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Accurate prediction of traffic information (i.e., traffic flow, travel time, traffic speed, etc.) is a key component of Intelligent 
Transportation System (ITS). Traffic speed is an important indicator to evaluate traffic efficiency. Up to date, although a few studies 
have considered the periodic feature in traffic prediction, very few studies comprehensively evaluate the impact of periodic component 
on statistical and machine learning prediction models. �is paper selects several representative statistical models and machine 
learning models to analyze the influence of periodic component on short-term speed prediction under different scenarios: (1) 
multi-horizon ahead prediction (5, 15, 30, 60 minutes ahead predictions), (2) with and without periodic component, (3) two data 
aggregation levels (5-minute and 15-minute), (4) peak hours and off-peak hours. Specifically, three statistical models (i.e., space 
time (ST) model, vector autoregressive (VAR) model, autoregressive integrated moving average (ARIMA) model) and three machine 
learning approaches (i.e., support vector machines (SVM) model, multi-layer perceptron (MLP) model, recurrent neural network 
(RNN) model) are developed and examined. Furthermore, the periodic features of the speed data are considered via a hybrid 
prediction method, which assumes that the data consist of two components: a periodic component and a residual component. �e 
periodic component is described by a trigonometric regression function, and the residual component is modeled by the statistical 
models or the machine learning approaches. �e important conclusions can be summarized as follows: (1) the multi-step ahead 
prediction accuracy improves when considering the periodic component of speed data for both three statistical models and three 
machine learning models, especially in the peak hours; (2) considering the impact of periodic component for all models, the 
prediction performance improvement gradually becomes larger as the time step increases; (3) under the same prediction horizon, 
the prediction performance of all models for 15-minute speed data is generally better than that for 5-minute speed data. Overall, 
the findings in this paper suggest that the proposed hybrid prediction approach is effective for both statistical and machine learning 
models in short-term speed prediction.

1. Introduction

To alleviate the traffic congestion in large cities, it is particularly 
important to make full use of existing infrastructure resources 
such as the application of Intelligent Transportation System 
(ITS) [1–10]. Real-time and accurate prediction of traffic 
parameter, such as traffic flow, travel time, and travel speed, is 
an important input of ITS. Advanced Traveller Information 
System (ATIS) and Advanced Traffic Management System 
(ATMS) are essential parts of ITS, while dynamic traffic 

assignment (DTA) is a significant task for the operation of ATIS 
and ATMS. For the purpose of DTA, traffic flow and travel time 
were estimated and predicted to describe the traffic conditions 
in DynaMIT (Dynamic Network Assignment for the 
Management of Information to Travelers) system [10]. When 
traffic incidents occurred, the predicted travel time was used 
to evaluate the performance of the application of ITS based on 
DTA [11]. In particular, evacuation time was predicted to ana-
lyze the effectiveness of ITS for evacuation purpose [12]. Using 
the predicted information, road users can re-plan reasonable 
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travel modes and routes before traveling, and further adjust the 
route to improve travel efficiency. With rigorous structure and 
strong computational ability, a good prediction algorithm can 
usually capture all kinds of characteristics in traffic data. Up to 
date, lots of short-term traffic prediction methods have been 
proposed. Vlahogianni et al. [2, 3] provided a summary of exist-
ing short-term traffic methodological approaches until 2013 
and divided them into two types: parametric methods and non-
parametric methods. Van Lint and Van Hinsbergen [4] sum-
marized the application of Neural Network in short-term traffic 
prediction. So far, traffic prediction models can be generally 
categorized into following several types: statistical methods, 
machine learning methods and hybrid methods.

Due to  good theoretical interpretation ability and clear 
computational structure, statistical methods are widely applied 
to short-term traffic prediction. �e conventional vector 
autoregressive (VAR) model and the autoregressive integrated 
moving average (ARIMA) model have been widely utilized in 
traffic prediction [13–16]. To improve the applicability of the 
conventional ARIMA model, Kumar and Vanajakshi [17] 
developed a seasonal ARIMA (SARIMA) model. Zou et al. 
[16] used space time (ST) model to describe both time and 
space correlations of traffic. A spatio-temporal autoregressive 
moving average (STARIMA) model was proposed to utilize 
upstream volumes in the current moment to predict traffic 
condition [18]. Yang et al. [19] found that the spatial traffic 
information from upstream and downstream road segments 
can improve the prediction performance. Recently, some new 
models have also been developed. For example, Zhang et al. 
[20] proposed Granger causality to predict travel time and 
obtained better prediction performance. Agafonov and 
Yumaganov [21] presented a distributed model for short-term 
traffic flow prediction based on the �-nearest neighbors method.

