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Abstract 
 

Parallel developments are becoming increasingly 

prevalent in the building and evolution of large-scale 

software systems. Our previous studies of a large 

industrial project showed that there was a linear 

correlation between the degree of parallelism and the 

likelihood of defects in the changes. To further study 

the relationship between parallel changes and faults, 

we have designed and implemented an algorithm to 

detect “direct” semantic interference between parallel 

changes. To evaluate the analyzer’s effectiveness in 

fault prediction, we designed an experiment in the 

context of an industrial project. We first mine the 

change and version management repositories to find 

sample versions sets of different degrees of parallelism. 

We investigate the interference between the versions 

with our analyzer. We then mine the change and 

version repositories to find out what faults were 

discovered subsequent to the analyzed interfering 

versions. We use the match rate between semantic 

interference and faults to evaluate the effectiveness of 

the analyzer in predicting faults. Our contributions in 

this evaluative empirical study are twofold. First, we 

evaluate the semantic interference analyzer and show 

that it is effective in predicting faults (based on 

“direct” semantic interference detection) in changes 

made within a short time period. Second, the design of 

our experiment is itself a significant contribution and 

exemplifies how to mine software repositories rather 

than use artificial cases for rigorous experimental 

evaluations.  

 

1. Introduction 
 

Parallel development has become a common 

phenomenon in the development of large-scale 

software systems. Multiple developers work on the 

same module or program at the same time. The need 

for parallel development has come about for a variety 

of reasons: 

• the size of the software systems, 

• time to market also brings pressure to develop new 

features or new products in a very short time, 

• code ownership management is too expensive, 

• the increase of globalization, and 

• the geographical distribution of developers. 

While parallel development increases productivity, 

it also causes problems. When developers work in 

parallel, it is likely that their changes may 

unintentionally interfere with each other. 

In our earlier work [12] [13], we delineated the 

phenomena of, and the problems related to, parallel 

changes.  In a subsystem of Lucent Technologies’ 

5ESS Telephone Switching System, high degrees of 

parallelism happened at multiple levels. To disclose the 

relationship between parallel changes and faults, we 

studied prima facie conflicts at the textual level, 

checking the overlap between the lines changed by 

different developers. We found two important results:  

1) 3% of the changes made within 24 hours by different 

developers physically overlapped each others’ changes; 

and 2) there was a linear correlation between the 

degree of parallelism and the likelihood of a defect in 

the changes.  

Our initial investigations focused on conflicts at the 

explicit syntactic level.  We believe that there are more 

conflicts at the semantic level. To explore this 

hypothesis, we designed a semantic interference 

detection algorithm [21] [22], based on data 

dependency analysis and program slicing. 

To investigate our hypothesis as well as the 

effectiveness and efficiency of our algorithm, we built 

SCA (Semantic Conflict Analyzer) and designed a 

rigorous empirical study to evaluate it in the same 

industrial context as our previous empirical studies. 

In Section 2, we give an overview of the semantic 

interference detection algorithm. The context for this 

study is discussed in Section 3. Section 4 presents the 

experimental design and its results. We discuss validity 

issues in Section 5, and compare our work to related 



research in Section 6. Finally, we summarize our study 

and propose future work in Section 7. 

2. Overview of Semantic Interference 

Our semantic interference detection algorithm 

[21][22] combines data dependency analysis and 

program slicing. The data dependency analysis 

discloses the semantic structure of the program while 

the program slicing identifies semantic structures 

impacted by changes. By comparing the overlap of the 

impacted parts of the two versions, we can learn if they 

are in conflict. 

2.1. Semantic Analysis of Change Impact  

Semantic analysis of change impact is the basis for 

the semantic interference detection algorithm. Semantic 

program analysis discloses internal dependencies 

within programs. As a lightweight static analyzer, SCA 

only focuses on the local (i.e., intraprocedural) data 

flow dependencies related to variable def-use pairs. 

Figure 1 illustrates the semantic analysis of change 

impact.  

