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Abstract

Background: Soil and water pollution due to nitrate are becoming increasingly serious worldwide. The

government also put forward relevant governance policies, and a large number of scholars studied chemical

physics and other methods to remove nitrate in water, but the cost was substantial. Studies have found that

planting systems including grasses have the potential to remove nitrates. However, there are few studies on nitrate

linked pathway and nitrate assimilation during its early growth.

Results: We have evaluated three different feed-plant species with three levels of overnight seed nitrate treatments

along with a control. The activity of different enzymes from 2 weeks old shoots was measured to get a

comprehension of proline-associated pentose phosphate pathway coupled with nitrate assimilation and phenolic-

linked antioxidant response system in these species under nitrate treatments. All three feed-plant species showed

high nitrate tolerance during germination and early growth stages. It is perceived that the accumulation of total

soluble phenolics and total antioxidant activity was high in all three feed-plant species under high nitrate

treatments. In terms of high G6PDH activity along with low SDH activity in alfalfa, there may be a shift of carbon

flux in this species under high nitrate treatments. Higher activity of these enzymes along with higher SOD and GPX

activity was observed in alfalfa. The efficient mechanism of nitrate stress tolerance of alfalfa also correlated with

higher photochemical efficiency. Perennial ryegrass also showed excellent potential under high nitrate treatments

by adopting an efficient mechanism to counter nitrate-induced oxidative stress.

Conclusions: Under the condition of nitrate treatment, the germination rates of the three feed-plant species are

still ideal, and they have good enzyme activity and have the potential to remove nitrate.
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Background

In the Twenty-First Century,as the global population is

rapidly increasing, supply of safe drinking water becomes

a major challenge. Two-fifths of the population suffers

poor sanitary conditions and one-fifths can not have ac-

cess to safe drinking water in the world [1]. The major

sources of ground water contamination are from domes-

tic, industrial and agricultural utilization of renewable

fresh water with numerous synthetic, inorganic and geo-

genic compounds [2]. Nitrate contamination in ground-

water originates in nitrogen manure, sewage irrigation,

organic manure and livestock farming. A general investi-

gation of different pollutants finds that nitrate (NO3¯) is

regarded as the most widespread groundwater contam-

inant in the world. In past decades, a large rise in nitrate

concentration of groundwater has happened to many de-

veloping and developed countries [3]. To improve crop

output per unit area and the general farm products for

the requirement of progressively increasing population, a

mass of fertilizer is spread on the soil. Nitrogen (N) is

regarded as an indispensable investment which deter-

mines crop productivity and output in soil [4]. Every hu-

man eats almost 4.5 kg of N every year by ingestion of

protein. According to statistics, the present world popu-

lation expands about 28 mt of protein-N per annum [5].

The Environmental Protection Agency (EPA) of the

United States has formulated that a maximum contam-

inant level (MCL) of nitrate in drinking water can be

0.71 mM (10 ppm = 10mg of NO3¯ -N liter− 1). High ni-

trate concentration in groundwater can possibly lead to

the formation of N- nitroso compounds which are

known to be a carcinogen in the digestion system and

may cause potential health risk like methemoglobinemia

(blue baby syndrome), especially in infants [6]. In

addition, nitrate accumulation in forage crops can also

cause nitrate poisoning in ruminants [7]. When nitrate

pollutes groundwater, the diversity of aquatic plants in-

volved will be reduced [8]. Zhang et al. found that about

52% of groundwater samples in 69 survey sites in the

North China Plain exceeded the allowable limit of ni-

trate in drinking water [9]. Currell et al. recorded a

groundwater sample with a depth of 180 m in Yuncheng

Basin, in which the concentration of nitrate nitrogen

exceeded 45 mg / L [10]. Among the groundwater sam-

ples collected from more than 2000 shallow groundwater

monitoring wells in the northern basin of China, 80% of

the main pollutants contain nitrate. In addition, in many

shallow and deep groundwater systems, as well as in

karst landforms, it is found that the median concentra-

tion of nitrate-nitrogen exceeds the maximum persistent

concentration. The most seriously affected area is the

coastal area adjacent to the Bohai Sea [11]. We are

aware of the fact that the current situation on nitrate re-

moval concentrates on chemical, physical and biological

strategies, but many of them are complex and expensive.

On the contrary, plant-based system with high nitrate

tolerant plants could be an effective strategy both in the

greenhouse and in field or wasteland situations, which

has a very big gap with other fields but a great applica-

tion prospect nowadays. The wetlands planted with

different robust plant species behaved high nitrogen pol-

lution removal ability compared to unplanted wetlands

[12]. Grass catch crops also diminish N mineralization

and the most important is an effective reduction in ni-

trate leaching [13]. The key to formulate an effective

strategy for nitrate removal is the selection of suitable

feed-plant species and cultivars through screening.

