
 Open access Proceedings Article DOI:10.1109/ICSM.2007.4362620

Evaluation of Semantic Interference Detection in Parallel Changes: an Exploratory
Experiment — Source link

Danhua Shao, Sarfraz Khurshid, Dewayne E. Perry

Published on: 22 Oct 2007 - International Conference on Software Maintenance

Topics: Degree of parallelism, Software fault tolerance and Software system

Related papers:

 Parallel changes: detecting semantic interferences

 A state-of-the-art survey on software merging

 Parallel changes in large-scale software development: an observational case study

 A Theoretical Basis for the Analysis of Multiversion Software Subject to Coincident Errors

 A general noise-reduction framework for fault localization of Java programs

Share this paper:

View more about this paper here: https://typeset.io/papers/evaluation-of-semantic-interference-detection-in-parallel-
30ejzmzpb9

https://typeset.io/
https://www.doi.org/10.1109/ICSM.2007.4362620
https://typeset.io/papers/evaluation-of-semantic-interference-detection-in-parallel-30ejzmzpb9
https://typeset.io/authors/danhua-shao-2brzdfmhox
https://typeset.io/authors/sarfraz-khurshid-g6ndj92p69
https://typeset.io/authors/dewayne-e-perry-3pj9xy5fbb
https://typeset.io/conferences/international-conference-on-software-maintenance-mszunhhl
https://typeset.io/topics/degree-of-parallelism-3aqkzc6m
https://typeset.io/topics/software-fault-tolerance-3pt1za0w
https://typeset.io/topics/software-system-27udaxu5
https://typeset.io/papers/parallel-changes-detecting-semantic-interferences-42fxf6nhgd
https://typeset.io/papers/a-state-of-the-art-survey-on-software-merging-4kponq5oi6
https://typeset.io/papers/parallel-changes-in-large-scale-software-development-an-13zwl4ejd7
https://typeset.io/papers/a-theoretical-basis-for-the-analysis-of-multiversion-2x215z1ls9
https://typeset.io/papers/a-general-noise-reduction-framework-for-fault-localization-2jr5w99j77
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/evaluation-of-semantic-interference-detection-in-parallel-30ejzmzpb9
https://twitter.com/intent/tweet?text=Evaluation%20of%20Semantic%20Interference%20Detection%20in%20Parallel%20Changes:%20an%20Exploratory%20Experiment&url=https://typeset.io/papers/evaluation-of-semantic-interference-detection-in-parallel-30ejzmzpb9
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/evaluation-of-semantic-interference-detection-in-parallel-30ejzmzpb9
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/evaluation-of-semantic-interference-detection-in-parallel-30ejzmzpb9
https://typeset.io/papers/evaluation-of-semantic-interference-detection-in-parallel-30ejzmzpb9

Evaluation of Semantic Interference Detection in Parallel Changes: an Exploratory

Experiment

Danhua Shao, Sarfraz Khurshid and Dewayne E Perry

Electrical and Computer Engineering, The University of Texas at Austin

{dshao, khurshid, perry}@ece.utexas.edu

Abstract

Parallel developments are becoming increasingly

prevalent in the building and evolution of large-scale

software systems. Our previous studies of a large

industrial project showed that there was a linear

correlation between the degree of parallelism and the

likelihood of defects in the changes. To further study

the relationship between parallel changes and faults,

we have designed and implemented an algorithm to

detect “direct” semantic interference between parallel

changes. To evaluate the analyzer’s effectiveness in

fault prediction, we designed an experiment in the

context of an industrial project. We first mine the

change and version management repositories to find

sample versions sets of different degrees of parallelism.

We investigate the interference between the versions

with our analyzer. We then mine the change and

version repositories to find out what faults were

discovered subsequent to the analyzed interfering

versions. We use the match rate between semantic

interference and faults to evaluate the effectiveness of

the analyzer in predicting faults. Our contributions in

this evaluative empirical study are twofold. First, we

evaluate the semantic interference analyzer and show

that it is effective in predicting faults (based on

“direct” semantic interference detection) in changes

made within a short time period. Second, the design of

our experiment is itself a significant contribution and

exemplifies how to mine software repositories rather

than use artificial cases for rigorous experimental

evaluations.

1. Introduction

Parallel development has become a common

phenomenon in the development of large-scale

software systems. Multiple developers work on the

same module or program at the same time. The need

for parallel development has come about for a variety

of reasons:

• the size of the software systems,

• time to market also brings pressure to develop new

features or new products in a very short time,

• code ownership management is too expensive,

• the increase of globalization, and

• the geographical distribution of developers.

While parallel development increases productivity,

it also causes problems. When developers work in

parallel, it is likely that their changes may

unintentionally interfere with each other.

In our earlier work [12] [13], we delineated the

phenomena of, and the problems related to, parallel

changes. In a subsystem of Lucent Technologies’

5ESS Telephone Switching System, high degrees of

parallelism happened at multiple levels. To disclose the

relationship between parallel changes and faults, we

studied prima facie conflicts at the textual level,

checking the overlap between the lines changed by

different developers. We found two important results:

1) 3% of the changes made within 24 hours by different

developers physically overlapped each others’ changes;

and 2) there was a linear correlation between the

degree of parallelism and the likelihood of a defect in

the changes.