First, SCA analyzes the semantic dependencies in 

the two versions. We use a triple (var: def, use) to 

represent a dependency, where var is the variable on 

which the dependence is built, def is the line that 

defines variable var, and the use line uses the variable 

defined at def line. The dependences in version v1 are 

{(a: 1, 3), (b: 2, 4), (i: 3, 5), (j: 4, 5)}. 

With the variable use-def dependency analysis on 

the two versions, SCA calculates the change impact by 

forward slicing from the changed statements. In this 

example, the change from v1 to v2 modified Line 1 

from “a = 0” to “a = 1”. According to the variable def-

use chains, {(a: 1, 3), (i: 3, 5)}, Line 3 and 5 are 

impacted.  The impact of this change v1�v2 is {3, 5}. 

2.2. Semantic Interference Detection  

In general, given two changes to be checked, we 

calculate the impact of each change according to the 

variable def-use dependencies. After mapping the 

impacted fragments of the two changes onto the final 

version, we can determine their interference by 

checking their overlaps. The detailed explanation is in 

[21] and [22].  

Figure 2 illustrates the semantic interference 

detection algorithm. Suppose there are two adjacent 

changes:  v1�v2 and v2�v3.   

1) For each version, calculate data dependence 

graph and identify variable def-use pair. The 

results are:  for v1, the dependency is {(a: 1, 3), (b: 

2, 4), (i: 3, 5), (j: 4, 5)}; version v2 is {(a: 1, 3), 

(b: 2, 4), (i: 3, 5), (j: 4, 5)}, and version v3 is {(a: 

1, 3), (b: 2, 4), (i: 3, 5), (j: 4, 5)}; 

2) For each change, identify the changed lines. In 

change v1�v2, Line 1 was changed and in 

change v2�v3, Line 2 was changed,  

3) Calculate the semantic impact of the two changes 

by forward slicing from the changed lines. So, 

Impact (v1�v2) = {3, 5} and Impact (v2�v3) = 

{4, 5}; 

4) Compare impacted lines of the two changes. Line 

5， where change (v1�v2) and (v2�v3) overlap 

with each other, is their semantic interferences. 

3. Study Context 

In this study, the data repository from our previous 

study constitutes the base environment in which to 

evaluate our semantic interference detection algorithm.  

3.1. Change & Version Mgmt Repositories 

This study is based on one of the 50 subsystems of 

5ESS, a successful industrial project with high 

degrees of parallel changes. 5ESS is a telephone switch 

project developed by Lucent Technologies [8] and has 

about 100,000,000 lines of C and C++ code and 

 

Figure 1 Semantic analysis on change: v1 ���� v2. 

 

Figure 2 Detect semantic interference between 

changes: v1���� v2 and v2 ���� v3. 

 



another 100,000,000 lines in header files and makefiles. 

Its project structure (feature development) contributed 

to the high degree of parallel changes during the 

development process. In this subsystem of 

approximately 1.5 million lines of code, the number of 

developers reached 200 at its peak and dropped to a 

low of 50. Two products, one for US and one for 

international customers, were developed separately 

although some files are common for both of them. 

The version and fault history data for our study 

comes from the change management system of 5ESS. 

In Lucent Technologies, the evolution of 5ESS is 

managed by a two-layered system: a change 

management layer, ECMS [23], to initiate and track 

changes to the product, and a configuration 

management layer, SCCS [16], to manage the versions 

of files needed to construct the appropriate 

configurations of the product. In 5ESS, the changes 

are recorded in a layered hierarchy: Feature, Initial 

Modification Request (IMR), Modification Request 

(MR) and delta. A feature is the fundamental unit of 

extension to the system, and each feature is composed 

of a set of IMRs that represent problems to be solved. 