It is important to understand the biochemical mechan-

ism for nitrate uptake and assimilation including differ-

ent pathway regulations in these plants. Nitrate uptake

in plants is a protein-mediated process and assimilation

of nitrate requires three enzyme-dependent conversions.

The process was shown in Fig. 1. Driving pentose phos-

phate pathway can provide energy (NADPH) for nitrate

assimilation and provide growth regulators and phenols

needed by plants. Enzymes are essential catalysts for

these processes, such as SDH which promotes the pro-

duction of NADPH in the TCA process. Firstly nitrate

(NO3¯) is reduced to nitrite (NO2¯) by the nitrate reduc-

tase (NR), next, the nitrite (NO2¯) is converted to

ammonium (NH4
+) by nitrite reductase (NIR), and lastly,

ammonium is reduced into amino acids with glutamine

synthatase/glutamate synthase [14]. The efficient

utilization of absorbed nitrate in plants largely relies on

the efficiency of reducing nitrate to ammonium and

ammonium into amino acids [15]. In the synthesis of

nitrate reductase, light is the most important factor in

regulating the supply of reductant in this process. Many

studies reported that NADPH produced by the oxidative

pentose phosphate pathway could act as an alternative to

reducing equivalent for nitrate reduction in dark [16–18].

Electrons from NADPH must be found to reduce Fd,

which act as electron donor to nitrate reductase. Onset of

nitrate (NO3¯) assimilation is in accordance with the Fd-

thioredoxin-dependent activation of glucose-6-phosphate

dehydrogenase (G6PDH), the regulatory enzyme of the

oxidative pentose phosphate pathway [16, 19]. Oxidation

of carbohydrate through the oxidative pentose phosphate

pathway also gives reducing power for nitrite (NO2¯) re-

duction [20, 21].

Pentose phosphate pathway can generate NADPH,

which can be utilized for nitrate reduction in the cytosol.

The conversion to ribulose - 5 - phosphate along with

generation of NADPH by G6PDH is the first committed

step of pentose phosphate pathway [22]. Pentose phos-

phate pathway acted on the shikimate and phenylpropa-

noid pathways, accumulated phenolic phytochemicals in

plants by direct generation or regulatory of the pathway
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[22–24]. Proline synthesis during microbial interaction

and proline analogue treatment drives the utilization for

NADPH and provide NADP+, which is cofactor for

G6PDH [22, 25]. So, it may improve cellular NADP+/

NADPH ratio, which could stimulate G6PDH. As a re-

sult, deregulation of the pentose phosphate pathway may

stimulate anabolism of erythrose-4-phosphate for bio-

synthesis of shikimate and phenylpropanoid metabolites

[22, 26]. Meanwhile, proline acts as a reducing equiva-

lent, in place of NADH to synthesize ATP through oxi-

dation phosphorylation in the mitochondria [22, 27].

The relation of the enzymes with Nitrogen assimilation

and the pentose phosphate pathway was shown in Fig. 1.

According to the correlation between the biosynthesis

of exogenous lypsy phenolic.

substances and the reaction of plant antioxidant en-

zymes, a model of action of phytophenolmetabolites is

proposed [22, 24, 28]. Through adopting more effective

strategies, high nitrate concentration in water and soil

also could produce similar reaction in plants and plants

could tolerate stress. The early growth period is vital for

any plant under nitrate stress, especially from germin-

ation to development of first two leaves. During early

growth stages, nitrate assimilation of plants combined

with proline-associated pentose phosphate pathway

could provide a better defensive strategy against high ni-

trate concentrations. We predicted that the research on

three feed-plant species including alfalfa (Medicago

sativa L.), tall fescue (Festuca arundinacea L.) and

perennial ryegrass (Lolium perenne L.) could clarify the

relation of nitrate assimilation and proline-associated

pentose phosphate pathway and mechanism of these

feed-plant species to defend high nitrate concentrations.

The efficient utilization of absorbed nitrate in plants

largely relies on the efficiency of nitrate reduction to am-

monium and ammonium assimilation into amino acids,

which are largely relevant to nitrate reductase activity.