In addition to statistical methods, the machine learning 
methods have been widely used in traffic prediction due to its 
strong generalization ability, learning ability and adaptability. 
Neural network is commonly used in traffic flow prediction 
[22]. Recurrent neural network (RNN) has been widely adopted 
for modeling nonlinear time series data because of its short 
term memory [23]. Recently, some researchers found that state-
space neural network model [24] and long short-term memory 
neural network (LSTM) [25], which were improved based on 
the neural network, showed better prediction performance with 
high computational efficiency. Tang et al. [26] introduced an 
improved fuzzy-neural networks (FNN) to enhance traffic flow 
prediction accuracy. Dimitriou et al. [27] optimized the param-
eters of the adaptive fuzzy rule system using genetic algorithm. 
Lv et al. [28] proposed a deep-learning-based method using 
autoencoders to predict traffic flow. To capture the nonlinear 
spatial and temporal effect of traffic flow, Polson and Sokolov 
[29] introduced a deep learning approach combining a linear 
method. Based on mathematical methods and optimization 
techniques, support vector machine (SVM) transforms varia-
bles into a high dimensional space, and creates a hyperplane 
with maximum spacing. SVM contains two branches: support 
vector regression (SVR) and support vector classification 
(SVC). Furthermore, SVR model has a common application in 
traffic prediction [30, 31]. To speed up the parameter optimiz-
ing, the least square support vector machine (LS-SVMs) was 

used to predict traffic [32]. Jeong et al. [33] proposed an online 
learning weighted support-vector regression (OLWSVR) model 
to implement real-time traffic flow prediction. �e Kaman filter 
theory (KFT), an algorithm for optimal estimation of system 
state using state equation of linear system, was used to predict 
traffic flow and travel time [34, 35]. Wang et al. [36] proposed 
an improved extended Kalman filter (EKF) for travel time pre-
diction. Guo et al. [37] introduced an adaptive Kalman filter 
(AKF) to predict unstable traffic flow.

Hybrid models combining the advantages of different 
methods are proposed to improve prediction accuracy. For 
example, the conditional probability theory and Bayesian rule 
were combined with ANN [38], and the statistical methods 
and heuristic models were combined with SVM [39]. Yanchong 
et al. [40] proposed a short-term traffic flow prediction model 
combining Mallat wavelet and BP neural network. Tang et al. 
[41] combined fuzzy c-means and Genetic algorithm to predict 
missing traffic volume data. Huang et al. [42] proposed a traffic 
flow prediction model based on fuzzy mean clustering (FCM) 
and advanced neural network (NN). To further improve the 
prediction performance, Huang et al. [43] developed a deep 
learning method incorporating a deep belief network (DBN) 
and a multitask regression layer. Tang et al. [44] introduced a 
hybrid model by combining double exponential smoothing 
(DES) and a support vector machine to predict traffic flow. It 
has been shown that hybrid models have better prediction 
performance than single method in traffic prediction.

Traffic data usually represent periodic features which help 
understanding the variation patterns of traffic flow and 
improving the prediction performance. To demonstrate the 
periodic pattern, researchers have introduced many prediction 
models considering cyclicity. To capture the weekly patterns 
of data, Williams and Hoel [45] applied Seasonal ARIMA 
model to traffic flow prediction. However, the outlier detection 
and the parameter estimation of Seasonal ARIMA model are 
time-consuming. �us, Hong [46] applied seasonal support 
vector regression model with chaotic immune algorithm 
(SSVRCIA), Seasonal ARIMA model and seasonal Holt–
Winters model to traffic flow prediction, and concluded that 
SSVRCIA model performed better than other models. 
Moreover, Lippi et al. [47] proposed two improved support 
vector regression models and compared the prediction per-
formance in terms of accuracy and efficiency. Overall, Seasonal 
ARIMA model was proved to be more accurate; additionally, 
the new seasonal support vector regressor model performed 
better in peak hours. In addition, Li et al. [7] compared the 
prediction performance of hybrid models considering the 
periodicity of traffic time series data. And a frequently used 
strategy is the combination of prediction models and detrend-
ing methods [48–50]. For example, Dendrinos [51] divided 
the traffic-flow time series into two parts: periodic part and 
nonperiodic part, and took the nonperiodic part as the 
research focus. Some researchers modeled periodic compo-
nents using spectral analysis technique [52, 53]. Zhang et al. 
[49] developed a hybrid traffic prediction method, which sup-
posed that the traffic data contain three parts: periodic part, 
deterministic part, and volatility part. Furthermore, Zhang 
et al. [49] found that multi-step ahead prediction can provide 
more accurate prediction  results.
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Although a few studies have considered the periodic fea-
ture in traffic prediction, very few studies comprehensively 
evaluate the impact of periodic component on statistical meth-
ods and machine learning methods. Focusing on speed pre-
diction, the specific research objectives are: (1) to evaluate the 
effectiveness of hybrid methods based on three statistical mod-
els (i.e., ST, VAR, ARIMA) and three machine learning models 
(i.e., SVM, Multi-layer Perceptron (MLP), RNN) in multi-step 
ahead prediction (5, 15, 30, 60 minutes ahead predictions) 
considering peak hours and off-peak hours, separately, (2) to 
compare the prediction performance improvement consider-
ing the impact of periodic component for all models, (3) to 
examine the difference in freeway speed prediction under two 
different data aggregation levels (5-minute and 15-minute).

�e following sections of this paper are described below. 
�e second part provides the data description, which shows 
the data gathered from five loop detectors of an eastbound 
road of Interstate 394 freeway stretch, Minnesota, from 
November 2017 to April 2018. �e third part introduces two 
main methodologies used in this study: statistical models and 
machine learning approaches. �e next section provides the 
modeling results. �e short-term traffic speed prediction accu-
racy is evaluated under different scenarios. Finally, the model 
results are summarized and discussed.

2. Data Description and Preliminary Data 
Analysis

�is study is carried out on an eastbound road of Interstate 
394 freeway stretch, Minnesota, when suffering from heavy 
congestion during the rush hours of morning and a¯ernoon. 

In this study, the road equipped with 5 neighboring stations 
is selected (see Figure 1). �e length of selected road is about 
1.7 miles. And the distance between two neighboring stations 
is approximately 0.5 miles. �ere are 3 lanes for the eastbound 
direction.