All changes are handled by ECMS and are initiated 

using an IMR, which may have one or more MRs (each 

of which represents a solution, or part of a solution, to 

an IMR’s problem), whether the change is for fixing a 

fault, perfecting or improving some aspect of the 

system, or adding new features to the system. Each 

functionally distinct set of changes to the code made by 

a developer is recorded as a MR by ECMS. For each 

MR, there is a short abstract written by developers 

describe its purpose.  We use the approach in [9] to 

classify MRs into according to their purposes: adaptive, 

perfective, and corrective. When a change is made to a 

file in the context of an MR, SCCS keeps track of the 

actual lines added, changed, or deleted.  This set of 

changes is known as a delta.  For each delta, ECMS 

records its date, the developer who made it, and the 

MR to which it belongs.  So, from ECMS and SCCS, 

we can get both the actual changes on the source code 

and the purpose for the changes. 

SCCS is a pessimistic version control system. At a 

given time only one developer can check out and 

modify a program. Changes representing different MRs 

are often interleaved with each other, providing a 

sequential set of changes but which represent logically 

parallel changes.  We extend our definition of logically 

parallel changes further to include those changes 

made independently and committed by different 

developers within a short time interval. 

3.2. Parallel Changes in the Repository 

We chose this 5ESS subsystem to evaluate our 

SCA to provide continuity with our previous studies 

[12] [13], where we found the following: 

• There are multiple levels of parallel development. 

Each day, there is ongoing work on multiple MRs 

by different developers solving different IMRs 

belonging to different features within different 

releases of two similar products aimed at distinct 

markets. 

• The activities within each of these levels cut across 

common files. 12.5% of all deltas are made by 

different developers to the same files within a day 

of each other and some of these deltas interfere 

with each other. 

• Over the interval of a particular release, the 

number of files changed by multiple MRs is 60% 

that are concurrent with respect to that release.  

These parallel MRs may result in interfering 

changes – though we would expect the degree of 

awareness of the implications of these changes to 

be higher than those made within one day of each 

other. 

Furthermore, our previous study also found that 

there is a significant correlation between files with a 

high degree of parallel development and the number of 

faults.  Using PCmax, the maximum number of parallel 

MRs per file in a day, as the measure of the degree of 

parallel changes, our analysis showed that high degrees 

of parallel changes tend to have more faults. The 

analysis of variance strongly indicates that, even 

accounting for the faults correlated with lifetime, size 

and numbers of deltas, parallel changes were a 

significant factor (p < .0001 – i.e., the probability that 

the results happened by chance., namely 1 in 10,000). 

In this repository we found high degrees of parallel 

changes and a direct correlation between parallel 

changes and faults. We believe that this repository 

serves well to adequately evaluate the utility and 

effectiveness of the methods, techniques and tools that 

detect interference between parallel changes. 

[12] and [13] focused on textual conflict. It showed 

that only 3% of the deltas made within 24 hours by 

different developers physically overlap another’s 

change. The ineffectiveness of textual conflict 

detection is one of the major reasons to develop a 

semantic level interference detection algorithm and 

conduct empirical studies of its effectiveness using 

industrial/historical data.  



3.3. Implementation Issues 

In [21] and [22], there are two distinct analyses of 

semantic interference provided: between adjacent 

versions and between non-adjacent versions. In this 

study, we implemented and evaluated the adjacent 

analysis. The non-adjacent analysis needs an extra 

assumption: the second change should start from a 

tested and accepted version. According to our 

knowledge about the 5ESS history, this is difficult to 

guarantee and may not be feasible in practice. To make 

our study as sound as possible, we used the adjacent 

analysis that does not require that assumption.  

From an analysis on the 5ESS code as well as our 

personal industrial experience, it is clear that industrial 

projects make significant use of pointers. Because of 

this we extended our interference analysis one step 

further to that of de-referenced variables. We consider 

this still to be a form of “direct” semantic interference 

because we are not doing pointer analysis as such but 

still focusing on def-use pairs to determine interference. 

Given the efficiency of local analysis and the avoidance 

of pointer analyses, we believe it is a useful trade-off.  

The results of our study support that claim 

The implementation of the data dependency 

calculation and program slicing is based on 

GrammaTech’s CodeSurfer [1]. For pointer analysis, 

we select CodeSurfer’s option that distinguishes 

individual fields in a referenced structure. SCA uses the 

most precise pointer analysis Codesurfer offers. The C 

compiler is Visual C++ 6.0. For the language 

constructs that do not conform to ANSI C, for example, 

the macro “#feature”, we made textual changes to the 

source to pass the compilation. Our preprocessing does 

not change the semantics of the studied programs. 