And photochemical efficiency has been chosen as light is

important in the synthesis of nitrate reductase. Oxida-

tion of carbohydrate through the oxidative pentose

phosphate pathway gives reducing power and G6DPH is

the regulatory enzyme in this procedure, so the G6DPH

is a key factor in nitrite (NO2¯) reduction. In view that

proline can scavenge reactive oxygen species as a reduc-

tant and proline-linked pentose phosphate pathway

stimulates the generation of total soluble phenolics

which plays an important role in countering oxidative

stress, the proline content and total soluble phenolics

content was measured in the study. SDH relate to TCA

cycle which can produce NADH as reductant. The

Fig. 1 The relation of the enzymes with Nitrogen assimilation and pentose phosphate pathway
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activity of key antioxidant enzymes such as SOD, CAT,

GPX, can be stimulated by the proline under nitrate

treatments. In the overall strategy for checking the effi-

ciency that plants removing the nitrate in soil and

ground water nitrate removal, we have measured total

soluble phenolics content, nitrate reductase activity,

G6PDH, proline content, SDH, activity of critical anti-

oxidant enzymes and photochemical efficiency, then

explored the relation of nitrate assimilation and proline-

associated pentose phosphate pathway and mechanism

of these feed-plant species defending high nitrate

concentrations.

Results

Effect of nitrate concentration on germination percent

The germination rate of three kinds of feed-plant spe-

cies treated with different concentrations of nitrates

was shown in Fig. 2. At each concentration, the seeds

of perennial ryegrass showed the highest germination

percentage in lab condition while seeds of alfalfa had

the lowest germination percentage. In the absence of

nitrate treatment, the germination rate of the three

feed plant seeds were all above 95%. The higher the

concentration of nitrate is, the more obvious the dif-

ference in germination rates among the three plants.

When the concentration of nitrate reached 25 mM,

the difference of germination rate of the three plants

was most obvious. At this time, the germination rate

of alfalfa was the lowest, only 65%. But as a whole,

with the increase of nitrate concentration, the ger-

mination rate of three feed plant seeds decreased sig-

nificantly (p < 0.05).

Total soluble phenolics and total antioxidant activity of

three feed-plant species after seed nitrate treatments

Stimulation of phenolic biosynthesis was observed in all

three feed-plant species after nitrate treatments when

compared with control (Fig. 3a). There was a significant

difference among three plant species (p < 0.05), and

higher baseline total soluble phenolic content was seen

in alfalfa, followed by tall fescue and perennial ryegrass.

Under incremental concentrations of nitrate, total sol-

uble phenolic content has largely increased (p < 0.05).

The total soluble phenol content of Alfalfa increased

from 0.80 mg.g-1.F.W. to 1.00 mg.g-1.F.W., an increase of

25%, while the content of perennial ryegrass’s total sol-

uble phenol increased from 0.40 mg.g-1.F.W. to 0.50

mg.g-1.F.W. also increased by 25%. The antioxidant ac-

tivity of plant shoots was carried out with the aid of free

radical scavenging-linked ABTS assay. Similar to total

soluble phenolic content, the free radical linked to anti-

oxidant activities vary significantly between three plant

species (p < 0.05), and highest was seen in alfalfa,

followed by tall fescue and perennial ryegrass. From 5

mM to 10mM KNO3 concentration, ABTS has little

change. But from 10mM to 25mM KNO3, ABTS was

significantly enhanced (p < 0.05) (Fig. 3b). Among them,

the ABTS of alfalfa and tall fescue increased faster than

that of perennial ryegrass. The ABTS of Alfalfa increased

by 35%, tall fescue by 50%, and perennial ryegrass by

little.

Fig. 2 The germination percentage of three species at different

nitrate concentrations. Means with different letters are significantly

different (p < 0.05) showing treatment differences among

three species

Fig. 3 a Total soluble phenolic content (mg.g− 1 FW) and b Total

antioxidant activity (%) of three feed-plant species (alfalfa, tall fescue

and perennial ryegrass) after 2 weeks of germination with three

seed nitrate treatments (5 mM KNO3, 10 mM KNO3 and 25mM

KNO3). Means with different letters are significantly different (p< 0.05)

showing treatment differences among three species
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Nitrate reductase, glucose-6-phosphate dehydrogenase