Speed data can be downloaded using the publicly available 
data tool developed by the Minnesota Department of 
Transportation. �e speed data are collected for 5-minute and 
15-minute aggregation level, respectively, 24 hours a day from 
loop detectors, from November 2017 to April 2018. �e data 
missing rate is less than 0.01%, thus, the data repair method 
based on historical average is adopted to repair missing data. 
Specifically, traffic at night or on weekends is usually smooth 
and free of congestion. �erefore, this study selects the speed 
data from 6:00 AM to 8:00 PM of weekdays, which contain 
the morning and a¯ernoon peak hours. Figure 1 provides the 
location of the selected I-394 road.

Figure 2 provides the distribution of median value of his-
torical speeds on weekdays (Nov. 2017–April 2018) at all sta-
tions. From Figure 2, we can see that there are two peak hours 
for all stations: one is from about 7:00 AM to 9:00 AM and the 
other is from 3:30 PM to 7:30 PM.

It has been demonstrated that the traffic data of adjacent 
stations are spatially and temporally correlated [54, 55]. �e 
speed values of stations in the downstream are influenced by 
the speed values of stations in the upstream. Furthermore, the 
traffic condition in the downstream also affects the traffic in 
the upstream because of traffic jam. In this study, cross-cor-
relation function (CCF) is utilized to evaluate the time and 
spatial correlation of speed.

In this study, we choose station � as the target station. 
In Figure 3, the cross-correlation consequences between 

S281(A)

S288(E)
S286(D)S284(C)S282(B)

Figure 1: Location of I-394 road, from station A to station E.
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station � and stations �, �, �, and �, respectively. �e result 
is reasonable, because the farther away the station is, the less 
impact it has.

Periodic patterns are another significant feature of traffic 
speed, except the temporal and spatial correlation above. In 
Figure 4, the speed distribution of station C during five 
continuous representative weekdays is shown. It has been 
shown that the period pattern exists in the traffic parameters 
[49, 56, 57]. As shown in Figure 4, the speed data show a 
periodic pattern every 24 hours. Obviously, during the peak 
hours in the morning and a¯ernoon, the speed values suffer 

station � and other adjacent stations are shown. As provided 
in Figure 3, absolute value of lag has a steady decreasing 
effect on the CCF values of speed. More specifically, the cross 
correlation value between station � and other stations is 
largest when the lag is equal to 0. Furthermore, when the 
absolute value of lag equals to 20, the CCF value is as low 
as 0.3. Based on Figure 3, as the distance between two 
stations increases, it can be observed that the correlation 
between two stations decreases, that is, the value presents a 
downward trend. As shown in Figure 3, 0.8543, 0.9342, 
0.9000, and 0.7281 are the maximum CCF values between 
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Figure 2: Median value of historical speeds at all stations.
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Figure 3: Cross-correlation values of speed between station C and other adjacent stations.
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In this study, it is supposed that the speed at time � + � under 
the aggregation level � at station �, ��+�,�, is assumed to follow 

a normal distribution [58], that is, ��+�,� ∼ �(��+�,�, �2�+�,�). 
��+�,�, the mean of normal distribution, is the point prediction 
of speed. And the quantile, which is used to calculate the 
prediction interval, is defined below:

where, � = 1, 2, ..., 12; � = 5, 15; and, Φ represents the  
cumulative density function (cdf) of a standard normal 
distribution.

A linear regression combining the current value and the 
past value of speed at all stations is used to model ��+�,�, For 
instance, when � = 1, � = 5 (i.e., 5 minutes ahead 
prediction),

Analyzing the speed data from November to December 
2017, independent variables for ��+�,� (for example, in (2)) are 
selected. �e construction process of ��+�,� is described as fol-
lows: starting from the simplest model, independent variables 
are added stepwise until Bayesian information criterion is not 
further improved  [59].
��+�,�, the predictive spread, is fitted by a linear function of 

the fluctuating value ��,�,

where, coefficients �0 and �1 are nonnegative; and, the fluctu-
ating value, which reflects the range of the recent fluctuations 
of speed, is fitted as follows:

(1)��,� = ��+�,� + ��+�,� ×Φ−1[�],

(2)

��+1,5 = �0 + �1��,5 + �2��−1,5 + �3��,5 + �4��,5 + �5��−1,5
+ �6� �,5 + �7� �−1,5 + �8��−1,5.

(3)��+�,� = �0 + �1��,�,

(4)

��,� = ( 110
1∑
�=0
((� �−�,� − � �−�−1,�)2 + (��−�,� − ��−�−1,�)2

+(��−�,� − ��−�−1,�)2 + (��−�,� − ��−�−1,�)2

+(��−�,� − ��−�−1,�)2))
1/2

.

from a significant decline. In the off-peak hours, the speed 
values suffer from the random fluctuation during the free flow 
traffic condition. Furthermore, similar periodic patterns have 
been demonstrated at four other stations. To capture this 
cyclical pattern, a hybrid prediction method is adopted in the 
following section.