Our initial investigations focused on conflicts at the

explicit syntactic level. We believe that there are more

conflicts at the semantic level. To explore this

hypothesis, we designed a semantic interference

detection algorithm [21] [22], based on data

dependency analysis and program slicing.

To investigate our hypothesis as well as the

effectiveness and efficiency of our algorithm, we built

SCA (Semantic Conflict Analyzer) and designed a

rigorous empirical study to evaluate it in the same

industrial context as our previous empirical studies.

In Section 2, we give an overview of the semantic

interference detection algorithm. The context for this

study is discussed in Section 3. Section 4 presents the

experimental design and its results. We discuss validity

issues in Section 5, and compare our work to related

research in Section 6. Finally, we summarize our study

and propose future work in Section 7.

2. Overview of Semantic Interference

Our semantic interference detection algorithm

[21][22] combines data dependency analysis and

program slicing. The data dependency analysis

discloses the semantic structure of the program while

the program slicing identifies semantic structures

impacted by changes. By comparing the overlap of the

impacted parts of the two versions, we can learn if they

are in conflict.

2.1. Semantic Analysis of Change Impact

Semantic analysis of change impact is the basis for

the semantic interference detection algorithm. Semantic

program analysis discloses internal dependencies

within programs. As a lightweight static analyzer, SCA

only focuses on the local (i.e., intraprocedural) data

flow dependencies related to variable def-use pairs.

Figure 1 illustrates the semantic analysis of change

impact.

First, SCA analyzes the semantic dependencies in

the two versions. We use a triple (var: def, use) to

represent a dependency, where var is the variable on

which the dependence is built, def is the line that

defines variable var, and the use line uses the variable

defined at def line. The dependences in version v1 are

{(a: 1, 3), (b: 2, 4), (i: 3, 5), (j: 4, 5)}.

With the variable use-def dependency analysis on

the two versions, SCA calculates the change impact by

forward slicing from the changed statements. In this

example, the change from v1 to v2 modified Line 1

from “a = 0” to “a = 1”. According to the variable def-

use chains, {(a: 1, 3), (i: 3, 5)}, Line 3 and 5 are

impacted. The impact of this change v1�v2 is {3, 5}.

2.2. Semantic Interference Detection

In general, given two changes to be checked, we

calculate the impact of each change according to the

variable def-use dependencies. After mapping the

impacted fragments of the two changes onto the final

version, we can determine their interference by

checking their overlaps. The detailed explanation is in

[21] and [22].

Figure 2 illustrates the semantic interference

detection algorithm. Suppose there are two adjacent

changes: v1�v2 and v2�v3.

1) For each version, calculate data dependence

graph and identify variable def-use pair. The

results are: for v1, the dependency is {(a: 1, 3), (b:

2, 4), (i: 3, 5), (j: 4, 5)}; version v2 is {(a: 1, 3),

(b: 2, 4), (i: 3, 5), (j: 4, 5)}, and version v3 is {(a:

1, 3), (b: 2, 4), (i: 3, 5), (j: 4, 5)};

2) For each change, identify the changed lines. In

change v1�v2, Line 1 was changed and in

change v2�v3, Line 2 was changed,

3) Calculate the semantic impact of the two changes

by forward slicing from the changed lines. So,

Impact (v1�v2) = {3, 5} and Impact (v2�v3) =

{4, 5};

4) Compare impacted lines of the two changes. Line

5， where change (v1�v2) and (v2�v3) overlap

with each other, is their semantic interferences.

3. Study Context

In this study, the data repository from our previous

study constitutes the base environment in which to

evaluate our semantic interference detection algorithm.

3.1. Change & Version Mgmt Repositories

This study is based on one of the 50 subsystems of

5ESS, a successful industrial project with high

degrees of parallel changes. 5ESS is a telephone switch

project developed by Lucent Technologies [8] and has

about 100,000,000 lines of C and C++ code and

Figure 1 Semantic analysis on change: v1 ���� v2.

Figure 2 Detect semantic interference between

changes: v1���� v2 and v2 ���� v3.

another 100,000,000 lines in header files and makefiles.

Its project structure (feature development) contributed

to the high degree of parallel changes during the

development process. In this subsystem of

approximately 1.5 million lines of code, the number of

developers reached 200 at its peak and dropped to a

low of 50. Two products, one for US and one for

international customers, were developed separately

although some files are common for both of them.

The version and fault history data for our study

comes from the change management system of 5ESS.

In Lucent Technologies, the evolution of 5ESS is

managed by a two-layered system: a change

management layer, ECMS [23], to initiate and track

changes to the product, and a configuration

management layer, SCCS [16], to manage the versions

of files needed to construct the appropriate

configurations of the product. In 5ESS, the changes

are recorded in a layered hierarchy: Feature, Initial

Modification Request (IMR), Modification Request

(MR) and delta. A feature is the fundamental unit of

extension to the system, and each feature is composed

of a set of IMRs that represent problems to be solved.