and succinate dehydrogenase activity of three feed-plant

species after seed nitrate treatment

A nitrate reductase (NR) activity was observed in al-

falfa, which was significantly higher than that of the

other two plants, and increased gradually and signifi-

cantly with the increase of nitrate concentration (p <

0.05), when the nitrate concentration was 5-25 mM,

the NR activity of alfalfa was twice that of other two

plants (Fig. 4a). The NR activity of perennial ryegrass

showed a similar trend under nitrate treatment, but

the highest activity was half of that of Alfalfa under

25 mM nitrate concentration. However, no significant

change was observed in tall fescue, which was always

around 0.6μmolNO2.g
-1.F.W.h-1. The results showed

that among these three plants, the concentration of

nitrate had a greater effect on the activity of nitrate

reductase of alfalfa and a little effect on the activity

of nitrate reductase of tall fescue (p < 0.05). Glucose-

6-phosphate dehydrogenase activity was also increased

in all three feed-plant species under 25 mM KNO3

treatments (Fig. 4b). It was worth noting that the ten-

dency of Glucose-6-phosphate dehydrogenase activity

in tall fescue was much more different, which reached

the peak at 10 mM KNO3 treatment, compared with

the other two species. In contrast with perennial rye-

grass, Alfalfa and tall fescue had markedly higher

G6PDH content (p < 0.05). Another important enzyme

succinate dehydrogenase in TCA (Kreb’s) cycle also

showed a significant difference in these feed-plant

species under varying nitrate treatments (Fig. 4c).

Succinate dehydrogenase activity in perennial ryegrass

was rather lower than the rest of two and in tall fes-

cue is the highest, followed by Alfalfa (p < 0.05). With

the increment of nitrate concentration, tall fescue and

Alfalfa had a similar tendency which touched bottom

at 10 mM KNO3 treatment, while perennial ryegrass

was in a sharp contrast. Results of these three im-

portant enzymes indicate difference in pathway regu-

lations among three different feed-plant species under

nitrate treatments.

Total proline content and proline dehydrogenase activity

of three feed-plant species after seed nitrate treatments

The total proline content of three plants under different

nitrate treatment levels is shown in Fig. 5a. But there ex-

ists a significant difference among three plant species,

and higher total proline content was seen in alfalfa,

followed by tall fescue and perennial ryegrass, respecti-

vely(p < 0.05). Like total proline content and dehydro-

genase activity was also significantly increased in

perennial ryegrass under high nitrate treatments com-

pared with control (Fig. 5b). The highest PDH activity

was observed in perennial ryegrass under 10 mM KNO3

treatment, which was close to 17 unit.mg-1 protein. Dif-

ferent from total proline content, significantly higher

PDH was seen in perennial ryegrass, followed by alfalfa

and tall fescue, respectively(p < 0.05). And PDH activity

in tall fescue changed slightly between 3unit.mg-1

protein-6 unit.mg-1 protein under different levels of

KNO3 treatments.

Superoxide dismutase, catalase and guaiacol peroxidase

activity of three feed-plant species after seed nitrate

treatments

Different antioxidant enzymes were measured to deter-

mine the effect of nitrate treatments on antioxidant en-

zyme response system in these feed-plant species at

early growth stages. Superoxide dismutase activity had a

Fig. 4 a Nitrate reductase activity (μmol NO2. g
− 1 FW. h− 1), b

Glucose-6-phosphate dehydrogenase activity (nmol.mg− 1 protein)

and c Succinate dehydrogenase activity (mmol.mg− 1 protein) of

three feed-plant species (alfalfa, tall fescue and perennial ryegrass)

after 2 weeks of germination with three seed nitrate treatments (5

mM KNO3, 10 mM KNO3 and 25 mM KNO3). Means with different

letters are significantly different (p< 0.05) showing treatment

differences among three species
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significant increase in perennial ryegrass and in alfalfa

under higher nitrate treatments, while it did not change

significantly in tall fescue (Fig. 6a). The SOD activity of

perennial ryegrass was about 5 times that of tall fescue

at 25 mM nitrate concentration. Higher superoxide dis-

mutase activity in alfalfa and perennial ryegrass may be a

counter measure to reactive oxygen species (ROS) in

these two feed-plant species under high nitrate treat-

ments. It can be seen from Fig. 6b that catalase activity

in perennial ryegrass and tall fescue was rather higher

than it in Alfalfa (p < 0.05). When the nitrate concentra-

tion was 5 mM, the catalase activity of perennial ryegrass

increased by half, while the CAT activity of the other

two plants did not increase as fast. After nitrate intake,

the change of concentration had no significant effect on

CAT activity of three plants (p > 0.05). The guaiacol per-

oxidase (GPX) activity in alfalfa significantly increased

under nitrate treatment (p< 0.05) (Fig. 6c). When nitrate

concentration changed from 0mM to 10mM, GPX

activity of perennial ryegrass decreased significantly (p<

0.05), while the GPX activity of tall fescue increased not

significantly (p > 0.05). However, when the nitrate con-

centration was 10 mM, the GPX activity of the two

plants was almost the same, which was 7.5 nmol.mg-1

protein. However, the activity of GPX in three plants

was significantly increased when the nitrate concentra-

tion changed from 10mM to 25 mM (p < 0.05).

