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Abstract

Background: The field of metagenomics (study of genetic material recovered directly from an environment)

has grown rapidly, with many bioinformatics analysis methods being developed. To ensure appropriate use

of such methods, robust comparative evaluation of their accuracy and features is needed. For taxonomic

classification of sequence reads, such evaluation should include use of clade exclusion, which better evaluates

a method’s accuracy when identical sequences are not present in any reference database, as is common in

metagenomic analysis. To date, relatively small evaluations have been performed, with evaluation approaches

like clade exclusion limited to assessment of new methods by the authors of the given method. What is

needed is a rigorous, independent comparison between multiple major methods, using the same in silico and

in vitro test datasets, with and without approaches like clade exclusion, to better characterize accuracy under

different conditions.

Results: An overview of the features of 38 bioinformatics methods is provided, evaluating accuracy with a

focus on 11 programs that have reference databases that can be modified and therefore most robustly

evaluated with clade exclusion. Taxonomic classification of sequence reads was evaluated using both in silico

and in vitro mock bacterial communities. Clade exclusion was used at taxonomic levels from species to

class—identifying how well methods perform in progressively more difficult scenarios. A wide range of

variability was found in the sensitivity, precision, overall accuracy, and computational demand for the

programs evaluated. In experiments where distilled water was spiked with only 11 bacterial species, frequently

dozens to hundreds of species were falsely predicted by the most popular programs. The different features of

each method (forces predictions or not, etc.) are summarized, and additional analysis considerations discussed.

Conclusions: The accuracy of shotgun metagenomics classification methods varies widely. No one program

clearly outperformed others in all evaluation scenarios; rather, the results illustrate the strengths of different

methods for different purposes. Researchers must appreciate method differences, choosing the program best

suited for their particular analysis to avoid very misleading results. Use of standardized datasets for method

comparisons is encouraged, as is use of mock microbial community controls suitable for a particular

metagenomic analysis.
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Background
Metagenomics involves collecting samples from an en-

vironment (water, saliva, etc.) and then extracting and

studying the genetic material from the microorganisms

present in these samples [1]. This approach is transform-

ing microbiology, ecology, medicine, and other research

areas investigating various microbiomes, allowing us to

analyze for the first time microbial species, including

those not culturable, at a level of detail not previously

possible [2]. Metagenomics sequence reads can be taxo-

nomically classified to identify the microbes, or func-

tionally classified (gene functions, metabolic pathways,

etc.) to identify the functional potential of the commu-

nity. There exist two general approaches for characteriz-

ing the taxonomic content of environmental samples: (1)

sequencing of PCR amplicons corresponding to phylo-

genetic marker genes (e.g. 16S rRNA; “amplicon ana-

lysis”); (2) shotgun sequencing whereby all genomic

DNA in the community is sequenced. A drawback of the

shotgun sequencing approach is increased cost, but ad-

vantages include the ability to gain insights into metabol-

ism and gene function through functional classification,

and the avoidance of potentially biased amplification steps

[3]. Furthermore, a notable subset of taxa cannot be cap-

tured by traditional 16S sequencing owing to divergent

16S rRNA gene sequences [4]. This, combined with the

continuing decrease in cost of sequencing, may result in

shotgun metagenomics becoming increasingly used for

the taxonomic classification of microbial communities.

Taxonomic classification methods generally fall into

four categories, reflecting their different strategies: (1)

sequence similarity based methods, which use the results

of a sequence similarity search against a database of a

reference set of sequences, (2) sequence composition

based methods, which are based on characteristics of

their nucleotide composition (e.g. tetranucleotide usage

or codon usage) [5], (3) hybrid methods which incorpor-

ate components of the first two, and (4) marker-based

methods which identify species based on the occurrence

of certain specific marker sequences. Composition

methods generate models from the reference organisms’

genomes, and will classify the input sequence reads

based on which model(s) fit the read best. They have

had trouble with classifying reads of short length (<1000

base pairs), with Phymm being the first method pub-

lished demonstrating reasonable accuracy at short read

lengths [6]. Sequence similarity based methods, on the

other hand, perform very well at identifying reads from

genomes within the reference database that they search

against, even at read lengths as short as 80 base pairs

[7]. However, many reads from metagenomics samples

come from genomes that are not in any reference data-

base [8]. Similarity based methods have traditionally

used BLAST [9], and have been generally slower to run

compared to composition based methods. Hybrid

methods combine the similarity approach and the com-

position approach, with the goal of improving classifica-

tion or speed. For improving classification, scores may be

combined from both the similarity portion and the com-

position portion of the method for each prediction [6].