All changes are handled by ECMS and are initiated

using an IMR, which may have one or more MRs (each

of which represents a solution, or part of a solution, to

an IMR’s problem), whether the change is for fixing a

fault, perfecting or improving some aspect of the

system, or adding new features to the system. Each

functionally distinct set of changes to the code made by

a developer is recorded as a MR by ECMS. For each

MR, there is a short abstract written by developers

describe its purpose. We use the approach in [9] to

classify MRs into according to their purposes: adaptive,

perfective, and corrective. When a change is made to a

file in the context of an MR, SCCS keeps track of the

actual lines added, changed, or deleted. This set of

changes is known as a delta. For each delta, ECMS

records its date, the developer who made it, and the

MR to which it belongs. So, from ECMS and SCCS,

we can get both the actual changes on the source code

and the purpose for the changes.

SCCS is a pessimistic version control system. At a

given time only one developer can check out and

modify a program. Changes representing different MRs

are often interleaved with each other, providing a

sequential set of changes but which represent logically

parallel changes. We extend our definition of logically

parallel changes further to include those changes

made independently and committed by different

developers within a short time interval.

3.2. Parallel Changes in the Repository

We chose this 5ESS subsystem to evaluate our

SCA to provide continuity with our previous studies

[12] [13], where we found the following:

• There are multiple levels of parallel development.

Each day, there is ongoing work on multiple MRs

by different developers solving different IMRs

belonging to different features within different

releases of two similar products aimed at distinct

markets.

• The activities within each of these levels cut across

common files. 12.5% of all deltas are made by

different developers to the same files within a day

of each other and some of these deltas interfere

with each other.

• Over the interval of a particular release, the

number of files changed by multiple MRs is 60%

that are concurrent with respect to that release.

These parallel MRs may result in interfering

changes – though we would expect the degree of

awareness of the implications of these changes to

be higher than those made within one day of each

other.

Furthermore, our previous study also found that

there is a significant correlation between files with a

high degree of parallel development and the number of

faults. Using PCmax, the maximum number of parallel

MRs per file in a day, as the measure of the degree of

parallel changes, our analysis showed that high degrees

of parallel changes tend to have more faults. The

analysis of variance strongly indicates that, even

accounting for the faults correlated with lifetime, size

and numbers of deltas, parallel changes were a

significant factor (p < .0001 – i.e., the probability that

the results happened by chance., namely 1 in 10,000).

In this repository we found high degrees of parallel

changes and a direct correlation between parallel

changes and faults. We believe that this repository

serves well to adequately evaluate the utility and

effectiveness of the methods, techniques and tools that

detect interference between parallel changes.

[12] and [13] focused on textual conflict. It showed

that only 3% of the deltas made within 24 hours by

different developers physically overlap another’s

change. The ineffectiveness of textual conflict

detection is one of the major reasons to develop a

semantic level interference detection algorithm and

conduct empirical studies of its effectiveness using

industrial/historical data.

3.3. Implementation Issues

In [21] and [22], there are two distinct analyses of

semantic interference provided: between adjacent

versions and between non-adjacent versions. In this

study, we implemented and evaluated the adjacent

analysis. The non-adjacent analysis needs an extra

assumption: the second change should start from a

tested and accepted version. According to our

knowledge about the 5ESS history, this is difficult to

guarantee and may not be feasible in practice. To make

our study as sound as possible, we used the adjacent

analysis that does not require that assumption.

From an analysis on the 5ESS code as well as our

personal industrial experience, it is clear that industrial

projects make significant use of pointers. Because of

this we extended our interference analysis one step

further to that of de-referenced variables. We consider

this still to be a form of “direct” semantic interference

because we are not doing pointer analysis as such but

still focusing on def-use pairs to determine interference.

Given the efficiency of local analysis and the avoidance

of pointer analyses, we believe it is a useful trade-off.

The results of our study support that claim

The implementation of the data dependency

calculation and program slicing is based on

GrammaTech’s CodeSurfer [1]. For pointer analysis,

we select CodeSurfer’s option that distinguishes

individual fields in a referenced structure. SCA uses the

most precise pointer analysis Codesurfer offers. The C

compiler is Visual C++ 6.0. For the language

constructs that do not conform to ANSI C, for example,

the macro “#feature”, we made textual changes to the

source to pass the compilation. Our preprocessing does

not change the semantics of the studied programs.

The study is done on a Pentium III 800MHz PC

with 256M RAM and Microsoft Windows 2000.

4. Study and Results

From the observation and implications from the

previous study, we propose 3 hypotheses in this

evaluation:

1) H1: semantic interference is more likely in higher

degrees of parallel changes.

2) H2: semantic interference is a useful predictor of

faults in high degree parallel changes.

3) H3: semantic interference detection is light-

weight and efficient.