3. Methodology

In this part, statistical models (i.e., ST, VAR, ARIMA), machine 
learning models (i.e., SVM, MLP, RNN) and hybrid models 
are described, respectively. In this study, due to its marked 
drop in speed over the peak hours, and the accessibility of 
speed data of loop detectors from the upstream and down-
stream, station � is chosen as the target station. �e target 
station � is strongly correlated with the adjacent station, thus, 
the historical speed data of the adjacent station can be used to 
predict speed of the target station. In the section below, two 
aggregation levels (5-minute and 15-minute) are considered. 
� �,�, ��,�, ��,�, ��,�, and ��,� are used to represent the speed at 
stations �, �, �, �, and �. �e period, 6:00 AM –8:00 PM on 
weekdays (Nov. 2017–April 2018), is selected. Multi-horizon 
ahead prediction is calculated by using the proposed methods, 
and the prediction horizons are 5 minutes, 15 minutes, 30 min-
utes, and 1 hour. ��+�,� is the predicted speed at station �, where 
� denotes the time step, and � represents the aggregation level 
(for example, ��+1,5 represents the 5 minutes ahead prediction 
(or one-step ahead prediction under the aggregation level of 
5-minute) and ��+4,15 represents the 60 minutes ahead predic-
tion (or 4-step ahead prediction under the aggregation level 
of 15-minute)).

3.1. Statistical Models. In this part, three statistical models 
are described as follows: ST model, VAR model, and ARIMA 
model.

3.1.1. ST Model. ST model, modeling via the proper probability 
distribution of data, is introduced to traffic flow and traffic 
speed prediction [16, 57]. �e model contains two kinds of 
prediction values: point prediction and interval prediction. 
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Figure 4: Periodic pattern of speed at station C during representative weekdays.
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where, X�+1,� = (� �+1,�, ��+1,�, ��+1,�, ��+1,�, ��+1,�)
T

 is a 5 × 1 vec-
tor of variables; �0 is a 5 × 1 absolute term; �1 to �� are matrices 
of coefficients; and, u�+1 is a corresponding 5 × 1 independently 
and identically distributed random vector with �(u�+1) = 0 
and time invariant positive definite covariance matrix 
�(u�+1u��+1) = ∑u.

Equation (5) can also be written as follows:

�e range of the recent fluctuations of speed can be 
reflected by the fluctuating value.

3.1.2. VAR Model. Focusing on interrelated time series, VAR 
model can capture the effect of the upstream and downstream 
stations. In this study, a 5-equation VAR(m) model is defined 
as follows:

(5)X�+1,� = �0 + �1X�,� + �2X�−1,� + ⋅ ⋅ ⋅ + ��X�−�+1,� + u�+1,

�rough the evaluation of characteristic polynomial, the 
stabilization of VAR(m) model can be guaranteed:

No characteristic roots locate inside the unit circle, which 
is sufficient and necessary for stability.

3.1.3. ARIMA Model. Unlike VAR model, ARIMA model 
only takes the effect of time series into account, and has been 
used in various traffic data analysis [60–62]. A nonseasonal 
ARIMA model can be defined as follows: ARIMA (�, �,  
�), where, � is the number of autoregressive terms, � is the 
number of non-seasonal differences and � is the number of 
lagged prediction errors.

�e autoregressive moving average (ARMA) model can 
be extended to ARIMA. �e mathematical expression of 
ARMA (�, �) process is shown below:

�e data series are required to be stable in the ARMA 
model. �e time series which are nonstationary should be 
converted into a stationary series. �e data, which can not be 
modeled by ARMA, can be transformed by ARIMA model to 
fit an ARMA model. �(�) in ARIMA model means the �th 
difference of the unstable data.

�e mathematical expression of ARIMA (�, �, �) process 
is shown below:

where, ���� = ��−�; �� is a Gaussian white noise series whose 
mean is zero and variance is �2; and, �(�) = 1 − �1� − ⋅ ⋅ ⋅ − ����
and �(�) = 1 + �1� − ⋅ ⋅ ⋅ − ���� are polynomials of � and �, and 
�(�) ̸= 0 for |�| ≤ 1.  �1 to �� are matrices of coefficients; and, 
u�+1 is a corresponding 5 × 1 independently and identically 

(8)
(1 − �1� − �2�2 − ⋅ ⋅ ⋅ − ����)��
= (1 + �1� + �2�2 + ⋅ ⋅ ⋅ + ����)��.

(9)

(1 − �1� − �2�2 − ⋅ ⋅ ⋅ − ����)(1 − �)���
= (1 + �1� + �2�2 + ⋅ ⋅ ⋅ + ����)��,

3.2. Machine Learning Models. In this section, we describe 
three machine learning models: SVM model, MLP model, and 
RNN model.

3.2.1. SVM Model. SVM transforms vector variables into 
a higher dimensional space, and creates a hyperplane with 
maximum spacing. SVM contains two branches: support 
vector regression (SVR) and support vector classification 
(SVC). SVC, addressing the classification problems, calculates 
a decision boundary and maximizes the distance between the 
boundary and the nearest sample data. Like SVC, SVR uses 
a similar approach for regression problems and ignores the 
error which is less than � between the observed value and 
the estimated value [60, 63, 64]. More specifically, given 
a group of training data, the objective is to seek a function 
�(�) that the maximum deviation between actual values 
�� and predicted values is at most �. For instance, a linear 
function �(�) = ��� + � is flat if it has a small � —this can 
be achieved by minimizing ||�||2. Due to the function that 
satisfies all the necessary constraints � may not exist, some 
slack variables (�, �∗) are introduced to allow for some errors. 
�e formulation of SVR is defined as follows:

where, �(�) = ��� + � is the objective function; �� is actual 
value; � is the deviation between actual values and predicted 
values; and, �, �∗ are slack variables allowing for some errors.

