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Abstract

With the exponential increase in the number of sequenced organisms, automated annotation of proteins is becoming
increasingly important. Intrinsically disordered regions are known to play a significant role in protein function. Despite their
abundance, especially in eukaryotes, they are rarely used to inform function prediction systems. In this study, we extracted
seven sequence features in intrinsically disordered regions and developed a scheme to use them to predict Gene Ontology
Slim terms associated with proteins. We evaluated the function prediction performance of each feature. Our results indicate
that the residue composition based features have the highest precision while bigram probabilities, based on sequence
profiles of intrinsically disordered regions obtained from PSIBlast, have the highest recall. Amino acid bigrams and features
based on secondary structure show an intermediate level of precision and recall. Almost all features showed a high
prediction performance for GO Slim terms related to extracellular matrix, nucleus, RNA and DNA binding. However, feature
performance varied significantly for different GO Slim terms emphasizing the need for a unique classifier optimized for the
prediction of each functional term. These findings provide a first comprehensive and quantitative evaluation of sequence
features in intrinsically disordered regions and will help in the development of a more informative protein function
predictor.
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Introduction

Computational protein annotation methods are gaining in-

creasing importance with the sequencing of a large number of

organisms. Function prediction is done by assigning Gene

Ontology terms [1] to proteins. These methods use different

characteristics of proteins such as their sequence, presence of

distant homologs, predicted secondary structure, binding partners,

coexpressed genes, etc. to predict their function [2]. However, very

few methods directly use the properties of intrinsically disordered

regions (IDRs) in function prediction. Intrinsically disordered

regions are known for their flexibility and binding promiscuity,

and are important functional regions in proteins [3]. IDRs have

been found to be enriched in hub proteins and are often associated

with specific ordered domains [4,5]. They have also been found to

contain functional sequence motifs [6,7]. IDRs have been known

to directly affect protein function based on their characteristics. An

early study identified different types, or flavors, of disorder

enriched for specific functions [8]. Additionally, it has been shown

that the chemical composition of IDRs can be directly associated

with the functions of their parent proteins [9]. Thus, using

information from these regions may help improve function

prediction of proteins. However, their lack of stable tertiary

structure, low sequence complexity and poor sequence conserva-

tion make them difficult to use for function prediction with existing

methods, which are more suited for ordered proteins. Jones and

colleagues have used the length of IDRs along with their location

within the protein to identify associated functional terms [10,11].

We have previously used amino acid composition of IDRs to

assign functional terms to proteins [12]. Though these methods

have moderate success in assigning functional terms, systematic

studies extracting and assessing feature vectors from IDRs have so

far been lacking.

In this study, we attempted to predict protein function using the

sequence features of each IDR present within the protein. We

extracted several sequence features from IDRs within proteins and

tested their ability to assign the appropriate GO Slim terms to the

protein. The sequence features included those that were based on

residue frequency, predicted secondary structure, as well as those

that depended on sequence profiles obtained using remote

homologs. Our results indicate that while features based on

residue composition and secondary structure have higher preci-

sion, those based on PSIBlast profiles [13] have the highest recall
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(sensitivity). Additionally, IDR features vary in their ability to

classify proteins by function with some features performing better

than others for specific functional terms.

Methods

Dataset
IDRs predicted using DisoPred2 [14] in human proteins were

obtained from Moesa et al. [9]. 11329 IDRs from 6751 proteins

annotated with 130 GO Slim terms were used in the analysis

(Table S1). Each protein had between 4–7 orthologs among

chimp, dog, mouse, rat, fly, worm and yeast (Table S2). This

dataset has been previously used to show the relationship between

the chemical composition of IDRs and the functions associated

with the IDR-containing protein. We assumed that all IDRs

within a protein contribute towards its overall function. Hence,

each IDR was assigned the GO Slim terms of its parent protein.

