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EVALUATION OF SHEAR AND FLEXURAL DEFORMATIONS 
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Earthquake Engineering, Well ington, May 1983. 

SYNOPSIS 

In order to predict the inelastic response of reinforced concrete 
structures under dynamic earthquake loading, hysteretic behaviour of 
their structural components must be evaluated appropriately. Though 
various restoring force models have already been proposed for beams 
and columns, hysteretic behaviour of flexural type shear walls remains 
unclear in many respects. 

In this paper, an evaluation method of distributing the total 
deformation of a shear wall into the flexural and shear deformation is 
mentioned and an analytical one of evaluating these deformations is pro-
posed. The comparison of analytical results with test results of shear 
walls is carried out. 

INTRODUCTION 

In order to predict the history of 
inelastic response of reinforced concrete 
structures under dynamic earthquake loading, 
hysteretic behaviour must be known for each 
seismic member, that is, beams, columns and 
shear walls. Hysteretic behaviour of beams 
and columns has been made clear through 
many experimental and analytical studies, 
and some hysteretic load versus deformation 
models, such as the Takeda model (which 
shows good agreement with experimental 
results of flexural members), have already 
been proposed. However, a proper practical 
hysteretic load versus deformation model 
for shear walls has not yet been proposed. 

Many experimental studies on shear 
walls have been carried out, but most of 
their load-deformation data are presented 
in terms of the load versus total deforma-
tion. Very few data refer to the shear 
and flexural deformations primarily because 
of the difficulty in separating the total 
deformation into these two deformations. 

This paper reports on an evaluation 
method of distributing the total deforma-
tion of a shear wall into the flexural and 
shear deformations. For this evaluation, 
rotation at the storey mid-height of a shear 
wall is used in addition to the horizontal 
and vertical displacements at four corners 
of a shear wall. 

Furthermore, this paper describes ana-
lytical method of evaluating flexural and 
shear deformations of shear walls whose 
flexural reinforcing bars of boundary column 
under tension yield. In the analysis, such 
a shear wall is represented as a truss 
system having a non-prismatic truss member 
based on test results of shear walls con-
ducted by US-Japan Cooperative Seismic 
Research Program. This paper also proposes 
an hysteretic model of each component of 
deformation. 
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FLEXURAL DEFORMATION AND SHEAR DEFORMATION 

In .shear wall tests, shear deformation 
is sometimes conventionally estimates from 
changes in the length of the two diagonals. 
However, the shear deformation given by 
this method contains flexural deformation 
because of the existence of a moment gra-
dient along the height of shear walls . 

This chapter describes the relation-
ship between horizontal and vertical dis-
placements at the four corners of a shear 
wall, and the relationships between flex-
ural deformation, shear deformation, and 
expansion. It also proposes a simple method 
to evaluate each deformation. 

Components of Deformation 

Displacements of a shear wall sub-
jected to a lateral load are illustrated 
in Figure 1. With an aim towards simpli-
fication of the development of equations, 
horizontal and vertical displacements at 
the base are modified to be zero. It is 
also assumed that these displacements can 
be represented by three components, that 
is, shear deformation (which includes slip), 
flexural deformation, and expansion. The 
sign for horizontal and vertical displace-
ments is positive in the upper and right 
hand side directions and elongation is 
positive for diagonal displacements. The 
following relations are assumed: 

U L S = U R S = U S (1) 

U R E ~ _ U L E 
= U E 

(2) 

U L B = U R B = U B 
(3) 

V R E = ~ VLE = V E 
(4) 

There are relationships between these dis-
placements and those shown in Figure 1 as 
follows: 

(5) 

(6) 
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V E + V R B (7) B 
a6h (17) 

V E + V L B 

6 1 S + 6 1 B 

(8) 

< 6

2 S
 + 6 2 B > 

U u R + u L) + 3(v R-v L) 

^ ( u s + u B ) + J ( v R - v L ) (9) 

From equations (5) and (6), horizontal 
displacement due to expansion and the total 
of flexural and shear deformations can be 
given by equations (10) and (11), respec-
tively, in terms of nodal horizontal dis-
placements . 