We prepared three sets of changes that represent

these different degrees of parallelism. We ran the

semantic conflict analyzer on each set. We compared

the results from the three sets to evaluate the

effectiveness of the detection algorithm on different

degrees of parallel changes. We also estimated the

overhead by considering the execution time consumed

in running the analyzer.

Our study has 5 steps. We introduce the results and

their analyses according to the steps.

4.1. Sample Versions of Different Parallel

Degrees

 In this step, we prepared changes to be studied. To

supply changes of differing degrees of parallelism, we

constructed three equivalent sets of parallel changes

from the change and version histories:

1) For the control set, we randomly selected

versions that have no parallel changes with

respect to a particular release – that is, the interval

between the versions are so long, greater than 1

month, that they can not be viewed as a parallel

changes.

2) For the low degree of parallelism set, we

randomly selected versions that are logically

parallel with a reasonable interval of time (from 1

week to 1 month). In this case, we claim the

developers have sufficient time to understand the

implications of the changes made by others.

3) For the high degree of parallelism set, we

randomly selected versions that are logically

parallel with a very short interval time, less than 1

week. In this case, it is difficult, we claim, for the

developers to fully understand the changes made

by others in such a short time
1
.

1
 Our choice of less than a week, between a week and a

month, and greater than a month was based the observations

in [13] about the phenomena of parallel changes.

19

4

4

1135

3
5

36

0%

20%

40%

60%

80%

100%

High Low Control

Perfective

Corrective

Adaptive

Figure 3 Distribution of the purposes of changes in the

three sets. In the High, Low and Control set, the

composition of Perfective, Corrective and Adaptive

changes are very similar.

To maximize internal validity, we sample versions

for the three sets with nearly identical distribution of

different change purposes (adaptive, corrective, and

perfective), average size of changes (in number of

changed lines), and average size of the source file (in

lines of code, LOC). For the sampled versions in the

three sets, the composition of the three sets is shown in

Figure 3, and the average size of changes and average

size of the source file are shown in Figure 4.

4.2. Calculate Semantic Interference

In each set of parallel versions, we run SCA to

detect the semantic interference between versions. The

results are in Table 1.

To quantify the relationship between semantic

interference and parallelism, we calculate the Density

of Interference and the Frequency of Change for

each set.

Density of Interference = detected interferences versions /
of versions;

Frequency of Change = 1 / Avg. change interval

The result in Figure 5 shows that the Density of

Interferences increases according to the increase of the

Frequency of Changes. This supports Hypotheses 1:

semantic interference is more likely where there are

high degrees of parallelism. This result is congruent

with our earlier findings in with respect to the degree of

concurrency and the likelihood of faults [12] [13].

This result also supports for our belief that more

conflicts happened at semantic level than at textual

level. In the previous study, in high degree parallel

changes, only 3% interference can be detected in the

textual level. And the results in Table 1 show that,

compared with textual interference, semantic level

analysis can disclose significantly more interference

than the textual analysis.

4.3. Identify Related Faults

Semantic interference by itself does not indicate a

fault. The interference might well be intended to

correct a fault or to add new processing, etc. It is

unintended interference that is likely to represent a

fault. Using semantic interference as a predictor of

faults, some interferences represent faults while others

do not (i.e., are false positives). The critical part of this

experiment is to evaluate the effectiveness of the

semantic interference in fault prediction.

We use the code fragments that are changed in

Corrective MRs to represent faults. For each set of

parallel versions (each with its set of semantic

interferences), we first mine the change management

history to look for Corrective MRs subsequent (in time)

to and dependent on these versions with interference.

Then we mine the version management system to get

the changed code fragments in these Corrective MRs.

We note that a logistic regression analysis of our data

shows that the high set is significantly different from

the control set (p < .001).

Set Versions
Interference

versions

Avg. change

interval

(days)

High 46 19 2.3

Low 27 8 18.4

Control 17 2 265.1

Table 1 Detected interferences in the three sets.

High

(0.43, 41%)

Low

(0.05, 29%)

Control

(0.004, 12%)

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0.001 0.01 0.1 1

Figure 5 Density of Interference and Frequency of

Changes in the three sets. X-axle: Frequency of

Changes in changes per day. Y-axle: Density of

Interference in interferences per version.

1.64

45
1.51

53

1.34
48

Size of Changes(LOC) Size of Files(KLOC)

High

Low

Control

Figure 4 Average sizes of changed lines and files in

the three sets. The size of changes is in LOC (Lines

Of Code) and the size of file is in KLOC (Kilo- Lines

Of Code). The size of changes and files are similar for

High, Low and Control sets.

4.4. Evaluate SCA’s Effectiveness

The effectiveness of the detection algorithm is based

on the match between semantic interference and faulty

code. We checked the accuracy of the predictions by

checking the defect MRs written against those versions

with interference. We also studied the semantic

properties of our evaluation results. We divide the

evaluation into three sections: 1) where SCA detects

semantic interference and there is a fault, and 2) SCA

detects interference and there is no fault, or 3) where

there is a fault but no detected interference.