Another hybrid strategy, aimed at increasing speed, is to

use the composition approach to narrow down the set of

candidate organisms, and thus have the similarity search

occur against a fraction of the original database [10].

A related group of methods try to determine commu-

nity composition from metagenomes by utilizing marker

genes. These methods differ from methods that perform

taxonomic classification, as they do not to try to classify

all of the reads. Instead, they focus on classifying only

marker genes to try to determine the microbial commu-

nity composition of the sample. Most marker based ap-

proaches utilize universal genes. However, another

approach, utilized by MetaPhlAn, involves use of clade-

specific marker genes [11].

The first step in a marker based approach is to identify

reads that hit to one of the markers. As the size of the

reference database of markers these methods use is rela-

tively small, these methods are comparatively quick to

run. In addition to focusing on a limited set of markers,

which greatly reduce the computational cost of analysis,

these methods are not affected by differences in genome

size. If the goal of the analysis is to identify the commu-

nity composition of the sample, taxonomic classification

methods are biased by genome sizes, as organisms with

larger genomes will generate more reads. Amplicon se-

quencing using the 16S rRNA gene also suffers bias due

to variability in 16S rRNA copy number [12]. Thus,

marker based approaches using shotgun metagenomics

sequencing data may provide the least biased relative

abundance information for organisms in the community.

Tools vary in several additional characteristics which may

influence researcher’s choice

In addition to the class of method, there are many other

characteristics which may affect the consideration of

which method to use. For example, whether a method is

available via a GUI, command line, or web server can be

an important consideration, as is whether the method

can also perform functional (gene function) classifica-

tion, or how much memory and compute time the

method requires. In addition, some methods are limited

to certain groups of microbes. Some methods, such as

AMPHORA2 [13], are limited to analysis of Bacteria

and Archaea. Others, such as PhyloSift [14], can add-

itionally predict Viruses and Eukaryotes. Furthermore,

some methods continue to be supported while others

are not, and some eventually become unavailable or

difficult to access.
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Another distinction that can be made is between

methods which are rank-flexible, versus rank-specific.

Rank-flexible methods vary the rank at which reads are

predicted by classifying each read to the lowest taxonomic

level at which the given method is confident. An example

of a simple rank-flexible method is the lowest common

ancestor (LCA) approach, first used by MEGAN [15]. This

approach takes the set of taxa that the read hit in the simi-

larity search (taking only those hits scoring within a

threshold of the top hit), and assigns the read to the LCA

of this set. In contrast, rank-specific methods give the

same rank predictions for all reads.

Clade exclusion is an important technique to evaluate how

well methods will perform on environmental samples

Sequence similarity based methods perform very well

when identifying query reads identical to genomes/se-

quences within the reference database that they search

against. However, because the majority of microorgan-

isms have not had their genome sequenced, in most en-

vironments many of the sequence reads that would be

generated in a metagenomics experiment would be quite

unrelated to any sequences that are in a reference data-

base, or at minimum not identical [16]. Thus, one of the

approaches used in the evaluation of taxonomic classi-

fiers is clade-level exclusion. This involves removing all

sequences from a database at a certain taxonomic level

and then evaluating the ability to make predictions at

higher taxonomic levels. For example, if performing spe-

cies level exclusion for Pseudomonas aeruginosa, all

Pseudomonas aeruginosa genome sequences would be

removed from the reference database and/or models of

the methods being evaluated. Then, the method’s ability

to classify reads from Pseudomonas aeruginosa at higher

taxonomic levels (i.e., Pseudomonas, Pseudomonadaceae,

etc.) would be evaluated. Such clade exclusion method-

ology is one way to avoid obtaining artificially high ac-

curacy levels caused by the problem of testing and

training with identical data.