Photochemical efficiency of three feed-plant species after

seed nitrate treatments

Chlorophyll fluorescence (Fv/Fm) [29] can be used to

indicate the physiological state of plant response to ni-

trogen stress. The photochemical efficiency of three

feed-plant species was determined by using Fv/Fm tech-

nique and the increasing percentage of Fv / FM ratio

was taken as the index. The increasing percentage of

photochemical efficiency of three kinds of feed plants

with different concentrations of nitrate treatment was

significantly increased (p < 0.05) (Fig. 7). After nitrate

treatment, the photochemical efficiency of perennial rye-

grass increased the fastest and kept the highest growth

efficiency. Higher photosynthetic activities in all three

feed-plant species with seed nitrate treatment suggested

that generation of NADPH and photosynthates in the

leaves may contribute to reduction of the nitrate.

Fig. 6 a Superoxide dismutase activity (Unit.mg− 1 protein), b

Catalase activity (Unit.mg− 1 protein) and c Guaiacol peroxidase

activity (nmol.mg− 1 protein) of three feed-plant species (alfalfa, tall

fescue and perennial ryegrass) after 2 weeks of germination with

three seed nitrate treatments (5 mM KNO3, 10 mM KNO3 and 25 mM

KNO3). Means with different letters are significantly different (p <

0.05) showing treatment differences among three species

Fig. 5 a Total proline content (mg. g− 1 FW) and b Proline

dehydrogenase activity (Unit.mg− 1 protein) of three feed-plant

species (alfalfa, tall fescue and perennial ryegrass) after 2 weeks of

germination with three seed nitrate treatments (5 mM KNO3, 10 mM

KNO3 and 25 mM KNO3). Means with different letters are significantly

different (p < 0.05) showing treatment differences among

three species
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Discussion

In the range of 0 mM to 25 mM nitrates, although the

perennial ryegrass has a higher tolerance and the ger-

mination rate has decreased the least, on the whole, the

germination rate of these three plants has decreased by

about 25–30%, which showed a certain nitrate tolerance.

This is consistent with the results obtained by

Kołodziejek et al., who observed that a high concentra-

tion of potassium nitrate had negative effects on four

kinds of dianthus seeds [30]. Figura et al. also observed

that nitrate inhibited the germination of orchid seeds

[31]. This may be because plant seeds are sensitive to ni-

trate concentration [32]. An increase in nitrate concen-

tration may lead to toxic effects that inhibit seed

germination, cell death, and loss of vigor, thereby redu-

cing seed germination rate [33]. The germination rate

can measure the growth of seeds and has a predictive ef-

fect. However, without measuring their growth, it is im-

possible to accurately know that these three plants are

affected by nitrate during the later growth process, and

no evidence of practical application can be obtained. In

the future, we will also pay attention to using germin-

ation rate and growth together as indicators, making it

convincing.

The phenomena of high total antioxidant activity in

addition to higher total soluble phenolic content in al-

falfa, tall fescue under high nitrate treatments, indicated

that a possible accumulation of phenol with antioxidant

response system in these species could counter cellular

oxidative stress. Phenolic compounds are secondary me-

tabolites extensively spread in plants [34], having the

ability to reduce, stabilize, and dissociate unpaired

electrons, reacting with other antioxidants, and transi-

tion metals chelate potentials, thus having antioxidant

activity, which playing an important role in the defense

path of plant antioxidant defense [24, 25, 35]. High total

soluble phenolics accumulation in all three feed-plant

species in high nitrate treatment suggested a possible

mechanism of phenolic antioxidants against oxidative

stress is either by means of a direct free radical scaven-

ger, or through indirect stimulation of antioxidant en-

zymes response system [25]. Under abiotic stresses, both

total soluble total phenolic content and total antioxidant

activity in plants are higher [36, 37].

Nitrate reductase activity was also coupled with

G6PDH activity both in alfalfa and in perennial ryegrass

under high nitrate treatments. Results indicate that high

G6PDH activity drives pentose phosphate pathway in

these two species and generation of NADPH through

the pentose phosphate pathway reduce nitrate. Satur-

ation of nitrate reductase activity in tall fescue means a

limitation of nitrate assimilation in this species in the

early growth stage. Higher G6PDH activity with nitrate

and nitrite was also observed in Penicillium chrysogenum

[38] and in Chlamydomonas reihardtii [17] earlier. Dif-

ferent isoform of nitrate reductase may support path-

ways linked to pentose phosphate pathway where

NADPH is generated and NADH from the TCA cycle

can be replaced. In the research of Yinggao Liu et al.

[39] and Hipkin et al. [40], a reasonable explanation can

be seen, is that G6PDH under salt stress participates in

the production of NR dependent NO and is therefore re-

lated to NR activity. Further conversion into NR and

G6PDH has a strong relationship, which they are in-

creasing or decreasing synchronously.