4.4.1. Match: Semantic Interference & Faults

 For each of the three sets, we compare the semantic

interference source code fragments obtained in Section

4.2 with the faulty source code fragments determined in

Section 4.3. We classify the results into 3 groups:

• Hit - detected interferences found in faulty code

fragments;

• False positive – detected interferences that have no

faulty code fragments associated with them;

• Miss – faulty code fragments that have no detected

interferences associated with them.

Table 2 shows the results of matching semantic

interferences with faults. To fairly compare SCA’s

effectiveness in the three sets, we calculate the Density

of Fault (= Fault-related changes / # of versions) and the hit

ratio (= Hits / Interferences) for each of the three sets.

Figure 6 shows that the hit ratio in high degree parallel

changes is much higher than that in low degree parallel

changes, although their fault density is very similar.

4.4.2. Semantic Analysis on Matching Results

Besides the comparisons above, we also analyzed

the semantic properties of the hits, misses, and false

positives groups in Table 2 according to the

classification of errors found in [20].

1) In hit group where the detected interference is

found in the faulty code, all the 10 matched

interferences are non-pointer variable faults.

< i = pos_no;

> i = pos_no++;

In a more specific error classification, all of them

are incorrect variable used faults. Eight of the 10

faults are path selection faults. This means an error

in variable usages represents a fault in the

computation where the program selected a wrong

path. Two of the 10 are computation faults, which

mean the incorrect variable usage generates

erroneous outputs.

2) In false positive group, semantic interferences are

detected but are not matched with any faults.

Because the noise level is critical for a static

analysis tool like SCA, we give a further

classification on the 19 false positives:

a) Eight of the 19 are variable or type renaming

cases. For example,

< quote_ptr->osps_aq.acronym[i]

=msg_ptr->

text.my_mgacqs.htl_acrnym[i];

> quote_ptr->tsps_aq.acronym[i] =

msg_ptr->

text.my_mgacqs.htl_acrnym[i];

b) Five of the 19 are fault-fixing cases

This kind of semantic interference is intentionally

introduced to fix a fault.

c) Three of the 19 are false identification of changes.

For example,

Table 2 Match the detected semantic interference fragments with faulty codes.

Sets Versions Fault related Interference Hit False positive Miss

High 46 25 19 8 11 17

Low 27 16 8 2 6 14

Control 17 10 2 0 2 10

Total 90 51 29 10 19 41

54%

42%

59%

25%

59%

0%

Density of Faults Hit Ratio

High

Low

Control

Figure 6 In the three sets, the density of faults is very

similar, while the hit ratio in fault prediction is quite

different.

< (CRoaddrtbl[cid.crindx]->ospsff &

0xfffffffe) | ((DMUNLONG) 1);

>(CRoaddrtbl[cid.crindx]->ospsff &

0xfffffffe) |

> ((DMUNLONG)1);

This kind false positive is an artifact of CodeSurfer

and comes from the incorrect identification of same

vertex in two versions. In this detection algorithm,

the corresponding vertex in the two versions is

identified by its type and the associated text. So, in

the change above, we view the two statements as

different, although only spaces were added in the

second version. We did not use semantic

equivalence evaluation as found in [24] because it is

too expensive to compute in a real project.

3) The miss group shows the fault-related versions

that are invisible to our interference detection

algorithm. There were 17 faults that were

invisible – i.e., that were undetected by SCA. We

classify these invisible faults according to their

semantic properties. This can guide users to

utilize our interference detection approach in

effective ways.

a) Eight of the 17 are control flow faults.

< if (i < 5)

> if (i <= 5)

For such kind of change, no impact happened on

variable definition and use. So our interference

detection algorithm cannot identify such faults that

are related to control flow errors.

b) Five of the 17 are faults related to pointer

variables.

We reviewed the sampled versions and found

some pointer arithmetic operations changed the

target objects of pointers. But such changes are

ignored in our algorithm because Codesurfer

assumes that pointer arithmetic will not change the

pointer-to set.

c) Four of the 17 are basically other faults which

can not be categorized into the error classification

in [20].

In summary, the match between semantic

interferences and predicted faulty code supports

Hypothesis H2. Moreover, the semantic analysis on

false positives also confirms that SCA suffers the same

problems as many other static analysis tools. And for

the non-pointer variables that static analysis can give a

more precise analysis than for the pointers, SCA can

also give a more precise prediction of potential faults.

4.5. Evaluate SCA’s Efficiency

While evaluating the efficiency of SCA, we use the

time used in calculating semantic interference as the

overhead. In analyzing the semantic interference on the

sample versions, the average time is about 2 minutes.

In this overhead, 83% is spent on the program

dependency analysis with CodeSurfer, and the time for

the calculating and detecting interferences is only 17%

of the overhead.. And the average time to compile the

analyzed version is 1.8 minutes. This result supports

Hypothesis H3: semantic interference is a lightweight

and efficient fault prediction approach.