The present work builds upon a previous evaluation

performed without clade exclusion

There has been one previous evaluation of metagenomics

bioinformatics methods reported that is not limited to

examining a small set of tools with its own tool [17]. This

study was an important first step in comparing many

metagenomics classification tools; however, the microbial

genomes used in the analysis were found in the reference

databases and training sets of the methods evaluated. This

means that the accuracy of the methods shown from the

study will be considerably higher than when they are used

to classify reads from organisms not in the reference data-

bases or training sets. Samples from most environments,

such as soil, ocean, and freshwater samples, are very

diverse and the majority of organisms existing in these

environments have not been characterized. The human

gut is an environment in which intense research interest

has resulted in substantial effort to sequence relevant

microbes [18]; however, even in the human gut, it appears

that the majority of species are not present in reference

databases [19]. In addition, the previous comparison relied

solely on in silico simulated reads. As sequence simulators

cannot capture all of the factors that may affect read sam-

pling in metagenomics, in vitro communities (i.e., samples

of known bacterial cultures spiked into distilled water and

sequenced) are an important complementary set of data

to evaluate methods on. An unpublished study was

recently made publicly available, which includes an evalu-

ation using in silico evolved genomes [20]. This approach,

with its artificially evolved sequences, complements the

clade exclusion approach taken here where we use both

computationally simulated and real sequences. One

additional notable difference is that their evaluation

looked only at the phylum level classifications, whereas

this study looks at classifications at all taxonomic levels.

Furthermore, they constructed their communities to

contain only 5 % taxonomically novel (artificially evolved

sequences). Therefore, the results are not comparable to

our evaluations using clade exclusion where all of the

sequences are from genomes not in the reference data-

bases of the methods, and where performance is based on

classification at all taxonomic levels rather than just at the

phylum level.

In the present study, a variety of metagenomic taxo-

nomic classification methods are evaluated on mock

communities simulated both in silico and in vitro (dis-

tilled water spiked with known bacteria from pure cul-

ture, and sequenced). The performance of the methods

in terms of their sensitivity, precision, and number of in-

correctly predicted species are analyzed. In addition, the

performance of the methods is compared as simulated

read length is increased, and level of clade exclusion is

varied. Methods evaluated more fully were chosen to en-

compass the range of types of methods available, as well

as based on their popularity, and amenability to clade

exclusion. We demonstrate how the accuracy of shot-

gun metagenomics classification methods varies

widely. No one program clearly outperformed others

in all evaluation scenarios, rather the results illustrate

the strengths and weaknesses of different methods for

different purposes—information critical for researchers to

be aware of when performing their particular analysis.

Methods
Simulation of MetaSimHC and freshwater in silico and

in vitro datasets

Two different microbial communities were used for this

evaluation, both made up of diverse taxa for which
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completed genome sequences were available. The first

was previously proposed as a “high complexity” dataset

in [21], and will be referred to as MetaSimHC. This was

chosen since it has been proposed to be a reference

dataset for analysis of methods, and consists of diverse

microbial species covering several phyla of both Bacteria

and Archaea. The second was chosen with the aim of

having a set of species commonly found in freshwater,

suitable as a control for a watershed metagenomics pro-

ject we participated in [22]. This was done by identifying

species that were common among several publicly avail-

able freshwater datasets [23–25], and will be referred to

as FW (freshwater). The organisms used in each of these

datasets can be found in Table 1. Both of these datasets

were simulated using MetaSim (version 0.9.5; [21]) at se-

quence lengths of 100, 250, 500, and 1000 bp, with each

organism at 1X coverage. Although the sets of sequences

of differing read length were generated independently,

they are generated at 1X coverage so the effects of sam-

pling only portions of genomes that are predicted par-

ticularly well or poorly should be mitigated. No error

model was used, because there was not an error model

for Illumina reads at the longer read lengths (500 and

1000), and we wanted to be consistent as read length

was varied. Also, the in vitro dataset gives us data off of

an actual sequencer which allows us to see how methods

perform on data with real sequencing errors. Clade ex-

clusion was performed at the level of species, genus,

family, order, and class. The FW dataset was simulated

both with MetaSim (FW in silico) and an in vitro mock

community (FW in vitro). To construct the FW in vitro,

the bacteria were grown up in pure culture, and then

their DNA were extracted and spiked in equal concen-

trations into sterile, distilled water for sequencing. All

complete bacterial and archaeal genomes were down-

loaded from NCBI on June 17, 2013, for the creation of

databases and supervised models used in the different

methods. The numbers of genomes left in the databases

and training sets of the methods in the evaluation sce-

narios are shown in Additional file 1: Table S1. The data-

sets used in these evaluation scenarios have been

deposited to the MG-RAST database and accession num-

bers can be found in Additional file 1: Table S2, and the

number of reads simulated from each organism for the in

silico datasets can be found in Additional file 1: Table S3.