The study is done on a Pentium III 800MHz PC 

with 256M RAM and Microsoft Windows 2000.  

4. Study and Results 

From the observation and implications from the 

previous study, we propose 3 hypotheses in this 

evaluation: 

1) H1: semantic interference is more likely in higher 

degrees of parallel changes. 

2) H2: semantic interference is a useful predictor of 

faults in high degree parallel changes. 

3) H3: semantic interference detection is light-

weight and efficient.  

We prepared three sets of changes that represent 

these different degrees of parallelism. We ran the 

semantic conflict analyzer on each set. We compared 

the results from the three sets to evaluate the 

effectiveness of the detection algorithm on different 

degrees of parallel changes. We also estimated the 

overhead by considering the execution time consumed 

in running the analyzer. 

Our study has 5 steps. We introduce the results and 

their analyses according to the steps.  

4.1. Sample Versions of Different Parallel 

Degrees 

 In this step, we prepared changes to be studied. To 

supply changes of differing degrees of parallelism, we 

constructed three equivalent sets of parallel changes 

from the change and version histories:  

1)  For the control set, we randomly selected 

versions that have no parallel changes with 

respect to a particular release – that is, the interval 

between the versions are so long, greater than 1 

month, that they can not be viewed as a parallel 

changes. 

2)  For the low degree of parallelism set, we 

randomly selected versions that are logically 

parallel with a reasonable interval of time (from 1 

week to 1 month).  In this case, we claim the 

developers have sufficient time to understand the 

implications of the changes made by others.  

3)  For the high degree of parallelism set, we 

randomly selected versions that are logically 

parallel with a very short interval time, less than 1 

week. In this case, it is difficult, we claim, for the 

developers to fully understand the changes made 

by others in such a short time
1
. 

                                                           
1
 Our choice of less than a week, between a week and a 

month, and greater than a month was based the observations 

in [13] about the phenomena of parallel changes. 
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Figure 3 Distribution of the purposes of changes in the 

three sets.  In the High, Low and Control set, the 

composition of Perfective, Corrective and Adaptive 

changes are very similar.  



To maximize internal validity, we sample versions 

for the three sets with nearly identical distribution of 

different change purposes (adaptive, corrective, and 

perfective), average size of changes (in number of 

changed lines), and average size of the source file (in 

lines of code, LOC). For the sampled versions in the 

three sets, the composition of the three sets is shown in 

Figure 3, and the average size of changes and average 

size of the source file are shown in Figure 4.  

4.2. Calculate Semantic Interference 

In each set of parallel versions, we run SCA to 

detect the semantic interference between versions. The 

results are in Table 1.  

To quantify the relationship between semantic 

interference and parallelism, we calculate the Density 

of Interference and the Frequency of Change for 

each set.  

Density of Interference = detected interferences versions /  
# of versions; 

Frequency of Change = 1 / Avg. change interval 

The result in Figure 5 shows that the Density of 

Interferences increases according to the increase of the 

Frequency of Changes. This supports Hypotheses 1: 

semantic interference is more likely where there are 

high degrees of parallelism. This result is congruent 

with our earlier findings in with respect to the degree of 

concurrency and the likelihood of faults [12] [13]. 

This result also supports for our belief that more 

conflicts happened at semantic level than at textual 

level. In the previous study, in high degree parallel 

changes, only 3% interference can be detected in the 

textual level. And the results in Table 1 show that, 

compared with textual interference, semantic level 

analysis can disclose significantly more interference 

than the textual analysis.    

4.3. Identify Related Faults 

Semantic interference by itself does not indicate a 

fault.  The interference might well be intended to 

correct a fault or to add new processing, etc.  It is 

unintended interference that is likely to represent a 

fault. Using semantic interference as a predictor of 

faults, some interferences represent faults while others 

do not (i.e., are false positives). The critical part of this 

experiment is to evaluate the effectiveness of the 

semantic interference in fault prediction. 