Based on these results, we can claim that the use of

SCA is both effective and efficient and will aid

developers in finding and fixing faults. As soon as a

developer finishes a new version, SCA can give instant

feedback about conflicts. The immediate warnings can

remind developers to check or fix faults in the new

version while they are still familiar with what changes

have been made in this new version as well as the

reasons for making them. For the versions we studied,

it is usually 150 days on average after the fault-

inducing changes were made when they were found by

various means such as testing, etc. The use of SCA will

save the effort of having to rediscover or recall what

was done 5 months earlier.

5. Validity Analysis

To analyze the soundness of this experiment, we

discuss its construct, internal, external validity, and

conclusion validity.

We focus on a specific and well-defined form of

semantic interference between versions. Given that

there are multiple levels of parallelism in a large-scale

development, we feel that our distinction between high,

low and no degrees of parallelism is justified for this

study evaluating the efficiency and effectiveness of our

analyzer. We also claim the delay time construct is

well defined and justified as well: the time from the

version commit until the opening of the fault MR. The

problematic time construct is the fix time. First, one

should view that as a maximum possible time where

only a portion of that time is actually spent finding and

fixing the fault. Second, only a portion of the actual

time is spent in finding the problem and rediscovery; it

is this time that would be saved by our analyzer.

In evaluating the effectiveness and efficiency of the

interference detection algorithm, we used the

comparisons among sets of different degrees of

parallelism. To filter out factors other than parallelism,

we have checked the similarity among the sets in the

distribution of changes of different purposes, the file

sizes, the change sizes, and the density of fault-related

changes. We argue that the equivalence of these

factors rules out confounding variables.

We believe that our results our consistent with what

one would intuitively expect about parallel changes and

what is supported with our earlier studies: highly

parallel changes do not allow time for developers to

adequately understand the implications of changes and

hence are more prone to faults as a result of these

changes. Our current results are consistent with our

earlier results: there is a significant correlation (p

< .001) between the degrees of parallelism, semantic

interferences and faults. The new and interesting

results here (see Figure 6) also agree with ones

intuition about adaptive changes: there are likely to be

more interfering changes made to add new functionality

than in correcting faults, or improving existing

functionality.

Although our study is based on the history data in a

pessimistic version control system, SCCS, this

approach can be easily extended to optimistic version

control system, such as Concurrent Versions System

(CVS), which is widely used in open source projects.

CVS can supply the same kinds of data as SCCS for

our semantic interference detection algorithm. The only

variation in the evaluation process is the use of non-

adjacent versions of the interference detection

algorithm. This is because, in CVS, the sequential

order introduced by the check-in time in SCCS will not

be valid.

A threat to our study is that 5ESS is a very large-

scale real-time project with a large number of

developers, geographically distributed. We argue,

however, that the subsystem we studied is perhaps by

itself more representative of a typical large project. The

critical factor, however, is the issue of parallel changes

to the same files by different people – i.e., feature

ownership rather than code ownership. This form of

development is becoming more prevalent, and this

supports our claim for external validity.

On the basis of a sufficient set of versions to give us

a reasonably good level of statistical power,

appropriate factoring and precision, and reasonable

reliability in the tools we use (e.g., see [9]), we believe

that we have strong conclusion validity.

6. Related Work

Program slicing is an important technique in

analyzing properties of programs. [6] proposed the

combination of a program dependency graph and

program slicing to provide conflict detection. And

Yang [24] increased the soundness of semantic conflict

detection by semantic preserving transformations.

Different from them, SCA focuses only on variable def-

uses rather than the whole dependency graph. While

such a simplification means we do not catch all

possible faults, it does make SCA a lightweight tool

that is both feasible and effective in real projects. The

results of Step 5, the efficiency evaluation of the

detection algorithm, give strong support for our

simplification.

[15], [17], and [19] propose change impact analysis

based on atomic change classifications and associate

them with test cases. They work at the method level,

and compare two abstract syntax trees, thus providing

more precision but paying a higher overhead. SCA

works at the statement level, comparing the vertices by

variable def-uses and associated text. Ours is more

narrowly focused on significantly less overhead.

[18] uses fault localization to identify changes from

the version management system and a fault database,

and correlate them as fault-inducing changes. However,

our approach is based on the semantic analysis on the

changes and their interference, while [18] focuses on

relating the events in version histories with fault

databases.

Passed and failed test cases are used in [25] to filter

out non-related test cases and to select possible fault-

inducing changes. Their work focuses on the

localization of fault-inducing changes by running test

cases, while our approach focuses on the prediction of

faults with static analysis of changes that semantically

interfere.

Program chopping [5] can minimize possible fault-

inducing code fragments. Compared with static

program slicing we use, dynamic slicing can improve

the precision for pointer analysis and reduce false

positives in semantic interference detection. However

executable versions are required beforehand. This

imposes a significant build overhead in any large

system.

In the empirical studies with version control

repositories, Atkins et al. [2] uses change history and

an effort estimation model [4] to calculate the effort

that has been saved using the Version Editor (VE).

This study illustrates an important point: the versions

found in the repository were separated into two groups

based on a criterion that was useful in the empirical

study and a significant result was obtained on the basis

of this differentiation. The quantitative results provide

evidence showing the usefulness of the software tool.