U E = 2 ( U R " U L } 

U S + U B " 2 ( U R + UL> 

(10) 

(11) 

Equation (11) indicates that the deforma-
tion of the hysteretic load versus defor-
mation relationship which is used in dyna-
mic response analysis must be expressed 
not by each nodal horizontal displacement 
but by their average value. 

Thus, the shear deformation can be 
given by equation (12) from equation (9) 

d , P r „ , h 
U S " 21 

(6 
B 21 

(v. 

S o ) - c ^ -B 2 

where, 

I ( V L " V (v-
LB 

R 

V R B } 

v L)} 

(12) 

(13) 

I'he shear deformation is also given by 
equation (14) from equation (11) in a 
different expression: 

U S = 2 ( U R +

 *L> -
 U B ( 1 4 ) 

Expression of Flexural Deformation and 
Shear Deformation in Terms of Rotation 

Equations (12) and (14) imply that in 
order for shear deformation to be estima-
ted, flexural deformation must inevitably 
be estimated with sufficient accuracy. 
Flexural deformation can be assumed to be 
given by equation (15): 

'RY 
)dy (15) 

In equation (15), 9 , v L y and v R y represent 
the rotation of a shear wall ana the ver-
tical displacements of right-hand side and 
left-hand side boundary columns at y in 
the y direction, respectively. An example 
of the distribution of 6 along the height 
of a cantilever shear wall is illustrated 
in Figure 3. Curvature is dramatically 
increased around the base where the occur-
rence of cracks and yielding of steel is 
usually observed. 

Equation (15) can be rewritten by 
equation (17) using a new factor a- defined 
by equation (16): 

; h e dy 

o y y 

eh 
(16) 

a is the ratio 
surrounded by 
Therefore, it 
of this ratio 
tion. With re 
a relationship 
when the point 
above the subj 

of the shaded area to that 
solid lines ABCD in Figure 3. 
is reduced to the prediction 
to evaluate flexural deforma-
gard to a, there is generally 
as shown in equation (18), 
of contraflexure is located 

ect storey of a shear wall. 

1/2 a < 1 (18) 

By substituting equation (17) into equa-
tion (12) or equation (14), shear deforma-
tion is given as follows: 

U ^ (19) U S = 2T ( 61 " fi2>-("-7>eh 

Ug - 7J- (u^ + u^)-a6h (20) 

Equation (19) proves that shear deformation 
given approximately by only changes in the 
length of diagonals , corresponds to shear 
deformation given by 1/2 of a. However, if 
1/2 of a is assumed, the shaded area in 
Figure 3 would be approximately represented 
by the area of the triangle ABC, which 
occurs only in the case of pure bending, 
and this therefore results in an over-
estimation of shear deformation. 

Figure 3 is nothing but a conceptual 
illustration, but it does not seem to be 
difficult to evaluate a with certain accu-
racy because of the general behaviour of 
rotation. For example, if either rotation 
6 M, or right-hand side and left-hand side 
vertical displacements at mid-height of the 
subject storey of a shear wall were mea-
sured, considerable improvement of accuracy 
in evaluation of a could be expected as 
follows: in Figure 4, case 1 shows the 
case where rotation distribution is repre-
sented by the lines connecting the measured 
point M and points A and C, whereas case 2 
shows the case where that is represented by 
the line connecting 6^/2 and (0 + ©M)/2 
whose tangent is equal to that of the line 
connecting points A and C and by the lines 
connecting both ends and points A and C. 
The ratios 04 and a 2 of the area surrounded 
by these approximate lines to the area ABCD 
are given by equations (21) and (22), res-
pectively. There is generally relationships 
given by equations (23) and (24) between 
approximate values ot]_ and a 2 and the exact 
value a. 

