10 m) and poorly 

known environments as tidal channels.  

> We compare a set of image segmentation approaches for very-high resolution 

MBES data in very-shallow waters assessing pro and contra of each method.  

>The unprecedented detail obtained through MBES and ground truth data allowed the 

discovery of ecologically noteworthy biogenic features such as sponges 