However, the origin of the data in our study is quite

different from theirs. In the construction of the control

and treatment groups, they were able to differentiate

the historical data into VE and non-VE related groups.

Without that extra-repository distinction (i.e., the VE

footprint instrumented into the histories), the evaluation

would not have been possible. Thus, while this

empirical study did use historical data from version and

change management, it was, in a real sense,

instrumented data. While in our evaluation of SCA, all

the data in our study was not instrumented, but data

readily available in the repositories.

[3] and [26] predict faults by mining change

histories. But [3]’s granularity is larger than ours: the

number of changes on a file, or the number of lines

changed in a period of time. They do not consider

interference between changes, whether at the textual

level or the semantic level. [26] focuses on structure-

related entities, such as fields or functions in a file, or

files in a directory, and predicts faults from the

incomplete changes. We, on the other hand, focus on

the semantics of the code, predicting faults from

semantic interference.

7. Conclusions and Future Work

Our research has yielded two important

contributions: first, we have shown that a limited form

of semantic interference detection can provide an

effective and useful means of predicting faults in an

increasingly common context; and second, we created

an effective and novel design for rigorous experimental

evaluation of analysis tools using and mining change

and version management repositories.

While our technique is incomplete both in detecting

semantic interference and in predicting faults, it is both

efficient (taking roughly the time of a compilation) and

effective in predicting faults. Despite our tool suffering

the same problems as many other static analysis tools

(i.e., unsoundness due to the imprecision of pointer

analysis), the resulting analyses and predictions are still

extremely useful in directing developers’ attention to

potential faults.

The results of our evaluative experiment are as

follows:

1) Semantic interference is significantly higher in

high group (twice the other two);

2) Semantic interference detection is effective in

predicting non-pointer variable faults from the

detected interferences in versions changed within

short time periods;

3) Of the detected semantic interferences, 40% in the

high group matched with known faults, 25% in the

low group (33% in both);

4) The overhead of using our semantic interference

detection approach is very low and can help

developers to find faults very early; and,

5) Preciseness of pointer analysis, identification of

variable renaming, and control-flow changes are

the major factors that affect the effectiveness in

detecting interference and predicting faults.

Our experimental design itself is a significant

contribution to providing rigorous evaluation of tools.

We avoid the invalidity problems of contrived faults.

Change and version management repositories provided

a large enough population to obtain a variety of sample

data such as change purpose, size of changed code, and

size of source file. By classifying the sampled data

according to the degree of parallelism, we constructed

a control group and two treatment groups.

To provide an effective evaluation, the fault sets

were mined from the version and change management

repositories, rather than intentionally introduced. This

“mundane realism” not only removes the internal

validity problems associated with fault seeding (the

representativeness of the faults seeded, the placement

of those faults, and the frequency of fault occurrence,

etc), but also increases the external validity or the study.

The results from our study also suggest ways of

combining our approach with that of others to improve

the effectiveness of the semantic interference detection

algorithm. As complementary approaches to static

analysis tools such as SCA, dynamic analysis

techniques, such as dynamic slicing [5] or symbolic

execution [7], can identify control flow dependencies

and analyze dereferences with more precision. And

light weight compilation techniques, such as Island

Grammars [10] [11], can reduce the workload for

semantic analysis by eliminate the requirement on

compilation.

8. Acknowledgements

We thank Harvey Siy, University of Nebraska,

Omaha, for his help on the change management system

of 5ESS and his suggestion about Island Grammars;

Barbara Ryder, Rutgers University, for her review of

our preliminary results; and Xiangyu Zhang, Purdue

University, for the discussion on dynamic slicing issues.

This work was supported in part by NSF CISE Grant

IIS-0438967.

9. References

[1] P. Anderson, and T. Teitelbaum, “Software

Inspection Using CodeSurfer”, Proc. of the First

Workshop on Inspection in Software Engineering

(WISE’01), Paris, France, July 2001, 4-11.

[2] D. Atkins, T. Ball, T. Graves, and A. Mockus.

“Using version control data to evaluate the impact of

software tools: A case study of the version editor”,

IEEE Transactions on Software Engineering, Vol.

28, No. 7, July 2002, 625–637.

[3] T.L. Graves, A.F. Karr, J.S. Marron and H. Siy,

“Predicting Fault Incidence Using Software Change

History,” IEEE Transactions on Software

Engineering, Vol. 26, No. 7, July 2000. 653-661.

[4] T.L. Graves, A. Mockus, “Inferring Change Effort

from Configuration Management Databases”, Pro. of

the Fifth International Symposium on Software

Metrics, IEEE, 1998, 267-273.

[5] N. Gupta, H. He, X. Zhang, and R. Gupta, “Locating

Faulty Code Using Failure-Inducing Chops”, Proc.

of the 20th IEEE/ACM International Conference on

Automated Software Engineering (ASE 2005), Long

Beach, California, November 2005, 263-272.