+ 3-£> 

0.75 < a x/a < 1 

0.875 < c t 2 / a < 1.167 

(21) 

(22) 

(23) 

(24) 

The maximum possible error amounts to 
25 percent for 04 and 16.7 percent for a?. 
However, a 2 seems to estimate a with good 
accuracy as is expected from equation (24) 
and Figure 4, and the excellent accuracy 
of was proved through nonlinear analy-
tical case studies on single and seven 
storey shear walls. 



Fig. 1 Deformation of Shear Wall 
Subjected to Lateral Load 
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Fig. 3 Distribution of Rotation of a Cantilever Type Shear 
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RELATIONSHIPS BETWEEN SHEAR AND FLEXURAL 
DEFORMATIONS OF FLEXURAL TYPE SHEAR WALLS 

When reinforcing bars of a boundary 
column under tension yield, cracks devel-
oped in the tension side column extending 
obliquely to the bottom part of the com-
pression side column through in-filled 
panel wall. As a result, both the shear 
and flexural deformations increase signifi-
cantly (1). After these cracks take place, 
the hypothesis of a plane section remaining 
plane is no longer suitable. H Bachmann 
already reported experimental results that 
hinging region of beams increased according 
to development of shear cracks, and also 
presented its analytical proof based on the 
stress of flexural reinforcing bars under 
tension given by equilibrium of forces at 
an inclined cracked surface (2) . 

In this chapter, the stress of flexural 
reinforcing bars of boundary column under 
tension is expressed by H Bachmann's theory. 
The shear wall is represented as a truss 
system having a non-prismatic truss member 
whose cross-sectional area is determined by 
the stress along the height of boundary 
column. Then flexural and shear deforma-
tions are evaluated. 

Stress of Reinforcing Bars of Boundary 
Column Under Tension 

Figures 5 and 6 show crack patterns of 
three shear walls tested in US-Japan Co-
operative Research Program. Figure 7 shows 
forces and moment at an inclined cracked 
surface which is modified based on Figures 
5 and 6, and those at the base. In these 
figures, the following new notations are 
used: 

T = resultant tensile force of reinforcing 
n bars of boundary column under tension 

at y height. 

T Q - resultant tensile force of reinfor-
cing bars of boundary column under 
tension at the base 

T^ = resultant tensile force of vertical 
reinforcing bars, across an inclined 
Cracked surface, of the in-filled 
panel wall 

T^ 0 = resultant tensile force of vertical 
reinforcing bars of the in-filled 
panel wall at the base 

Q w = lateral force acting on the shear wall 

Q = shear force of boundary column under 
compression at an inclined cracked 
surface 

C Q = axial force of boundary column under 
compression at an inclined cracked 
surface 

M Q = moment at the base 

N = axial force of the shear wall 

n = y/h 

under tension is given by equation (26), 

Assuming that T , 0 acting on an 
lined surface are wconcentrated at 1/2 

and nh/2, respectively, the resultant 
tensile force T of the boundary column 

m c 

( 2 6 ) 

Assuming that T _ at the base is concentra-
ted at 1/2, equation (27) is obtained: 

(27) 

Substituting equation (27) into equation 
(26), and assuming equations (28) and (29), 
equation (31) is obtained: 

T = T 
w wO 

Q = a o n x w w y 

where, 

P hth 

(28) 

(29) 

(30) 

P^ = ratio of vertical reinforcement area 
to the gross concrete area of a hori-
zontal section of the in-filled panel 
wall 

t = wall thickness 

Q = tensile yield stress of reinforcing 
y bar 

a h 
T = T~ ~ A n o r\ n 0 21 y (31) 

The stress of reinforcing bars of the 
boundary column under tension of y height 
is given by equation (32). 

T_ 
(32) 

where, 

a. = sum of the cross-sectional area of 
reinforcing bars of the boundary 
column under tension 

a = stress of reinforcing bars of the 

boundary column under tension at the 
base 

a = stress of reinforcing bars of the 
n boundary column under tension at y 

height 

a h 
w (33) 

The analysis is not applied to the region 
where stress given by equation (32) is much 
less than that given by assuming a plane 
section remaining plane. 