We can also extend SVR to nonlinear problems by com-
bining nonlinear kernel functions. Common kernels include 
linear kernel and the Radial Basis Function (RBF) kernel, 
which convert the input sample into a higher dimensional 
space that results in better separation (for classification) or 
estimation of values (for regression). In this study, we exper-
imentally choose to use a RBF kernel for SVR because it gen-
erally provides better results.

(10)

minimize { 12 ||�||2 + �
�∑
�=1
(� + �∗)}

subject to
�� − ���� − � ≤ � + ������ + � − �� ≤ � + �∗� + �∗���, �∗� ≥ 0,

det(�5 − �1� − ⋅ ⋅ ⋅ − ����) ̸= 0��� |�| ≤ 1. (7)

X�,� =(� �+1,���+1,���+1,���+1,���+1,�) =(
�10
�20
�30
�40
�50

)+(�11,1 �12,1 �13,1 �14,1 �15,1�21,1 �22,1 �23,1 �24,1 �25,1
�31,1 �32,1 �33,1 �34,1 �35,1
�41,1 �42,1 �43,1 �44,1 �45,1
�51,1 �52,1 �53,1 �54,1 �55,1

)(� �,���,���,���,���,�)
+ ⋅ ⋅ ⋅ +(�11,� �12,� �13,� �14,� �15,��21,� �22,� �23,� �24,� �25,�

�31,� �32,� �33,� �34,� �35,�
�41,� �42,� �43,� �44,� �45,�
�51,� �52,� �53,� �54,� �55,�

)(� �−�+1,���−�+1,���−�+1,���−�+1.���−�+1,�)+(
�1,�+1�2,�+1�3,�+1�4,�+1�5,�+1).

(6)
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the weekdays, and a residual component. �erefore, the hybrid 
prediction methods can be defined as follows:

where, �� is the original speed at station �; �� is the cyclical 
trend at station �; and, ��� is the residual component at station �.

A trigonometric regression function, combining sinusoids 
and cosinusoids, is used to fit the cyclical pattern observed in 
Figure 4. Adorf [72] applied the trigonometric regression function 
to capture the periodic patterns when analyzing time series data. 
Furthermore, to improve the prediction performance for the wind 
speed, Gneiting et al. [59] adopted the trigonometric functions 
in the ST models and achieved accurate prediction results.

Taking the aggregation level of 5-minute as an example, 
the average speed of every station is computed as follows: 

where, �� is the average speed at time �; ���  is 5-minute average 
speed at time � on day �; � = 1, 2, ..., 288; and, � = 1, 2, ..., 30 is 
the number of days.

�e periodic component can be fitted as below:

where, � = 1, 2, ..., 288; � is the number of trigonometric 
polynomials.

Previous study [16] has examined different number of 
trigonometric functions on speed prediction and found that 
the prediction accuracy improves slightly a¯er � reaches 15. 
�us, we set � to 15 in this study.

�e residual component is fitted by the ST, VAR, ARIMA, 
SVM, MLP, and RNN models. Statistical prediction models 
(i.e., ST, HST (hybrid ST), VAR, HVAR (hybrid VAR), ARIMA, 
and HARIMA (hybrid ARIMA)) are estimated in the So¯ware 
R, and machine learning models (i.e., SVM, HSVM (hybrid 
SVM), MLP, HMLP (hybrid MLP), RNN, and HRNN (hybrid 
RNN)) are estimated in the So¯ware Python.

(14)�� =�� + ��� ,

(15)
�� =
1
30
30
∑
�=1
��� ,

(16)

�� = �0 + �1sin(2��288 ) + �2cos(
2��
288 ) + �3sin(

4��
288 )

+ �4cos(4��288 ) + . . . + �2�−1sin(
2���
288 ) + �2�cos(

2���
288 ),

3.2.2. MLP Model. Multilayer perception is the most common 
Artificial Neural Network (ANN) model[61, 65, 66]. Jiang 
et al. [67] selected MLP model as one of the candidates to 
compare the prediction accuracy of different models. A neural 
network consists of some layers, each of which has one or 
more neurons. Every neuron is linked with all the neurons in 
the adjacent layer, while the neurons in the layer are not. Each 
neuron takes a linear weighted combination of all its input �
(from the layer in front of it) and generates output � through 
a nonlinear activation function:

Each of these outputs � is used as an input to the next layer 
of neurons until the last (i.e., output) layer is reached. �e 
weights correlated with each neuron can be randomly initial-
ized so that each neuron can potentially learn a different func-
tion of its input.

And the loss function measures the difference between the 
estimated output value of the network and the real value of the 
training data. For regression problems, more specifically, the 
squared error between the estimate and the actual value is o¯en 
used as a loss function. �e backpropagation algorithm is then 
utilized to compute the gradient of this error, and the gradient 
is propagated back through the network (towards the input 
layer), and the weight of each neuron is updated by gradient 
descent. �e weights associated with each neuron are the param-
eters that define the neural network model, which are estimated 
by minimizing a loss function. A random gradient-based opti-
mizer called Adam, which is computationally efficient and 
extends well to larger data sets, is adopted [68]. Set all parame-
ters of this optimizer to their default values. �e rectified linear 
unit (ReLU) activation function is used in the MLP network.