GO Slim terms were used instead of GO Molecular Function or

GO Biological Process terms since they help combine several

specific terms into a single class reducing the number of classifiers

necessary and increasing the feature vectors that can be used for

their training. The number of GO Slim terms assigned to a protein

varied from 1 to 43 with 74% of the proteins having 10 or fewer

terms (Figure S1).

Sequence Features
We used the following sequence features to describe each IDR

within a protein (Table 1). Each feature consisted of a vector of

values used to represent the IDR sequence.

1. Chemical composition. The fraction of positively

charged (Arg, Lys), negatively charged (Asp, Glu), polar (Ser,

Thr, Asn, Gln, Tyr, Cys), hydrophobic (Ala, Val, Leu, Ile, Met,

Phe, Trp) and special (Pro, Gly) residues in the IDR [9].

2. Amino acid composition. The fraction of each of the 20

amino acids within the IDR [12].

3. Composition+Dubchak features. Dubchak features

were previously used to predict protein folds [15]. They include

amino acid composition, hydrophobicity, predicted secondary

structure, polarity, polarizability and normalized van der Waals

volume. The size of this feature vector is 125.

4. Occurrence+Dubchak features. The amino acid occur-

rence i.e. the un-normalized number of each amino acid, is used

instead of amino acid composition [16]. Dubchak features other

than amino acid composition are also used. The size of feature

vector of this feature is 125.

5. Residue bigram probabilities. This feature incorporates

the probabilities of the occurrence of all amino acid dimer pairs in

the IDR [17]. This is a 400 dimensional feature vector.

6. Alternate bigram probabilities. This feature vector

consists of the probabilities of occurrence of all possible pairs of

amino acids that are separated by one residue in the IDR sequence

[17]. This is also a 400 dimensional feature vector.

7. Position specific scoring matrix based bigrams (profile

bigrams). These bigrams represent the probabilities of transi-

tion from one amino acid to another as determined by the position

specific scoring matrix (PSSM) obtained from PSIBlast [13].

PSIBlast was run for 3 iterations on the IDR sequence to find

remote homologs in NCBI’s non redundant protein database with

an e-value of 0.001. PSSM provides the substitution probability of

a given amino acid based on its position along a protein sequence.

An IDR sequence is represented by its PSSM, and the bigram

features [18] are computed using the probability information

contained in the PSSM.

Let Sj be the matrix representing the PSSM of a given IDR

sequence j. The matrix Sj will have L rows and 20 columns (where

L is the length of the primary sequence). Its element at rth-row

and cth-column is denoted by sr,c which can be interpreted as the

relative probability of cth amino acid at the rth location of the

IDR sequence (with
P20

c~1

sr,c~1 for r~1,2, . . . ,L). The frequency

of occurrence of transition from kth amino acid to lth amino acid

is computed as follows

Bk,l~
XL{1

i~1

si,ksiz1,l , where 1ƒkƒ20 and 1ƒlƒ20 ð1Þ

Equation 1 gives the 20|20 bigram features of Bk,l . It can be

interpreted in the form of a feature vector of dimension 400 as

fj~ B 1,1ð Þ,B 1,2ð Þ, . . . ,B 1,20ð Þ,B 2,1ð Þ, . . . ,B 20,1ð Þ, . . . ,B 20,20ð Þ
� �

ð2Þ

Prediction Scheme for GO Slim Terms
Figure 1 illustrates the m-GO term prediction method used in

this study. The prediction method was subdivided into two main

tasks: feature extraction and classification. In the feature extraction

task, we identified IDRs in each protein and computed features for

IDR sequences. Let P denote a set of proteins containing

R~ r1,r2, . . . ,rnf g intrinsically disordered regions, where rj (for

j~1,2, . . . ,n) is jth IDR sequence. The feature vector fj for IDR

sequence rj can be interpreted as

Table 1. Features extracted from sequences of intrinsically disordered regions.