Truss Model of Shear Walls 

Shear walls after yielding of flexural 
reinforcing bars of the boundary column 
under tension is expressed as a truss model 
shown in Figure 8. In this paper, the main 
object of the analysis is placed to deforma-
tions at the first storey, so truss members 
above the first storey are assumed to be 
rigid. It is also assumed that shortening 
of the boundary column under compression 
is negligible, and tensile chord member 
(boundary column under tension) is expressed 
as a non-prismatic member whose cross-
sectional area is given by equation (34) 
so as for existing stress to satisfy 



Specimen FW 

Specimen Wl 

Fig. 5 Crack Pattern of Lower Three 
Story Shear Wall of a Full-
Scale Seven Story Structure 
Test3) at Tip Drift Angle 
of 1/64 

Specimen W2 

-Fig. 6 Final Crack Pattern of Half- Scale 
Three Story Shear Wall Tests ̂  
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equation (32) 

A = 

n 

o (34) 

-ro iy 

where, 

A = a cross-sectional area of the tensile 
n chord member, at y height, of the 

assumed truss system 

A = a cross-sectional area of the tensile 
chord member, at the base, of the 
assumed truss system. 

The deformation of this truss system con-
sists of deformation due to stretching of 
the tension side column, that due to 
shortening of the diagonal compression 
member, and that due to stretching of the 
beam (horizontal tensile member). Figures 
9 and 10 show their components. There are 
following relationships between these 
components. 

U s + U B 
ux + u 2 + u 3/2 

U B + U s l = 

» S 2 " I * 

2 U S 3 - 2 U E 

eh 

= a8h = ou 

U S 1 + U S 2 + U S 3 

s l = (l-a)9h= (l-a)ux = (|-DuE 

v/SL 

- v n M 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

where, 

average horizontal displacement of the 
right-hand side and left-hand side 
horizontal displacements of the first 
storey (sum of flexural and shear 
deformations) 

tip horizontal displacement due to 
stretching of the tension side column 

tip horizontal displacement due to 
shortening of the diagonal compres-
sion member 

right-hand side tip horizontal dis-
placement due to stretching of the 
beam 

u ? , u ^ = shear deformation due to 
sfiretcMng of the tension side 
column, that due to shortening of the 
diagonal compression member, and that 
due to stretching of the beam, 
respectively 

rotation at y height 

v = vertical tip displacement of the 
tension side column 

sl ; 

vertical displacement of the tension 
side column at y height 

s l 

It is clear from equation (41) and 
Figure 10 that the shear deformation u 
increases according to increase in tip 
rotation (flexural deformation), because 
of the general condition: 1/2 < a < 1. 

Figure 11 shows the envelope curves 
of load versus deformation relationships, 
during positive loading, of the first 
storey of the shear wall tested in PGA in 
the US-Japan Cooperative Research Program 
(5). The vertical displacement of the 
column under compression is little amount 
as it is assumed in the analysis, and the 
sum of the displacements u s 2 and u g 3 is 
small enough. In the case of such small 
displacements of u g 2 and u s O as this, 
there must be the relationship of u/h=6 
according to the truss model shown in 
Figures 8-10. This relationship is obvi-
ously observed in the test result shown in 
Figure 12. The similar results for this 
relationship also seem to be found in the 
test results of the nine flexural type 
shear walls reported by Mr R G Oesterle 
et al in 1976 (1). 

Consequently, in order to evaluate 
deformations of flexural type shear walls, 
the truss model proposed in this paper 
seems to be a suitable representation. 
Furthermore, as the deformations of u g 2 

and u s3 are little amount as shown in 
Figure 11, the dramatical increase in 
shear deformation after yielding is ex-
plained not by deterioration of shear 
rigidity due to flexural cracks, which have 
been pointed out by V V Bertero and R G 
Oesterle, but by a rotation mechanism having 
rotation origin at the base of the column 
under compression. 