Perennial ryegrass showed high G6PDH activity and

low SDH activity under high nitrate treatment. It may be

due to the transfer of carbon flux from glycolysis to pen-

tose phosphate pathway so that the NADPH decreased,

and phenol content positively related to the pentose

phosphate pathway related to proline correspondingly

decreased [25]. But tall fescue showed different pathway

regulations under high nitrate treatments with slightly

increased G6PDH and SDH activity.

High proline content with high PDH activity in peren-

nial ryegrass suggests a probable efficient proline oxida-

tion in this species to sustain oxidative phosphorylation

under high nitrate treatments. Higher nitrate treatment

may promote glycolysis and pentose phosphate pathway

to synthesize NADPH, thus improving germination rate,

and may also induce proline synthesis [36], thus protect-

ing nitrate reductase and proline oxidation in some spe-

cies (such as perennial ryegrass), thus saving energy and

playing a more effective role under pressure. This was

also consistent with the fact that Sarkar et al. observed,

they found that higher pentose phosphate pathway

Fig. 7 Percent increase in photochemical efficiency (%) of three

feed-plant species (alfalfa, tall fescue and perennial ryegrass) after 2

weeks of germination with three seed nitrate treatments (5 mM

KNO3, 10 mM KNO3 and 25 mM KNO3). Means with different letters

are significantly different (p < 0.05) showing treatment differences

among three species

Lin et al. BMC Plant Biology          (2020) 20:267 Page 7 of 12



stimulation in perennial ryegrass [25]. Besides, Alfalfa

and tall fescue may adopt different mechanism and path-

way regulations to counter nitrate induced oxidative

stress by generating more NADPH and supporting dif-

ferent anabolic need for cellular function.

Alfalfa countered nitrate-induced oxidative stress

through higher activity of SOD and GPX, high activity of

SOD and catalase was found in perennial ryegrass and

tall fescue, respectively. This may be because the stimu-

lation of SOD and elimination of CAT is changed by the

change of individual phenols [25]. What’s more, high ni-

trate treatment caused that the excessive production of

active oxygen made oxidative stress. Plant antioxidant

enzymes including SOD, CAT, etc. will increase to scav-

enge reactive oxygen species against oxidation and main-

tain cell homeostasis [41, 42].

High photochemical efficiency along with high drive of

the pentose phosphate pathway indicated that carbon flux

may be a shift and utilize in different cellular mechanisms

to meet cellular needs and to maintain redox balance

through induction of different response systems. Hong et

al., Wang et al., and Al Gehani et al. pointed out that nitrate

can increase photosynthetic pigment and reduce the pro-

duction of active oxygen, further induce the improvement

of potential photochemical efficiency of PSII, and increase

the electronic transport activity of PSII; nitrate may also un-

regulated antioxidant genes, stimulate the production of

antioxidant enzymes, so as to improve the efficiency of Fv /

Fm [43–45]。At the same time, nitrate was mediated by os-

motic uptake of water and synthetic proteins, allowing the

photosynthetic system to self-repair and enhance Fv / Fm,

affecting the positive development of plants [46–48]. The

study of Al Gehani [49] and others pointed out that appro-

priate nitrate can reduce the salinity effect of salinized

plants and promote plant growth. Therefore, it can be ex-

plained that the percentage increase in the photochemical

efficiency of the three plants under nitrate treatment. In

addition, it also can be seen in the study of Al Gehani et al.

[49] that the salt tolerance of tomato seedlings can be im-

proved by adding nitrogen levels of NO3NH4.

However, the experiment discusses a simple case,

which is consistent with the situation that nitrate is not

changed by the outside world. If the nitrate is migrated

due to factors such as water erosion, the actual concen-

tration will decrease, and the resulting experimental

phenomenon will be closer to the experimental

phenomenon produced by the lower concentration,

which is complicated and difficult to determine. There-

fore, research on the purification of nitrate by wetlands

and/or aquatic plants may be the next step.

Conclusion

The above results suggested that seeds of all three feed-

plant species were able to tolerate and germinate

properly at 25 mM KNO3 treatments. Among the three

seeds, the germination rate of perennial ryegrass was the

highest, followed by tall fescue, and the lowest was al-

falfa, which was consistent with the initial germination

rate without nitrate treatment. The initial growth and

cellular function also remained normal under this treat-

ment. The mechanism of initial tolerance and biochem-

ical adjustments varied among three feed-plant species

under nitrate treatments. Alfalfa was found more robust

and adopted phenolic-linked induction of antioxidant re-

sponse by driving pentose phosphate pathway coupled

with nitrate reduction. G6DPH which was the first com-

mitted step of the pentose phosphate pathway suggests

the increase of NADPH, therefore supported the reduc-

tion of nitrate to nitrite with the aid of nitrate reductase.