We use the code fragments that are changed in 

Corrective MRs to represent faults. For each set of 

parallel versions (each with its set of semantic 

interferences), we first mine the change management 

history to look for Corrective MRs subsequent (in time) 

to and dependent on these versions with interference. 

Then we mine the version management system to get 

the changed code fragments in these Corrective MRs.   

We note that a logistic regression analysis of our data 

shows that the high set is significantly different from 

the control set (p < .001). 

Set Versions 
Interference 

versions 

Avg. change 

interval  

(days) 

High  46 19 2.3 

Low 27 8 18.4 

Control 17 2 265.1 

Table 1 Detected interferences in the three sets. 
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Figure 5 Density of Interference and Frequency of 

Changes in the three sets.   X-axle: Frequency of 

Changes in changes per day. Y-axle: Density of 

Interference in interferences per version. 
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Figure 4 Average sizes of changed lines and files in 

the three sets. The size of changes is in LOC (Lines 

Of Code) and the size of file is in KLOC (Kilo- Lines 

Of Code). The size of changes and files are similar for 

High, Low and Control sets. 

 



4.4. Evaluate SCA’s Effectiveness  

The effectiveness of the detection algorithm is based 

on the match between semantic interference and faulty 

code. We checked the accuracy of the predictions by 

checking the defect MRs written against those versions 

with interference. We also studied the semantic 

properties of our evaluation results.   We divide the 

evaluation into three sections:  1) where SCA detects 

semantic interference and there is a fault, and 2) SCA 

detects interference and there is no fault, or 3) where 

there is a fault but no detected interference. 

4.4.1. Match: Semantic Interference & Faults 

 For each of the three sets, we compare the semantic 

interference source code fragments obtained in Section 

4.2 with the faulty source code fragments determined in 

Section 4.3. We classify the results into 3 groups: 

• Hit - detected interferences found in faulty code 

fragments; 

• False positive – detected interferences that have no 

faulty code fragments associated with them; 

• Miss – faulty code fragments that have no detected 

interferences associated with them. 

Table 2 shows the results of matching semantic 

interferences with faults. To fairly compare SCA’s 

effectiveness in the three sets, we calculate the Density 

of Fault (= Fault-related changes / # of versions) and the hit 

ratio (= Hits / Interferences) for each of the three sets. 

Figure 6 shows that the hit ratio in high degree parallel 

changes is much higher than that in low degree parallel 

changes, although their fault density is very similar.  

4.4.2. Semantic Analysis on Matching Results 

Besides the comparisons above, we also analyzed 

the semantic properties of the hits, misses, and false 

positives groups in Table 2 according to the 

classification of errors found in [20]. 

1) In hit group where the detected interference is 

found in the faulty code, all the 10 matched 

interferences are non-pointer variable faults.  

<  i = pos_no;   

>  i = pos_no++;  

In a more specific error classification, all of them 

are incorrect variable used faults. Eight of the 10 

faults are path selection faults. This means an error 

in variable usages represents a fault in the 

computation where the program selected a wrong 

path. Two of the 10 are computation faults, which 

mean the incorrect variable usage generates 

erroneous outputs.  

2) In false positive group, semantic interferences are 

detected but are not matched with any faults. 

Because the noise level is critical for a static 

analysis tool like SCA, we give a further 

classification on the 19 false positives: 

a) Eight of the 19 are variable or type renaming 

cases. For example,  

< quote_ptr->osps_aq.acronym[i] 

=msg_ptr-> 

text.my_mgacqs.htl_acrnym[i]; 

> quote_ptr->tsps_aq.acronym[i] = 

msg_ptr-> 

text.my_mgacqs.htl_acrnym[i]; 

b) Five of the 19 are fault-fixing cases 

This kind of semantic interference is intentionally 

introduced to fix a fault. 

c) Three of the 19 are false identification of changes. 