Note that while certainly test datasets could be con-

structed using a larger number of species, it is non-trivial

to construct a similar in vitro, mock community dataset

using a high number of species. We purposefully con-

structed our dataset to contain taxa with a variety of levels

of divergence from one another, including closely related

species (i.e. multiple species from the Pseudomonas genera).

The latter helps evaluate the ability of methods to handle

taxa prediction when closely related taxa are present.

Because there is such a large difference in microbial

communities (e.g. soil versus acid mine drainage) in

terms of number of organisms, which organisms are

present, their taxonomic novelty, and diversity in terms

of abundance distribution, it is not possible to simulate

communities that will be appropriate for all environ-

mental communities. This is why we suggest researchers

test their own mock communities that approximate their

expected community.

Laboratory preparation and sequencing of the mock

freshwater in vitro community

Bacillus amyloliquefaciens FZB42 (ATCC# 23842),

Bacillus cereus (ATCC# 14579), Escherichia coli K12

Table 1 Microbes used in the 2 simulated mock communities

MetaSimHCa Freshwaterb (FW) in silico and in vitro

Genus Species Strain Genus Species Strain

Agrobacterium tumefaciens C58 Bacillus amyloliquefaciens FZB42

Anabaena variabilis ATCC 29413 Bacillus cereus ATCC 14579

Archaeoglobus fulgidus DSM 4304 Burkholderia cenocepacia J2315

Bdellovibrio bacteriovorus HD100 Escherichia coli K-12

Campylobacter jejuni 81–176 Frankia sp. CcI3

Clostridium acetobutylicum ATCC 824 Micrococcus luteus NCTC 2665

Lactococcus lactis SK11 Pseudomonas aeruginosa PAO1

Nitrosomonas europaea ATCC 19718 Pseudomonas aeruginosa UCBPP-PA14

Pseudomonas aeruginosa PA7 Pseudomonas fluorescens Pf-5

Streptomyces coelicolor A3(2) Pseudomonas putida KT2440

Sulfolobus tokodaii str. 7 Rhodobacter capsulatus SB 1003

Streptomyces coelicolor A3(2)

aMetaSimHC is a test dataset of 11 diverse microbial genomes covering several phyla of Bacteria and Archaea proposed in [21]
bFreshwater (FW) is a set of bacterial genomes found in previous freshwater metagenomics studies (see Methods)
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(ATCC# 23716), Micrococcus luteus NCTC 2665

(ATCC# 4698), Pseudomonas fluorescens Pf-5 (ATCC#

BAA-477), and Pseudomonas putida KT2440 (ATCC#

47054) were obtained as freeze-dried stocks and used

per recommended protocol to start cultures in pre-

scribed media. Burkholderia cenocepacia J2315 was cul-

tured in Luria broth at 37 °C. Frankia sp. CcI3 was

grown in liquid Frankia defined minimal medium

(FDM) in stationary culture at 30 °C for 1 week. Pseudo-

monas aeruginosa UCBPP-PA14 was cultured in Luria-

Bertani broth at 37 °C. Rhodobacter capsulatus SB 1003

was cultured on 0.3 % yeast extract, 0.3 % bactopeptone,

CaCl2 (1 mM) and MgSO4 (1 mM) at 30 °C. Streptomy-

ces coelicolor A3 was cultured in 0.5 % Tryptone, 0.3 %

yeast extract, pH 7.1 at 28 °C for 1 week. For each of the

strains of bacteria, after they were plated on the appro-

priate media, single colonies were picked. These were

cultured overnight in 3 ml of appropriate media at the

appropriate temperature (as above). Frankia sp. CcI3

and Pseudomonas aeruginosa UCBPP-PA14 were cul-

tured for several days until they reached stationary

phase. The other bacteria strains were fast growing, so

the starter cultures were diluted 1:100, and grown with

vigorous shaking (250 rpm) to saturation overnight.