With higher SOD in alfalfa and Perennial ryegrass indi-

cated that the species counter reactive oxygen species

through the induction of high antioxidant enzymes. Per-

ennial ryegrass was also showed partly different efficient

biochemical regulations to counter oxidative stress in-

duced by nitrate during early growth stages. It can be

speculated that critical antioxidase such as SOD, CAT,

GPX, and proline-associated pentose phosphate pathway

were likely to play an important role in tolerating the ni-

trate stress. Tall fescue did not respond the same way

and might adopt a different mechanism to suffer high

nitrate stress. That utilized proline-associated pentose

phosphate pathway resulting in the stimulation of phen-

olic phytochemical in plants and CAT also helped. The

high nitrate tolerance provided people an opportunity to

use and cultivate these species in soil or water that

contaminated by nitrate, which has helped to generate

additional value as food and fodder.

Methods

Determination of seed germination rate

At the stage of seed germination, seeds (Yipin Company,

Jiangsu, China) of alfalfa (Medicago sativa L.) variety-

Algonquin, tall fescue (Festuca arundinacea L.) variety-

Golden Island and perennial ryegrass (Lolium perenne

L.) variety- Sun Island were collected as materials and

sprouted under different nitrate concentrations. Repre-

sentative voucher specimens of the studied material were

deposited in the Wuhan Botanical Garden, Chinese

Academy of Sciences. The collection of botanical mater-

ial was performed under the direction of the biologist

Yan Li. Seeds were treated in three different nitrate con-

centrations (5 mM KNO3, 10 mM KNO3 and 25mM

KNO3) and one control was performed with clean water

and determined the seed germination rate. Shortly

speaking, 25 alfalfa seeds and 50 tall fescue and 50 per-

ennial ryegrass seeds were placed in conical flasks re-

spectively, immersed with 250 mL of different

concentrations of nitrate solutions, and then shook
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overnight by the shaking table. These seeds were then

transferred to a petri dish with three layers of absorbent

paper and one layer of Whatman # 1 filter paper moist-

ened with a corresponding concentration of the nitrate

solution. These dishes were then placed in a room at

20 °C along with continuous white light (340 μmol.m-2.

s-1). Replace the old filter paper with Whatman # 1 filter

paper wetted with nitrate solution of corresponding con-

centration every other day. Taking germ root to break-

through half of the seed bark length as a germination

standard, 1 week later, and the total number of germin-

ation was registered, the germination rate of the seeds

was calculated, and samples of growing tissues were col-

lected for biochemical analysis.

Enzyme extraction

Refer to the experiment method of Lin et al. [24], config-

ured enzyme extraction buffer—added 0.5% polyvinyl-

pyrrolidone (PVP) and 3mm EDTA to 0.1 m potassium

phosphate buffer with a pH value of 7.5, and then used

the cold pestle and motor to grind the plants leaf tissue

(200 mg). After that, centrifuged at 12000×g at 2–5 °C

for 15 min and then stored on ice [24, 50]. The super-

natant was collected for analysis.

Total protein assay

The means of Bradford assay was taken to measure pro-

tein content [21, 24]. Firstly, diluted the dye reagent

concentrate (BioRad protein assay kit II, Bio-Rad La-

boratory, Hercules, CA) with 4 times distilled water.

Then, took 5 mL of diluted dye reagent and 100 μL of

plant tissue extract to vortex and incubate for 5 min.

Finally, used a UV-VIS Genesys spectrophotometer

(Milton Roy, Inc., Rochester, NY) to measure the ab-

sorbance of the 5 mL reagent blank and 100 μL buffer

solutions at 595 nm.

Total soluble phenolics assay

The Folin-Ciocalteu method [24, 51] was used to analyze

the total phenolic content in plant leaves. The absorb-

ance was acquired at 725 nm. The absorbance readings

were translated to total phenolics and were expressive of

milligrams equivalents of gallic acid per grams fresh

weight (FW) of the sample. Utilizing various concentra-

tions of gallic acid in 95% ethanol established the stand-

ard curves.

ABTS [2, 2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic

acid)] cation radical and antioxidant activity assay

The total antioxidant activity of creeping bent plant leaf

extract was determined by the ABTS+ radical cation-

decolorization assay involving performed ABTS+ radical

cation [52]. The ABTS+ radical cation was prepared by

the reaction of ABTS (Sigma Chemical Co.St. Louis,

MO) aqueous solution and potassium persulfate, and

then kept in the dark at room temperature for 12-16 h,

and then analyzed.