For example,   

Table 2 Match the detected semantic interference fragments with faulty codes.  

Sets Versions Fault related Interference Hit False positive Miss 

High 46 25 19 8  11  17 

Low 27 16 8 2  6  14 

Control 17 10 2 0  2 10 

Total 90 51 29 10 19 41 

54%
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59%

25%
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0%
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Figure 6 In the three sets, the density of faults is very 

similar, while the hit ratio in fault prediction is quite 

different.  



< (CRoaddrtbl[cid.crindx]->ospsff & 

0xfffffffe) | ((DMUNLONG) 1); 

>( CRoaddrtbl[cid.crindx]->ospsff & 

0xfffffffe) | 

>          ((DMUNLONG)1); 

This kind false positive is an artifact of CodeSurfer 

and comes from the incorrect identification of same 

vertex in two versions. In this detection algorithm, 

the corresponding vertex in the two versions is 

identified by its type and the associated text. So, in 

the change above, we view the two statements as 

different, although only spaces were added in the 

second version. We did not use semantic 

equivalence evaluation as found in [24] because it is 

too expensive to compute in a real project. 

3) The miss group shows the fault-related versions 

that are invisible to our interference detection 

algorithm. There were 17 faults that were 

invisible – i.e., that were undetected by SCA. We 

classify these invisible faults according to their 

semantic properties. This can guide users to 

utilize our interference detection approach in 

effective ways.   

a) Eight of the 17 are control flow faults.  

<  if ( i < 5) 

>  if ( i <= 5)  

For such kind of change, no impact happened on 

variable definition and use. So our interference 

detection algorithm cannot identify such faults that 

are related to control flow errors. 

b) Five of the 17 are faults related to pointer 

variables. 

We reviewed the sampled versions and found 

some pointer arithmetic operations changed the 

target objects of pointers. But such changes are 

ignored in our algorithm because Codesurfer 

assumes that pointer arithmetic will not change the 

pointer-to set.  

c) Four of the 17 are basically other faults which 

can not be categorized into the error classification 

in [20].  

In summary, the match between semantic 

interferences and predicted faulty code supports 

Hypothesis H2. Moreover, the semantic analysis on 

false positives also confirms that SCA suffers the same 

problems as many other static analysis tools. And for 

the non-pointer variables that static analysis can give a 

more precise analysis than for the pointers, SCA can 

also give a more precise prediction of potential faults. 

4.5. Evaluate SCA’s Efficiency  

While evaluating the efficiency of SCA, we use the 

time used in calculating semantic interference as the 

overhead. In analyzing the semantic interference on the 

sample versions, the average time is about 2 minutes. 

In this overhead, 83% is spent on the program 

dependency analysis with CodeSurfer, and the time for 

the calculating and detecting interferences is only 17% 

of the overhead.. And the average time to compile the 

analyzed version is 1.8 minutes. This result supports 

Hypothesis H3: semantic interference is a lightweight 

and efficient fault prediction approach.  

Based on these results, we can claim that the use of 

SCA is both effective and efficient and will aid 

developers in finding and fixing faults.  As soon as a 

developer finishes a new version, SCA can give instant 

feedback about conflicts. The immediate warnings can 

remind developers to check or fix faults in the new 

version while they are still familiar with what changes 

have been made in this new version as well as the 

reasons for making them. For the versions we studied, 

it is usually 150 days on average after the fault-

inducing changes were made when they were found by 

various means such as testing, etc. The use of SCA will 

save the effort of having to rediscover or recall what 

was done 5 months earlier.  

5. Validity Analysis 

To analyze the soundness of this experiment, we 

discuss its construct, internal, external validity, and 

conclusion validity. 

We focus on a specific and well-defined form of 

semantic interference between versions.  Given that 

there are multiple levels of parallelism in a large-scale 

development, we feel that our distinction between high, 

low and no degrees of parallelism is justified for this 

study evaluating the efficiency and effectiveness of our 

analyzer.  We also claim the delay time construct is 

well defined and justified as well: the time from the 

version commit until the opening of the fault MR. The 

problematic time construct is the fix time.  First, one 

should view that as a maximum possible time where 

only a portion of that time is actually spent finding and 

fixing the fault.  Second, only a portion of the actual 

time is spent in finding the problem and rediscovery; it 

is this time that would be saved by our analyzer. 