3.2.3. RNN Model. As shown in Figure 5, RNN is a particular 
neural network, which consists of at least one feed-back link 
that serves as the internal state from the neuron’s outputs to 
the inputs. �e structure has the ability of time processing and 
sequence learning. RNN is widely used to process nonlinear 
time series data because of its short-term memory [25, 69–71].  
�e calculation formula of RNN is shown as follows:

where, � = (�1, ..., ��) is the input vector; � = (�1, ..., ��) is the 
hidden vector; � = (�1, ..., ��) is the output vector; �, �, and 
� are the weight matrices; �� and �� are the bias vectors; and, 
� represents the hidden layer function and is usually a sig-
moid function.

3.3. Hybrid Models. As shown in Figure 4, the traffic speed 
usually demonstrates a daily cyclical pattern. �erefore, it is 
feasible to decompose the speed data into two components: 
periodic component which demonstrates the cyclical trend in 

(11)� = �( �∑
�=1
(����)).

(12)�� = �(��� +���−1 + ��),

(13)�� = ��� + ��,
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Figure 5: RNN network structure.
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testing period. Specifically, we utilize a sliding training period 
that consists of the last 65 days before the prediction point for 
ST, VAR, and ARIMA models. For instance, the parameters of 
models for speed prediction on April 10, 2018 are calculated 
using the last 65 days (i.e., April (6 days), March (22 days), 
February (20 days), and January (17 days)). To be fair, the 
data samples from January 1st to March 30th (65 weekdays) 
are chosen as the training period to optimize parameters in 
machine learning models.

In the prediction, the optimal parameters of statistical 
models are calculated in �. More specifically, ARIMA and 
VAR models use forecast and vars packages. �e optimal 
order in ARIMA model is chosen by the Akaike Information 
Criterion (AIC) values with the last 65 days of data. A max-
imal order of 10 is used in VAR model. And the optimal 
order of VAR model is also determined via the AIC values. 
All machine learning algorithms are implemented using 
scikit-learn and keras so¯ware packages in the Python pro-
gramming language. Radial Basis Function (RBF) is set as 
the kernel functions in SVM. All models consider multi-ho-
rizon ahead prediction (5, 15, 30, 60 minutes ahead 
predictions).

From Figure 2, we can see that there are two peak hours 
for all stations: one is about from 7:00 AM to 9:00 AM and the 
other is from 3:30 PM to 7:30 PM. �us, we divide the target 
period into two parts: peak hours and off-peak hours.

Figure 6 shows prediction results of MAE values of from 
5 minutes to 60 minutes ahead prediction over all models with 
different aggregation levels in peak hours. In terms of 5 min-
utes ahead prediction, the performance of hybrid models is 
slightly better than that of single models. �e average MAE 

4. Results

4.1. Evaluation Indicators. To calculate the multi-step ahead 
prediction performance of different models, three performance 
evaluation indexes (i.e., the mean absolute error (MAE), the 
mean absolute percentage error (MAPE), and the root mean 
square error (RMSE)) are adopted. �e calculation formulas 
of these three indicators are shown as follows:

(17)MAE = ∑
�
�=1
�����
�
� − ��
����

� ,

(18)MAPE = 1�
�
∑
�=1

�����
�
� − ��
����
��
× 100%,
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Figure 6: �e MAE values of models for different horizons and aggregation levels in peak hours on station C.

where, � is the number of observations; �� is the actual speed 
at time � at station �; and, ��� is the predicted speed at time � at 
station �.

To evaluate the performance of all models, both one-step 
and multi-step ahead prediction are considered.

4.2. Comparison of Prediction Results. In this study, the 
prediction performance of ST, VAR, ARIMA, SVM, MLP, 
RNN, and hybrid models is compared using the speed data at 
station �. �e data samples collected during 6:00 AM–8:00 PM 
from April 2nd to April 30th (21 weekdays) are selected as the 

(19)
RMSE = √∑��=1(��� − ��)2� − 1 ,
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15-minute data, 10.9388. Additionally, similar conclusion can 
be drawn from MAPE value and RMSE value. �e possible 
reason is that with smaller aggregation level, more prediction 
steps are required under the same prediction horizon. 
Specifically, for 60 minutes ahead prediction, the step of 
5-minute speed data is 12 while that of 15-minute aggregation 
level is 4. As Zou et al. [16] demonstrated, the prediction per-
formance becomes worse as the prediction time step increases. 
Another reason is that the speed values of 15-minute aggre-
gation level o¯en show more significant fluctuations than 
those of 5-minute aggregation level.

In summary, two interesting findings can be summarized 
as follow: (1) the hybrid models can outperform the ST, VAR, 
ARIMA, SVM,   MLP, and RNN models in terms of the pre-
diction accuracy. �is is because the hybrid models, consid-
ering the trigonometric polynomials, can better capture the 
periodic features of speed data; (2) under the same prediction 
horizon, the prediction performance of hybrid models for 
15-minute speed data is generally better than that for 5-minute 
speed data.