Feature Reference Dimensions

Chemical composition Moesa et al., 2012 [9] 5

Amino acid composition Patil et al., 2012 [12] 20

Composition+Dubchak features Ding and Dubchak, 2001 [15] 125

Occurrence+Dubchak features Taguchi and Gromiha, 2007 [20]; Ding and Dubchak, 2001 [15] 125

Sequence bigrams Ghanty and Pal, 2009 [17] 400

Alternate bigrams Ghanty and Pal, 2009 [17] 400

Profile bigrams Sharma et al., 2013 [18] 400

doi:10.1371/journal.pone.0089890.t001
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fj~ f1j ,f2j , . . . ,fdj

� �
ð3Þ

where d is the dimensionality or size of a feature vector fj .

Therefore, using a feature extraction method we can extract all

IDR sequences R~ r1,r2, . . . ,rnf g as F~ f1,f2, . . . ,fnf g.
An IDR sequence rj represents a set of GO Slim terms that are

associated with the protein in which it is found; i.e.

rj[ c1,c2, . . . ,cmf g, where ck denotes GO Slim term. Immediate

ancestor terms of the associated GO Slim terms were also included

in the annotations of the IDR sequence to account of the parent-

child relationships between the terms. The value of ck can be

either 1 or 0, where ‘19 denotes that the IDR rj is annotated with

the kth GOSlim term and ‘09 denotes that it is not annotated by

that term. Since IDR sequences are represented by feature vectors

F , each feature vector fj[F describes the GO Slim terms as given

by rj .

In a classical classification problem, a feature vector belongs to

only one class label. Here a feature vector belongs to multiple

classes or several GO Slim terms, simultaneously. Therefore, it is

imperative to break down the multiple class problem into a set of

binary class classification problems. In Figure 1, m-classes, or GO

Slim terms, are arranged into m binary classes. Thus, for a

particular binary class, a set of feature vectors F would only have a

unique class label ck and the value of ck (either 1 or 0) will denote

the status of ck (i.e., whether a particular GOSlim term is present

or absent). A classifier is then used to predict class labels of this

binary class. This prediction of a feature vector is applied for all

binary classes covering all GO Slim terms ck; k~1,2, . . . mf g. The

predicted GO Slim term (i.e., terms with ck~1) from each of the

binary classifiers is collated to give the final predicted terms for a

protein.

Training and Classification
The prediction problem was divided into 130 pairwise

prediction problems (one-against-others) as shown in Figure 1.

Each pairwise prediction was used to classify the IDRs between a

positive class and a negative class. A positive class was true if a GO

term or its parent term was correctly predicted. A negative class

was true if an absent GO term was classified as absent. The

performance of the classifiers was evaluated using 10-fold cross-

validation.

We calculated the sensitivity (recall), specificity and precision for

each of the 130 classifiers for each feature using 10-fold cross-

validation as

sensitivity or recall~
TP

TPzFN
ð4Þ

specificity~
TN

TNzFP
ð5Þ

precision~
TP

TPzFP
ð6Þ

where TP = true positives; i.e., number of IDRs for which the

classifier correctly assigns a GO Slim term or its immediate

ancetor to the protein.

FP = false positives; i.e., number of IDRs for which the classifier

assigns a GO Slim term to the protein even though it is not

annotated by that term.

TN = true negatives; i.e., number of IDRs for which the

classifier correctly does not assign a GO Slim term to the protein.

FN = false negatives; i.e., number of IDRs for which the

classifier does not assign a GO Slim term to the protein even

though it is annotated with that GO term.

The sensitivity corresponds to the true positive rate of the

predictor i.e. the fraction of IDRs whose features correctly predict

a GO Slim term, or its ancestral term, assigned to the parent

protein. The false positive rate indicates the fraction of IDRs using

which the GOSlim term associated with the parent protein is

incorrectly predicted. The specificity corresponds to 1– false

positive rate. The precision is a measure of the fraction of correct

positive predictions made. At random, a classifier has the same

sensitivity (true positive rate) and 1-specificity (false positive rate).