Before analysis, diluted the ABTS+ stock solution with

95% ethanol (ratio 1:88), and.

obtained the absorbance at 734 nm of 0.70 ± 0.02, then

balance to 30 °C. Add mL of ABTS volume to the glass

tube containing 50 uL of each tissue extract, and mixed

by vortex mixer for 30 s. Over 2.5 min incubation, the

absorbance of mixtures was acquired at 734 nm. 5 mM

stock solution of Trolox in ethanol was used to analyze,

and the activity range of the assay within 0–20 μM final

concentration. The percent inhibition was calculated by:

%inhibition ¼
A734

control
−A734

extract

A734
control

� 100

Nitrate Reductase activity assay

Snell and Snell [53] described an assay to determine ni-

trate reductase (NR) activity of plants leaf tissue (1949)

which we had a modification and applied it into re-

search. Nitrite concentration was measured by spectro-

photometrically at the wavelength of 530 nm. Various

concentrations of sodium nitrite (0, 0.02, 0.10,

0.50 μmol/mL) solution with distilled water set up the

standard curves. Nitrate reductase activity was measured

and calculated as μmol nitrite produced g FW− 1 h− 1.

Glucose-6-phosphate dehydrogenase (G6PDH) assay

In this assay a modified version of the assay described by

Deutsch (1983) was followed [54]. The ratio of change in

absorbance per minute could quantify the enzyme in the

mixture by the extinction co-efficient of NADPH (6.22

mM− 1 cm− 1).

Succinate dehydrogenase (SDH) assay

The activity of succinate dehydrogenase was assayed by

a modified method described by Bregman [55]. The ratio

of difference in absorbance per minute could quantify

the enzyme in the mixture using the extinction co-

efficient of DCPIP (19.1 mM− 1 cm− 1).

HPLC analysis of proline

An agilent 1100 liquid chromatograph equipped with a

diode array detector (DAD 1100) was used for high per-

formance liquid chromatography (HPLC) analysis. The

reverse phase Nucleosil C18, 250 nm × 4.6 mm was ana-

lytical column, and the filler particle size was 5 μm. The

mobile phase of the elution extract sample was 20 mM

potassium phosphate (pH 2.5 phosphate), the flow rate

was 1 mLmin− 1, and the detection wavelength was 210

nm. L-Proline (Sigma chemicals, St. Louis, MO) was

used to calibrate the standard curve [56]. The amount of
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proline in the sample was expressed as mg of proline per

milliliter and converted to mg g− 1 FW.

Superoxide dismutase (SOD) assay

In a competitive inhibition assay, the reduction of nitro

blue tetrazolium (NBT) to blue formazan was performed

by using xanthine-xanthine oxidase-generated super-

oxide. The reduction of NBT at 560 nm indicated spec-

trophotometric assay of SOD activity [57]. One unit of

SOD was regulated as the amount of protein that stops

NBT from reduction to 50% of the maximum.

Catalase (CAT) assay

The activity of catalase was taken from measurement

using a method originally described by Beers and Sizer

[58]. Determined the disappearance of peroxides by

spectrophotometry. The difference in absorbance ΔA240/

min from the initial (45 s) linear portion of the curve

was calculated. One unit of catalase activity was defined

as amount that decomposes one micromole of H2O2.

Units=mg ¼
ΔΔ240= minð Þ � 1000

43:6�mg enzyme=mLof reactionmixture

Guaiacol peroxidase (GPX) assay

This test adopted a modified version of assay developed

by Laloue et al. [59]. The ratio of variation in absorbance

per minute was used to quantify the enzyme in the mix-

ture using the extinction co-efficient of the oxidized

product tetraguaiacol (26.6 mM− 1 cm− 1).

Photochemical efficiency

Photochemical efficiency of plant shoots was measured

by using OS1-FL (Fluorometer, Opti-Sciences, Inc.,

Tyngsboro, Mass). The test was performed in dark

adapted mode and Fv/Fm (Fv/Fm = [Fm – Fo]/ Fm the ra-

tio of variable fluorescence to maximal fluorescence) ra-

tio was calculated. Then calculate the percent increase.

Plants were held in dark at least 2 h before the

determination.

Statistical analysis

All experiments were conducted with four replications.

The effect of nitrate treatments on plant seeds was de-

termined on the basis of the analysis of variance

(ANOVA) of the Statistical Package for Social Science

(SPSS 18.0 for windows, SPSS Inc., Chicago, IL, U.S.A.).

Differences among nitrate treatment on three feed-plant

species were determined according to the least signifi-

cant difference (LSD) test at the 0.05 probability level.
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