Figures 9, 10, and 11 provide MAE, MAPE, and RMSE 
values of different prediction horizons for all models in off-
peak hours. Compared with peak-hours, the prediction per-
formance in off-peak hours is better on both single models 
and hybrid models. For example, for 5-minute speed data, the 
MAE value for HVAR model of 30 minutes ahead prediction 
in peak hours, 10.4796, is much larger than that in off-peak 
hours, 4.4149. In addition, similar conclusions can be found 
in terms of MAPE values and RMSE values. �e possible rea-
son is described as follows: the speed in off-peak hours is close 
to free-flow speed and fluctuates slightly. To be specific, the 

value of HARIMA model is 4.7999 while the value of ARIMA 
model is 4.7683 for 5 minutes ahead prediction. Specifically, 
the improvement of prediction accuracy is 0.66%, that is, both 
the hybrid model and the single model perform equally well 
for 5 minutes ahead prediction. However, for 5-minute data, 
the MAE value for HMLP model is 11.5593 and the value for 
MLP model is 15.1838 in terms of 60 minutes ahead predic-
tion. �at demonstrates the improvement is 23.87% in predic-
tion performance. Overall, hybrid models perform better than 
single models in terms of MAE values. Hybrid models can 
provide explicit description of the basic structure of data and 
give better insights into potential characteristics of time series 
data. In addition, Figures 7 and 8 summarize the results of 
MAPE values and RMSE values. Moreover, similar findings 
with MAE values can be drawn: for 15-minute speed data, 
hybrid models show slight improvement in terms of MAPE 
values and RMSE values of one-step ahead prediction. 
Moreover, for 60 minutes ahead prediction, hybrid model 
improves accuracy by 38.43% of MAPE value for ARIMA 
model, and 26.46% is the improvement of the RMSE value for 
SVM model. In summary, hybrid models outperform the ST, 
VAR, ARIMA, SVM, MLP, and RNN models. �is is because 
hybrid models treat residual components and periodic com-
ponents separately, and the variation pattern of traffic time 
series data can be amplified focusing on the residual compo-
nent and thus improves the prediction accuracy.

Further, from Figures 6, 7, and 8, it can be drawn that 
15-minute speed data perform better than 5-minute speed 
data on both hybrid models and single models. For example, 
for 15-minute ahead prediction, the MAE value for HRNN 
model of 5-minute speed data, 11.8321, is greater than that of 
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Figure 7: �e MAPE values of models for different horizons and aggregation levels in peak hours on station C.
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is selected to construct the periodic component of daily 
similarity, while three statistical models (space time model, 
ARIMA model, and VAR model) and three machine learning 
models (SVM model, MLP model, and RNN model) are used 
to describe the residual component. Although statistical 
models and machine learning models both aim to predict 
traffic speed, these two types of approaches differ greatly 
in model structure and result interpretation. Statistical 
models, based on a rule-based mechanism, are presented 
in mathematical formula form. Additionally, each variable 
in the formula has a specific or practical meaning. However, 
the application of statistical models is generally limited 
to the assumption embedded in the model. For example, 
data are commonly required to vary linearly with time in 
ARIMA model and VAR model. In the contrast, machine 
learning models directly learn from data without any explicit 
model structure, and operate as a “black box”. �us, the 
application of these models is more flexible, especially when 
handling big data. Nevertheless, lacking the capability of 
result interpretation is generally the limitation of these 
models. Given the significant difference between these two 
types of prediction, this study explored whether periodic 
components have the same impact on statistical model or 
machine learning model. Consequently, based on the above 
results, it can be inferred that the periodic component 
improves prediction performance both for statistical model 
and machine learning model. In summary, in terms of the 
unique characteristics of two kinds of models, researchers 
need to select the corresponding model according to specific 
requirements and assumptions. However, it is beneficial to 
introduce periodic components for both statistical model 
and machine learning model.

feature of speed in off-peak hours is much easier to character-
ize than that in peak hours. Moreover, similar findings with 
peak hours can be drawn: (1) the prediction performance of 
the hybrid model is better than the conventional models (ST, 
VAR, ARIMA, SVM, MLP, and RNN); (2) under the same 
prediction horizon, the prediction accuracy for 15-minute 
speed data is normally more accurate than that for 5-minute 
speed data.

Composing the residual component from original data, 
Tables 1 and 2 provide the improvement percentage of differ-
ent prediction horizons in peak hours. From tables below, we 
can find that as the time step increases, the proportion of per-
formance improvement gradually increases in sequence over 
all methods. �at is, the hybrid model demonstrates its advan-
tages with larger time steps. Taking 5-minute speed data as an 
example, the proportion of performance improvement of MLP 
model for 60 minutes ahead prediction, 23.8708, is larger than 
that for 30 minutes ahead prediction, 5.3738. �is is because 
trigonometric polynomials successfully describe the long-term 
periodicity of speed time series data.

5. Discussion

5.1. Effects of Hybrid Models. Decomposing original data 
into two components (residual component and periodic 
component), hybrid models can capture the dynamic 
fluctuations of traffic data accurately. �e periodic 
component, the main trend of time series, generally 
represents the time-independent part of original data; while 
the residual component reflects the time-dependent part of 
time series. In this study, a trigonometric regression function 
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Figure 8: �e RMSE values of models for different horizons and aggregation levels in peak hours on station C.
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Specifically, the impact of periodic component in peak 
hours on both statistical model and machine learning model 
is examined. From one-step ahead prediction to 12-step 
ahead prediction, the improvement of accuracy ranges from 
0.65% to 28.37% of ARIMA model in terms of 5-minute data. 
Similar conclusions can be drawn from other models (VAR 

5.2. Improvements of Hybrid Models over Single 

Models. Improvement percentage, the ratio of prediction 
accuracy improvement from single models to hybrid 
models, is utilized to measure the effect considering periodic 
component. Compared with off-peak hours, the prediction 
performance in peak hours is generally more critical. 
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Figure 9: �e MAE values of models for different horizons and aggregation levels in off-peak hours on station C.
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Figure 10: �e MAPE values of models for different horizons and aggregation levels in off-peak hours on station C.
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predictions are required, then it is worthy dedicating further 
study into effectively utilizing high-aggregation data while 
minimizing the negative effects of noise. Additionally, in terms 
of low-aggregation data, it is required to reduce information loss 
while ensuring high prediction accuracy.