In evaluating the effectiveness and efficiency of the 

interference detection algorithm, we used the 

comparisons among sets of different degrees of 

parallelism. To filter out factors other than parallelism, 

we have checked the similarity among the sets in the 

distribution of changes of different purposes, the file 



sizes, the change sizes, and the density of fault-related 

changes.  We argue that the equivalence of these 

factors rules out confounding variables. 

We believe that our results our consistent with what 

one would intuitively expect about parallel changes and 

what is supported with our earlier studies: highly 

parallel changes do not allow time for developers to 

adequately understand the implications of changes and 

hence are more prone to faults as a result of these 

changes.  Our current results are consistent with our 

earlier results: there is a significant correlation (p 

< .001) between the degrees of parallelism, semantic 

interferences and faults.  The new and interesting 

results here (see Figure 6) also agree with ones 

intuition about adaptive changes: there are likely to be 

more interfering changes made to add new functionality 

than in correcting faults, or improving existing 

functionality. 

Although our study is based on the history data in a 

pessimistic version control system, SCCS, this 

approach can be easily extended to optimistic version 

control system, such as Concurrent Versions System 

(CVS), which is widely used in open source projects. 

CVS can supply the same kinds of data as SCCS for 

our semantic interference detection algorithm. The only 

variation in the evaluation process is the use of non-

adjacent versions of the interference detection 

algorithm. This is because, in CVS, the sequential 

order introduced by the check-in time in SCCS will not 

be valid.  

A threat to our study is that 5ESS is a very large-

scale real-time project with a large number of 

developers, geographically distributed. We argue, 

however, that the subsystem we studied is perhaps by 

itself more representative of a typical large project. The 

critical factor, however, is the issue of parallel changes 

to the same files by different people – i.e., feature 

ownership rather than code ownership.  This form of 

development is becoming more prevalent, and this 

supports our claim for external validity. 

On the basis of a sufficient set of versions to give us 

a reasonably good level of statistical power, 

appropriate factoring and precision, and reasonable 

reliability in the tools we use (e.g., see [9]), we believe 

that we have strong conclusion validity.   

6. Related Work 

Program slicing is an important technique in 

analyzing properties of programs. [6] proposed the 

combination of a program dependency graph and 

program slicing to provide conflict detection.  And 

Yang [24] increased the soundness of semantic conflict 

detection by semantic preserving transformations. 

Different from them, SCA focuses only on variable def-

uses rather than the whole dependency graph. While 

such a simplification means we do not catch all 

possible faults, it does make SCA a lightweight tool 

that is both feasible and effective in real projects. The 

results of Step 5, the efficiency evaluation of the 

detection algorithm, give strong support for our 

simplification.  

[15], [17], and [19] propose change impact analysis 

based on atomic change classifications and associate 

them with test cases. They work at the method level, 

and compare two abstract syntax trees, thus providing 

more precision but paying a higher overhead. SCA 

works at the statement level, comparing the vertices by 

variable def-uses and associated text. Ours is more 

narrowly focused on significantly less overhead.  

[18] uses fault localization to identify changes from 

the version management system and a fault database, 

and correlate them as fault-inducing changes. However, 

our approach is based on the semantic analysis on the 

changes and their interference, while [18] focuses on 

relating the events in version histories with fault 

databases.  

Passed and failed test cases are used in [25] to filter 

out non-related test cases and to select possible fault-

inducing changes. Their work focuses on the 

localization of fault-inducing changes by running test 

cases, while our approach focuses on the prediction of 

faults with static analysis of changes that semantically 

interfere. 

Program chopping [5] can minimize possible fault-

inducing code fragments. Compared with static 

program slicing we use, dynamic slicing can improve 

the precision for pointer analysis and reduce false 

positives in semantic interference detection. However 

executable versions are required beforehand.  This 

imposes a significant build overhead in any large 

system. 