Figure 1. Schematic diagram of the prediction of protein function using features of intrinsically disordered regions with m-pairwise
classifiers. Features F are extracted from proteins P that have IDRs R. Protein GO Slim terms c1, c2…cm are assigned to IDRs. A single pairwise
classifier is trained for each of the m GO Slim terms. The classifier is used to predict a GO Slim term for a protein using features of each IDR it contains.
doi:10.1371/journal.pone.0089890.g001
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Therefore, all classifiers having a false positive rate less than the

true positive rate (or specificity greater than the sensitivity) are

performing better than random. The average values were

calculated over all GO Slim term classifiers for each feature.

Several classifiers were tested - Naı̈ve Bayes, kNN, AdaBoost,

Bagging, Logistic regression, J48, Random Forest and SVM (See

Text S1 for a brief description of the classifiers). These are utilized

from Weka [19]. The Naı̈ve Bayes classifier showed high

sensitivity and predicted the largest number of GO Slim terms

with higher accuracy than the other classifiers (Table S3, Figure

S2). We also tested the performance of the logistic regression

classifier on all the sequence features to confirm that it performed

poorly compared to the Naı̈ve Bayes classifier (Figure S3). Based

on these results, we chose the Naı̈ve Bayes classifier for further

analysis.

The Naı̈ve Bayes classifier assigned a prediction probability to

each predicted class or GO Slim term. As described in a previous

study [11], Mathew’s correlation coefficient (MCC) was used to

assess the classification performance of each feature per GO Slim

term using values as calculated above at a prediction probability of

0.5.

MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPzFPð Þ TPzFNð Þ TNzFPð Þ TNzFNð Þ
p ð7Þ

We performed the precision-recall analysis to compare the

overall prediction accuracy of the feature classifiers [11]. We used

105 randomly selected IDRs as the test set, while using the

remaining IDRs in the dataset as training data and predicted the

GO Slim terms of the parent proteins using each feature. The

precision and recall for each IDR per feature classifier was

calculated at a specified prediction probability p as follows.

TPr, p = the number of known GO Slim terms of the parent

protein that are predicted at a probability p or higher.

FPr, p = the number of GO Slim terms predicted for the parent

protein by the IDR features at probability p or higher but not

present in its list of known GO Slim terms.

FNr, p = the number of known GO Slim terms not predicted by

the feature classifier using the IDR features at probability p or

higher.

The recall (Rer,p) and precision (Prr,p) for each IDR were

calculated as shown in equations (4) and (6) respectively. The

overall precision at probability p was calculated as

Precision at probability p, Pr pð Þ~ 1

np

X

r[R

Prr, p ð8Þ

where np = number of IDRs that correctly predict at least one GO

Slim term at probability p or higher and R = total number of IDRs

in the test set

The average recall at probability p or higher was calculated as

Recall at probability p, Re pð Þ~ 1

R

X

r[R

Rer, p ð9Þ

We then plotted the overall precision and recall values at

various prediction probability values for each feature classifier.

Along with the complete set of intrinsically disordered proteins

from Moesa et al. [9], we also separately evaluated the perfor-

mance of the sequence features on three conservation-based

subsets of the data (Text S1).

Results and Discussion

Overall Evaluation of Sequence Features
Seven sequence features were selected for evaluation of their

performance using Naı̈ve Bayes classifier to predict protein

function using IDR sequence alone (Table 1). We have previously

shown that chemical composition is maintained in some IDRs with

poor sequence conservation. Additionally, it can also be associated

with protein function hence making a good starting feature [9].

Amino acid composition of IDRs was chosen since it has been

used to predict protein function at rates better than random [12].

We also used several sequence features that have been previously

used for protein fold recognition but have not been explicitly

evaluated in the context of proteins with intrinsic disorder.

Specifically, the Dubchak features take into account the amino

acid hydrophobicity, normalized van der Waals volume, predicted

secondary structure, polarity and polarizability [15]. Consecutive

bigram frequencies of the IDRs represent the frequencies of pairs of

amino acids within the IDR. Similarly, alternate bigram frequencies

represent the prevalence of pairs of amino acids separated by a

single residue [17]. Finally, we include a feature that uses

information based on remote homology in the form of bigram

probabilities calculated from PSIBlast PSSMs of the IDRs [18].