[6] S. Horwitz, J. Prins, and T. Reps, “Integrating non-

interfering versions of programs”, ACM

Transactions on Programming Languages and

Systems, Vol. 11, No. 3, July 1989, 345-387.

[7] S. Khurshid, C. Pasareanu, and W. Visser,

“Generalized Symbolic Execution for Model

Checking and Testing”, Proc. of the 9th

International Conference on Tools and Algorithms

for Construction and Analysis of Systems (TACAS

2003), Warsaw, Poland, Apr 2003, 553-568.

[8] K. Martersteck, and A. Spencer, “Introduction to the

5ESS Switching System”, AT&T Technical

Journal, Vol. 64, No. 6, part 2, July-August 1985,

1305-1314.

[9] A. Mockus, and L.G. Votta, “Identifying Reasons for

Software Changes Using Historic Databases”, Proc.

of IEEE International Conference on Software

Maintenance (ICSM'00), San Jose, CA, USA,

October. 2000, 120-130.

[10] L. Moonen, “Generating Robust Parsers Using

Island Grammars”, Proc. of the Eighth Working

Conference on Reverse Engineering (WCRE'01),

Stuttgart, Germany, October. 2001, 13-22.

[11] L. Moonen, “Lightweight Impact Analysis Using

Island Grammars”, Proc. of Tenth International

Workshop On Program Comprehension (IWPC'02),

June 2002, 219-228.

[12] D.E. Perry, and H.P. Siy, “Challenges in Evolving a

Large Scale Software Product”, Proc. of the

International Workshop on Principles of Software

Evolution, the 20th International Software

Engineering Conference, Kyoto, Japan, April 1998,

251-260.

[13] D.E. Perry, H.P. Siy, and L.G. Votta, “Parallel

Changes in Large Scale Software Development: An

Observational Case Study”, ACM Transactions on

Software Engineering and Methodology, Vol. 10,

No. 3, July, 2001, 308-337.

[14] R. Purushothaman, and D.E Perry, “Towards

Understanding the Rhetoric of Small Source Code

Changes”, IEEE Transactions on Software

Engineering, Special Issue on Mining Software

Repositories, Vol. 31, No. 6, June 2005, 511-526.

[15] X. Ren, F. Shah, F. Tip, B.G. Ryder, and O. Chesley,

“Chianti: A Tool for Change Impact Analysis of Java

Programs”, Proceedings of the 19th Annual ACM

SIGPLAN Conference on Object-Oriented

Programming, Systems,Languages, and Applications

(OOPSLA 2004), Oct 2004, 432-448.

[16] M.J. Rochkind, “The Source Code Control System”,

IEEE Transactions on Software Engineering, Vol.

SE-1, No. 4, December 1975, 364-370.

[17] B.G. Ryder, and F. Tip, “Change impact analysis for

object-oriented programs”, Proc. of the 2001 ACM

SIGPLAN-SIGSOFT workshop on Program analysis

for software tools and engineering, June 2001,

Snowbird, Utah, 46-53.

[18] J. Sliwerski, T. Zimmermann, and A. Zeller, “When

do changes induce fixes? On Fridays”, Proc. of

International Workshop on Mining Software

Repositories (MSR), Saint Louis MO, May 2005.

[19] M. Stoerzer, B.G. Ryder, X. Ren, and F. Tip,

“Finding Failure-Inducing Changes using Change

Classification”, Research Report RC 23729, IBM,

September 2005.

[20] K. Tewary and M.J. Harrold, “Fault Modeling using

the Program Dependence Graph”, International

Symposium on Software Reliability Engineering,

November 1994, 126-135.

[21] G.L. Thione, “Detecting Semantic Conflicts in

Parallel Changes”, MSEE Thesis, The Department of

Electrical and Computer Engineering, The

University of Texas at Austin, December 2002. 98pp.

[22] G.L. Thione, and D.E. Perry, “Parallel Changes:

Detecting Semantic Interferences”, The 29th Annual

International Computer Software and Applications

Conference (COMPSAC 2005), Edinburgh, Scotland,

July 2005, 47-56.

[23] P.A. Tuscany, “Software development environment

for large switching projects”, Proc. of Software

Engineering for Telecommunications Switching

Systems Conference, 1987.

[24] W. Yang, S. Horwitz, and T. Reps, “A program

integration algorithm that accommodates semantics-

preserving transformations”, ACM Transactions on

Software Engineering and Methodology, Vol. 1, No.

3, July 1992, 310-354.

[25] A. Zeller, “Yesterday, my program worked. Today, it

does not. Why?” Proc. of Joint 7th European

Software Engineering Conference (ESEC) and 7th

ACM SIGSOFT International Symposium on the

Foundations of Software Engineering (FSE-7), Vol.

1687 of LNCS, Toulouse, France, September 1999,

253-267.

[26] T. Zimmermann, P. Weibgerber, S. Diehl, A. Zeller,

“Mining Version Histories to Guide Software

Changes”, Proc. of the 26th International

Conference on Software Engineering (ICSE 2004),

Edinburgh, UK, May 2004, 563-572