Genomic DNA was extracted from these cultures with

the NucleoSpin Tissue kit from Macherey-Nagel accord-

ing to manufacturer’s instructions. For Gram-positive

bacteria, cells were pre-incubated with buffer containing

20 mg/ml lysozyme for an hour at 37 °C, followed by

Proteinase K at 56 °C until complete lysis was obtained.

The library was prepared using a Nextera XT DNA sam-

ple preparation kit following the manufacturer’s instruc-

tions. This library was sequenced with a MiSeq platform

using a V2 500 cycles kit.

Quality control of sequenced reads

Trimmomatic-0.25 [26] was used to (1) trim reads

using a sliding window of 15 and PHRED quality

score of Q < =20, followed by (2) checking if any of

the last 5 bases had a Q < =5, and if so removing up

to that base, and finally (3) filtering out any reads

with length <85 bases. After quality control, there

were 300,969 reads with an average length of 223

nucleotides.

Evaluation of methods and metrics

Performance metrics used to evaluate different software

are sensitivity, precision, taxonomic distance, and run-

ning time. Sensitivity and precision are calculated based

on the numbers of true-positives (TP), false-positives

(FP), and false-negatives (FN). True-positives are the

number of reads assigned correctly, false-positives are

the number of reads assigned incorrectly, and false-

negatives are the number of reads unassigned. Sensitivity

was calculated as TP/(TP + FN), and precision as TP/

(TP + FP). Taxonomic distance was calculated from cor-

rectly assigned reads as the average number of ranks

above the best possible rank the assignment could be

made at, and running time as the number of minutes

taken for the program to complete classification. For

sensitivity, precision, and taxonomic distance, the values

were averaged over all the species in the test dataset.

This gave equal weighting to all of the species in the

datasets; otherwise, the species with larger genomes

(which have more reads) would have a larger influence

on the scores. For the in silico datasets, reads were cate-

gorized as correctly assigned (TP) if they classified to a

node (taxonomic rank) that was anywhere in the path

from the correct species to the superkingdom level (e.g.

Bacteria) of the NCBI taxonomic tree, and as incorrect if

the read was assigned to a node that was not in this

path. In the case where overpredictions were considered

correct, the taxonomic level that was used to determine

if a read was classified correctly was the best possible

correct level that could be predicted. For example, under

species clade exclusion, reads would still be classified as

correct if they were in the correct genus but classified to

an incorrect species. Although most of the methods

evaluated were rank-flexible in their predictions, RITA

and PhymmBL are rank-specific, and thus were only

shown for the evaluation where overpredictions were

considered correct. Although RITA does have a rank-

flexible mode, it requires having 16S rDNA profiles of a

community. PhymmBL provides a confidence score

which in theory could provide a cut-off for which rank

to assign the reads; however, we would have had to

choose the cut-offs ourselves, and previous researchers

have found confidence scores to be high for a false posi-

tive dataset [27]. MG-RAST was evaluated due to the

popularity of the method, but because it does not allow

the user to create custom clade exclusion reference data-

bases, it is an example of a method where we were only

able to evaluate it without clade exclusion.

Additional file 1: Table S4 lists the version numbers of

all of the methods evaluated. All methods were run with

default parameters except for filtered Kraken [28] which

was run using the kraken-filter script with a threshold of

0.20, which moves assignments up to successfully higher

levels of the taxonomic tree until the threshold is

reached. This separate analysis was done because we no-

ticed that Kraken was tending to overclassify reads and

there was an option that would help assign reads with

greater confidence. Note that some methods have varia-

tions in the way they can be run. For example, some

methods can take a variety of similarity search programs

as input, or have the option to utilize paired-end se-

quence read information. In some cases these variations

had relatively small differences in sensitivity, precision,
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and taxonomic distance of methods, and in these cases

only one of the variants was presented in the figures to be

concise. Briefly, MEGAN4 [29] has the option to allow the

use of paired-end information from sequence reads, and

the paired-end version is presented; MetaPhyler [30] can

use BLASTX, BLASTN, or a combination of the results,

and the results for the BLASTX/BLASTN combination

are presented; MEGAN4 and DiScRIBinATE [31] have the

option of taking results as input from either RAPSearch2

[32] or BLASTX, and the RAPSearch2 versions are pre-

sented. RAPSearch2 is an alternative to BLAST, which we

found to run over 30 times faster than BLASTX, with

comparable accuracy (see Results).