To evaluate each feature, independent classifiers were trained

for all 130 GO Slim terms that were associated with the proteins

containing the IDRs in the dataset. Naı̈ve Bayes classifier had the

highest sensitivity among a set of classifiers tested (Figures S2 and

S3, Table S3). Hence we performed all further classification using

the Naı̈ve Bayes classifier. 10-fold cross validation was performed

on the set of protein IDRs for each GO Slim term to evaluate the

performance of each feature. Table 2 shows the average sensitivity,

specificity and precision obtained for the classifiers of all GO Slim

terms for each feature. We further evaluated the performance of

each feature using the precision-recall curve (Figure 2).

Figure 2. Precision-recall plots comparing the performance of
the sequence feature classifiers. Precision-recall curves for the
prediction of GO Slim terms by Naı̈ve Bayes classifier using 7 sequence
features of IDRs. Abbreviations used: AA – amino acid, Chem –
chemical, Comp – composition, Occu – occurrence.
doi:10.1371/journal.pone.0089890.g002
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The results indicate that the amino acid composition and the

chemical composition have the highest precision values. The

Dubchak features significantly increased the true positive rate, or

recall, indicating that they can capture more correctly the nature

of the IDRs. Amino acid composition in combination with the

Dubchak features performed slightly better than occurrence with

Dubchak features in terms of precision, though both features had

similar recall. The alternate and sequence bigrams showed similar

levels of precision and recall to the Dubchak features. Among

these, the sequence bigrams had a higher precision than the

alternate bigrams. Finally, bigram probabilities obtained from

PSIBlast profiles have the highest recall but at the expense of

precision. This is the only sequence feature that uses sequence

homology. The higher recall values of the profile-based bigram

probabilities could in part be the result of partial motif

identification within IDRs. Indeed, motifs have been found in

human and yeast proteins within IDRs [6,7]. However, this

feature suffers from a marginal lack of coverage due to the inability

of PSIBlast to create profiles for certain IDRs. The sequence

features described here have been previously used to predict

protein folds. It is interesting to note that features used for fold

prediction perform reasonably well for IDR characterization and

protein function prediction. We show here that they can also be

independently used to reasonably predict protein functional terms

better than existing systems using amino acid composition.

We conclude that no single sequence feature outperforms the

others in terms of both precision and recall suggesting that a

combination of features will be more meaningful.

GO Slim Term Specific Evaluation of Sequence Features
In order to clarify the differences in the prediction performance

of different functional terms, we calculated the Mathew’s

correlation coefficient (MCC) for each GO Slim term per IDR

feature (Table 3, Table S4). MCC values greater than 0 indicate a

better than random performance of the classifier. All feature

classifiers were able to predict GO Slim terms with MCC values

greater than 0.05. Functions frequently associated with intrinsi-

cally disordered proteins such as nucleic acid binding, transcrip-

tion factor activity, mRNA binding, signal transduction and

histone binding had high MCC values across multiple features and

showed an overall good prediction performance.

GO Slim terms related to the extracellular matrix showed the

best prediction performance by all the features. Terms related to

DNA and RNA binding also had high MCC values for almost all

features. Though its overall sensitivity was low (1.8%), the classifier

using chemical composition had the highest average MCC value

across all GO Slim terms at 0.068 followed by amino acid

composition (0.054). The classifiers using Dubchak features had

MCC values .0.05 for the largest number of GO Slim terms (49).

The Dubchak classifiers performed well for ‘‘chromosome

organization’’ and the related ‘‘histone binding’’. Additionally,

composition with Dubchak features also performed well for ‘‘signal

transduction’’, while occurrence with Dubchak features classifier

performed best for ‘‘transmembrane transporter activity’’ and

‘‘helicase activity’’. Sequence bigrams showed a better overall

performance with good MCC values for ‘‘anatomical structure

development’’ and ‘‘cellular nitrogen compound metabolic pro-

cess’’. Sequence and alternate bigrams both performed well for

‘‘nuclei acid binding transcription factor activity’’. In spite of

having the highest average sensitivity/recall, the profile bigram

classifier had intermediate MCC values for all the GO Slim terms.