Vertical Displacement of the Boundary 
Column Under Tension and Flexural 
Deformation 

B 

Vertical displacement v of the boun-
dary column under tension is given by 
equation (44), and flexural deformation u1 

and a are given by equation (45) and (46) 

v = hf1

e dri (44) 
0 n 

« h / 1 e n d n 

0 n 

h rl A 

= £ /1/ner,dndn 
* 0 0 n 

a = B 

(45) 

(46) 

where 

strain of tensile chord member at y 
height 

The stress of tensile chord member at y 
height is determined based on the existing 
stress which is given by equation (32). 
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Numerical Examples 

Figures 14 and 15 show the case study 
of flexural type shear walls where the 
ratio of the amount of horizontal rein-
forcement in the wall to the total sec-
tional area of flexural reinforcing bars 
of the boundary column under tension is 
parametrically changed. The stress versus 
strain relationship for reinforcing bars of 
the tension side column is represented as 
shown in Figure 13. The aspect ratio of 
the first storey height to width between 
centres of boundary columns, and material 
constants for steel are assumed as follows: 

h/l = 3.5m/6m = 0.583 

V E s H - 7 5 > W £ y - 1 0 

ug and u i increase according to tip drift 
angle. In the large deformation region, 
u s l is nearly equal to u B when a w/a^ is 
small, and u si is a fairly large amount 
even when a w/at is large. It is found, 
from Figure 15, that a has the maximum 
value when m/h-1/400, then it gradually 
decreases, and it converges into some 
constant value after yielding of flexural 
reinforcing bars of the boundary column 
under tension at top of the first storey. 
The symbol o in Figures 14 and 15 means 
this condition. 

HYSTERETIC MODEL OF THE LOAD VERSUS 
DEFORMATION RELATIONSHIP 

This chapter proposes a hysteretic 
model of the load versus deformation 
relationships of the first storey for 
flexural type shear walls. In this model, 
the relationships derived in preceding 
sections are taken into consideration. A 
sufficient test data has not been presented 
even for the load versus flexural deforma-
tion relationship. The proposed hysteretic 
model is, therefore, nothing but an idea. 
Further studies are highly recommended. 

Primary Curve of the Load Versus Deformation 
Relationship 

The primary curve for the load versus 
flexural deformation relationship has three 
breaking points as shown in Figure 16. 
These breaking points are flexural cracking, 
yielding and maximum strengths. 

The primary curve for the load versus 
shear deformation relationship before 
yielding is represented by bilinear, and 
that after yielding in flexure is done by 
a curved line which is given by equation 
(47) by considering the u versus u« 
relationship shown in equation (41), and 

U s 2 a n d U s 3 -

U s - u s l + U S 2 +
 U S3 

- 4 " 1 ) U B + U S 2 + u s 3 

= 4-Dt u B y + ! i ( u B u - u B y ) > 
u y 

Hysteretic Model 

The Takeda model (6) seems to be suit-
able for the hysteretic load versus flexural 
deformation relationship. 

One of possible representations for the 
hysteretic load versus shear deformation 
relationship may be the Shina model (7) 
which was proposed by M A Sozen et al for 
the members including pinching phenomena. 
Figures 18 and 19 show these hysteretic 
relationships. 

CONCLUSIONS 

The following conclusions have been 
reached: 

1. Shear deformation is overestimated, 
and consequently flexural deformation 
is underestimated if the shear defor-
mation is determined simply as a 
difference in length of two diagonals. 

2. Flexural and shear deformations are 
estimated with excellent accuracy by 
using the rotation at the storey mid-
height of a shear wall. 

3. Shear deformation increases by the 
rotational mechanism having a rotation 
centre at the base of the column under 
compression. 

4. Shear deformation significantly incre-
ases after reinforcing bars of the 
boundary column under tension yield. 
The ratio of the shear deformation to 
the flexural deformation is analyti-
cally determined by a truss model which 
has a non-prismatic member. 
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