6. Conclusions

In this study, we examine the impact of periodic component 
on three statistical models and three machine learning models 
when predicting freeway traffic speed using the data collected 
from five loop detectors of an eastbound road of Interstate 394 
freeway stretch, Minnesota. In addition, multi-horizon ahead 
prediction and two aggregation levels of data are also consid-
ered. �e prediction performance is measured by three eval-
uation indicators: MAE, RMSE, and MAPE. �e important 
conclusions can be summarized as follows: (1) the multi-step 
prediction accuracy improves considering the periodic com-
ponent of speed data for both statistical models and machine 
learning models, especially in the peak hours; (2) as the time 
step increases, the prediction performance improvement grad-
ually becomes larger considering the impact of periodic com-
ponent over all models; (3) under the same prediction horizon, 
the prediction performance of all models for 15-minute speed 
data is generally better than that for 5-minute speed data. �us, 
the selection of prediction models can significantly affect the 
prediction accuracy in terms of MAE, MAPE and RMSE, and 
further influences the performance regarding traffic manage-
ment tools such as ATIS and ATMS of ITS system. Inaccurate 
prediction of traffic parameters may have a significant impact 

model, ST model, SVM model, MLP model, RNN model). It 
can be found that longer prediction step is associated with 
larger improvement, which explains that the decomposed 
periodic component of original data has its advantages over 
long-term trend.

5.3. Effects of Data Aggregation Level. Further, the impact of 
two different data aggregation levels on prediction precision 
can be examined from the prediction results above. For traffic 
data, if the time interval is too small, dynamic fluctuations of 
data are too complex and data generally contain redundant 
information. Moreover, if the time interval is too large, the 
variation trend of data is smooth which leads to loss of useful 
information. �at is, 15-minute data contain less noise than 
5-minute data. Based on the prediction results shown above, it 
can be concluded that 15-minute aggregation level is superior 
to 5-minute aggregation level in terms of the three evaluation 
indicators (MAE, MAPE, and RMSE). In other words, it is 
easier to accurately predict average speed in 15 minutes than 
to separately predict three consecutive 5-minute periods. A¯er 
extracting periodic components from the original data, the 
dynamic variation of 15-minute aggregation level is slighter than 
that of 5-minute aggregation level, and thus it is easier to capture 
the underlining characteristic of remaining part of original data. 
In the meanwhile, larger prediction steps generally result in lower 
prediction accuracy. �us, with the same prediction horizon, 
such as 30 minutes ahead prediction, 5-minute data requires 
a 6-step ahead prediction while a 2-step ahead prediction is 
adequate for 15-minute data. Overall, it is worthwhile to make 
a trade-off between prediction accuracy and data fluctuation in 
practical prediction. Specifically, if accurate high-aggregation 

2

4

6

8

10

12

5 15 30 60

Prediction horizons (minutes)

R
M

S
E

HST−15 minute

HST−5 minute

ST−15 minute

ST−5 minute

5 15 30 60
2

4

6

8

10

12

Prediction horizons (minutes)

R
M

S
E

HVAR−15 minute

HVAR−5 minute

VAR−15 minute

VAR−5 minute

5 15 30 60
2

4

6

8

10

12

Prediction horizons (minutes)

R
M

S
E

HARIMA−15 minute

HARIMA−5 minute

ARIMA−15 minute

ARIMA−5 minute

5 15 30 60
2

4

6

8

10

12

Prediction horizons (minutes)

R
M

S
E

HSVM−15 minute

HSVM−5 minute

SVM−15 minute

SVM−5 minute

5 15 30 60
2

4

6

8

10

12

Prediction horizons (minutes)

R
M

S
E

HMLP−15 minute

HMLP−5 minute

MLP−15 minute

MLP−5 minute

5 15 30 60
2

4

6

8

10

12

Prediction horizons (minutes)

R
M

S
E

HRNN−15 minute

HRNN−5 minute

RNN−15 minute

RNN−5 minute

Figure 11: �e RMSE values of models for different horizons and aggregation levels in off-peak hours on station C.
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on the operation of ITS system, which aims to improve the 
efficiency and capacity of traffic and transportation system. 
Given the accurate real-time information about traffic condi-
tion (traffic parameters such as traffic speed, traffic flow, and 
travel time), drivers can replan or adjust travel routes to avoid 
the heavy traffic of original routes. Additionally, either ramp 
controlling or variable speed limiting can effectively alleviate 
traffic congestion while the traffic speed of mainline closes to 
the critical speed. In summary, transportation management 
agencies should be cautious further when predicting traffic 
condition to maintain the regular operation of ITS [45].

In the future, several in-depth research can be conducted. 
First, nonrecurring congestion events, such as incidents and 
special events, will influence the distribution of traffic speed. 
�us, it is necessary to examine the prediction performance 
of these models for nonrecurring congestion condition. 
Second, to address the heterogeneous speed data, some 
prediction methods based on finite mixture model and copula 
model may be developed [73, 74]. �ird, it is useful to 
compare the traffic prediction performance between the 
traffic flow models [75–77] and the proposed prediction 
models in this study. Fourth, the possible impact of periodic 
component on interval prediction should also be considered 
[37, 78–80].
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