These results indicate that some features are better at predicting

certain GO Slim terms than other features. A classifier using

combinations of these features needs to be evaluated in the future

to identify the best possible combination or a distinct set of features

for each GO Slim term. The low MCC values across all features

and GO Slim terms (,0.5) highlights the difficulty of predicting

protein function using IDR sequence alone. As has been

previously shown [10], using other features with IDR sequences

will improve the performance. Our study assumes that the

functions of various IDRs within the same protein are indepen-

dent. Taking into account the dependencies between functions

associated with different IDRs present within the same protein will

provide further performance improvements. However, the fact

that most feature classifiers have MCC values .0 for several GO

Slim terms indicates that sequence features of IDRs can add value

to function prediction systems.

Some of the terms tested here are related to GO Molecular

Function and Biological Process terms that showed good

classification performances using location and length of disorder,

specifically those related to transcription factor activity and signal

transduction [10]. The GO Slim terms with good classification

performance also show some overlap with the functions previously

identified for the flavors of disorder based on amino acid

composition [8]. Specifically DNA binding and RNA binding

were also predicted correctly by our features, though metal

binding was not. While our results show some overlap with

previous studies, our dataset was much more comprehensive and

we analyzed several sequence features independently.

Conclusion

We identified seven sequence features in IDRs and evaluated

their ability to predict functional terms in proteins. Our results

show that sequence features in IDRs can add value to function

prediction methods. However, all the features here show only

limited success because they are confounded by the fact that GO

Slim terms assigned to proteins are often based on the functions of

their ordered domains. A better estimate of prediction accuracy

will be achieved by associating IDRs themselves with specific

functions as is done for Pfam domains or CATH domains.

Furthermore, this analysis is limited to the GO terms currently

available which often ignore functions specific to IDRs. Incorpo-

ration of functional terms specific to IDRs, eg. ‘‘linker region’’, will

also greatly improve the accuracy of function prediction. The

absence of a single feature with a superior prediction performance

and the varying performance of the features for different

functional terms clearly demonstrate the need to combine specific

features for the prediction of different functional terms. Future

work will focus on performing such an analysis.

Table 2. Average performance of sequence features in IDRs
using 10-fold cross-validation for all 130 GO Slim terms tested.

Feature
Recall/
Sensitivity Specificity Precision

Chemical composition 1.81 99.47 11.32

Amino acid composition 6.07 97.54 10.02

Composition+Dubchak features 30.41 80.68 8.08

Occurrence+Dubchak features 33.29 77.66 7.90

Alternate bigrams 37.04 73.52 8.50

Sequence bigrams 38.77 73.21 8.61

Profile bigrams 50.39 59.22 7.13

doi:10.1371/journal.pone.0089890.t002
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Supporting Information

Figure S1 Distribution of number of Proteins and
number of GOSlim terms per protein.
(DOCX)

Figure S2 Precision-recall curves for classifiers using
the 400 dimensional feature vector describing profile
bigram probabilities.
(DOCX)

Figure S3 Precision-recall curves for the prediction of
GO Slim terms by logistic regression classifier using 7

sequence features of IDRs. Abbreviations used: AA – amino

acid, Chem – chemical, Comp – composition, Occu – occurrence.

(DOCX)

Table S1 List of proteins and their intrinsically disor-
dered regions, along with their GO Slim terms and level
of conservation.

(XLSX)

Table S2 The number of orthologs for each protein.

(XLSX)

Table 3. MCC values for 7 IDR sequence features for the top 30 GO Slim terms predicted by at least 4 features with MCC .0.05.