In the empirical studies with version control 

repositories, Atkins et al. [2] uses change history and 

an effort estimation model [4] to calculate the effort 

that has been saved using the Version Editor (VE). 

This study illustrates an important point:  the versions 

found in the repository were separated into two groups 

based on a criterion that was useful in the empirical 

study and a significant result was obtained on the basis 

of this differentiation. The quantitative results provide 

evidence showing the usefulness of the software tool.  

However, the origin of the data in our study is quite 

different from theirs.  In the construction of the control 



and treatment groups, they were able to differentiate 

the historical data into VE and non-VE related groups.  

Without that extra-repository distinction (i.e., the VE 

footprint instrumented into the histories), the evaluation 

would not have been possible. Thus, while this 

empirical study did use historical data from version and 

change management, it was, in a real sense, 

instrumented data. While in our evaluation of SCA, all 

the data in our study was not instrumented, but data 

readily available in the repositories. 

[3] and [26] predict faults by mining change 

histories. But [3]’s granularity is larger than ours: the 

number of changes on a file, or the number of lines 

changed in a period of time. They do not consider 

interference between changes, whether at the textual 

level or the semantic level.  [26] focuses on structure-

related entities, such as fields or functions in a file, or 

files in a directory, and predicts faults from the 

incomplete changes.   We, on the other hand, focus on 

the semantics of the code, predicting faults from 

semantic interference. 

7. Conclusions and Future Work 

Our research has yielded two important 

contributions:  first, we have shown that a limited form 

of semantic interference detection can provide an 

effective and useful means of predicting faults in an 

increasingly common context; and second, we created 

an effective and novel design for rigorous experimental 

evaluation of analysis tools using and mining change 

and version management repositories. 

While our technique is incomplete both in detecting 

semantic interference and in predicting faults, it is both 

efficient (taking roughly the time of a compilation) and 

effective in predicting faults.  Despite our tool suffering 

the same problems as many other static analysis tools 

(i.e., unsoundness due to the imprecision of pointer 

analysis), the resulting analyses and predictions are still 

extremely useful in directing developers’ attention to 

potential faults.  

The results of our evaluative experiment are as 

follows: 

1) Semantic interference is significantly higher in 

high group (twice the other two); 

2) Semantic interference detection is effective in 

predicting non-pointer variable faults from the 

detected interferences in versions changed within 

short time periods; 

3) Of  the detected semantic interferences, 40% in the 

high group matched with known faults, 25% in the 

low group (33% in both);  

4) The overhead of using our semantic interference 

detection approach is very low and can help 

developers to find faults very early; and,  

5) Preciseness of pointer analysis, identification of 

variable renaming, and control-flow changes are 

the major factors that affect the effectiveness in 

detecting interference and predicting faults. 

Our experimental design itself is a significant 

contribution to providing rigorous evaluation of tools.  

We avoid the invalidity problems of contrived faults.  

Change and version management repositories provided 

a large enough population to obtain a variety of sample 

data such as change purpose, size of changed code, and 

size of source file.  By classifying the sampled data 

according to the degree of parallelism, we constructed 

a control group and two treatment groups.  

To provide an effective evaluation, the fault sets 

were mined from the version and change management 

repositories, rather than intentionally introduced. This 

“mundane realism” not only removes the internal 

validity problems associated with fault seeding (the 

representativeness of the faults seeded, the placement 

of those faults, and the frequency of fault occurrence, 

etc), but also increases the external validity or the study. 

The results from our study also suggest ways of 

combining our approach with that of others to improve 

the effectiveness of the semantic interference detection 

algorithm. As complementary approaches to static 

analysis tools such as SCA, dynamic analysis 

techniques, such as dynamic slicing [5] or symbolic 

execution [7], can identify control flow dependencies 

and analyze dereferences with more precision. And 

light weight compilation techniques, such as Island 

Grammars [10] [11], can reduce the workload for 

semantic analysis by eliminate the requirement on 

compilation. 
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