GO Slim
term Description

Chemical
composition

Amino
acid
composition

Composition+
Dubchak

Occurrence+
Dubchak

Sequence
bigrams

Alternate
bigrams

Profile
bigrams

GO:0005578 Proteinaceous extracellular
matrix

0.288 0.346 0.212 0.103 0.182 0.171 0.222

GO:0030198 Extracellular matrix
organization

0.302 0.210 0.121 0.131 0.220 0.204 0.121

GO:0005576 Extracellular region 0.215 0.266 0.174 0.098 0.149 0.163 0.162

GO:0006397 mRNA processing 0.178 0.189 0.139 0.146 0.176 0.152 0.044

GO:0005198 Structural molecule activity 0.171 0.203 0.113 0.133 0.126 0.117 0.102

GO:0001071 Nucleic acid binding
transcription
factor activity

20.005 0.149 0.148 0.133 0.190 0.175 0.138

GO:0005634 Nucleus 0.093 0.108 0.131 0.140 0.144 0.134 0.088

GO:0048856 Anatomical structure
development

0.071 0.113 0.124 0.116 0.132 0.120 0.110

GO:0003723 RNA binding 0.077 0.113 0.116 0.117 0.118 0.095 0.102

GO:0003677 DNA binding 0.014 0.079 0.118 0.118 0.141 0.122 0.098

GO:0005783 Endoplasmic reticulum 0.169 0.137 0.070 0.044 0.084 0.096 0.072

GO:0034641 Cellular nitrogen compound
metabolic process

0.096 0.094 0.079 0.079 0.114 0.107 0.056

GO:0009790 Embryo development – 0.067 0.119 0.104 0.114 0.118 0.099

GO:0048646 Anatomical structure
formation involved in
morphogenesis

0.040 0.079 0.096 0.074 0.102 0.100 0.085

GO:0030154 Cell differentiation 0.030 0.065 0.109 0.091 0.093 0.080 0.091

GO:0051276 Chromosome organization 0.024 0.084 0.100 0.107 0.096 0.089 0.058

GO:0042254 Ribosome biogenesis 0.034 0.067 0.113 0.106 0.084 0.079 0.060

GO:0016887 ATPase activity 0.040 0.046 0.100 0.100 0.092 0.098 0.056

GO:0005730 Nucleolus 0.038 0.064 0.104 0.096 0.074 0.068 0.071

GO:0006259 DNA metabolic process 0.013 0.065 0.105 0.095 0.099 0.081 0.040

GO:0034655 Nucleobase-containing
compound catabolic process

0.057 0.062 0.098 0.095 0.071 0.083 0.029

GO:0005654 Nucleoplasm 0.060 0.055 0.046 0.047 0.088 0.100 0.072

GO:0005694 Chromosome 0.014 0.069 0.090 0.078 0.085 0.082 0.046

GO:0051082 Unfolded protein binding 0.082 0.083 0.089 0.080 0.048 0.039 0.023

GO:0022618 Ribonucleoprotein
complex assembly

0.000 0.127 0.078 0.066 0.063 0.062 0.047

GO:0005886 Plasma membrane – 0.033 0.055 0.085 0.096 0.102 0.068

GO:0004386 Helicase activity 0.006 0.039 0.094 0.097 0.084 0.078 0.033

GO:0007165 Signal transduction – 0.045 0.079 0.073 0.072 0.074 0.076

GO:0007049 Cell cycle 20.008 0.071 0.075 0.073 0.076 0.078 0.049

GO:0042393 Histone binding 20.007 0.080 0.082 0.059 0.071 0.068 0.033

doi:10.1371/journal.pone.0089890.t003
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Table S3 Performance of different classifiers using the
bigram profiles feature on a selected set of IDRs.
(XLSX)

Table S4 MCC values for all features and all GO Slim
terms tested along with the number of IDR sequences
used for training.
(XLSX)

Text S1 1) Description of the different classifiers tested, 2)

Feature performance in conservation based subsets of IDRs, 3)

Distribution of the number of orthologs per protein.

(DOCX)
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