Results
Table 2 provides an overview of methods and their fea-

tures, grouped by their class. Note that it does not in-

clude all methods available, and there are more methods

being continually published. Included is the number of

citations each method has received, to give an indication

of how much of an influence or use each method has.

However, it should be noted that several of the methods

have capabilities beyond just classification, such as com-

parisons between samples and visualization, and thus

may be cited when used for purposes other than classifi-

cation. Also, it is worth noting that methods that were

published earlier may be highly cited, yet newer methods

often improve upon their strategies. As discussed below,

even with accuracy assessment aside, the different

method properties can have different advantages under

certain analysis scenarios and so are summarized here.

Notably, many methods cannot undergo full, robust

evaluation with clade exclusion, since their reference da-

tabases cannot be manipulated, and so methods chosen

for full evaluation of the accuracy were limited to ones

that allowed it.

Several methods vastly overestimate the number of

species present

To assess accuracy, first the quality of the assignments

made by different methods was examined with no clade

exclusion, so that as many representative methods could

be comparatively examined as possible. The sensitivity,

precision, and taxonomic distance (Additional file 2: Fig-

ures S1 and S2) were computed on the MetaSimHC

dataset with no clade exclusion. Results were as ex-

pected, with all methods generally showing a relatively

high sensitivity and precision. The exceptions are

TACOA [33], which is known to perform poorly on

short reads, and MetaPhyler, which is a marker based

method and thus only classifies a small proportion of

the reads, resulting in low sensitivity (but high preci-

sion). Next, the numbers of incorrectly predicted spe-

cies, based on different thresholds of percentage

abundance in the predicted community were tabulated

(Additional file 1: Table S5). It is notable that several

methods greatly overpredict the numbers of species

present, considering that the sequences the methods are

trying to classify exist in the reference databases or

training sets. Under genus clade exclusion conditions

(Additional file 1: Table S6), the number of incor-

rectly predicted species increases further for any

method that makes incorrect predictions at the exam-

ined taxonomic level.

Sensitivity and precision vary widely between methods,

with sensitivity generally decreasing at higher levels of

clade exclusion and increasing with read length

The quality of the assignments made by the different

methods was further examined under clade exclusion

scenarios at different taxonomic levels. Sensitivity and

precision were computed on the MetaSimHC dataset

(Fig. 1) and found to vary notably. To examine in greater

detail what led to the differences in sensitivity and preci-

sion of these methods, the taxonomic distance for each

method was evaluated (Additional file 2: Figure S3). Fur-

thermore, the proportion of reads assigned at each taxo-

nomic rank was determined. An example of the results

under the genus clade exclusion scenario is shown in

Fig. 2, with the data for the rest in Additional file 3.

Additionally, the numbers of reads miss-assigned and

correctly assigned or overpredicted for each rank were

compiled (genus clade exclusion Additional file 2: Figure

S4, the rest of the data in Additional file 4). Many of the

methods assign a considerable proportion of reads to the

species level, when species level assignment is impossible

since they are excluded from the database. Also notable

is that TACOA assigns the majority of reads to the

superkingdom level, so the method will be of limited use

for those interested in more specific taxonomic ranks, at

least at these shorter read lengths.

In some cases, overpredictions (e.g. predictions made

to an incorrect species in the correct genus) are less

problematic than incorrect predictions (e.g. predictions

made to an incorrect genus). Thus, sensitivity and preci-

sion were recalculated after reclassifying overpredictions

as correct classifications (Fig. 3). There was notable in-

crease in sensitivity and precision for methods such as

MEGAN4 and MetaBin which are less conservative in

their predictions. For more conservative methods such

as CARMA3 and DiScRIBinATE, there was little change.

The changes in sensitivity, precision, and taxonomic

distance as read length increased was then examined.

This was done on the MetaSimHC dataset (Additional

file 2: Figure S5). Sensitivity followed the expected trend

of increasing along with read lengths; however, precision

and taxonomic distance showed no clear trend and

remained relatively unchanged.
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Table 2 List of metagenomics sequence classification methods and their characteristics sorted by class of method

Method name Class of method Sequence alignment method/
Composition method

Standalonea/Web server Most recent year published
(first time published)b

Functional classification
if applicable

References Number of citationsc

MEGAN4 Similarity MEGABLAST, BLASTN, BLASTX,
RAPSEARCH2 [32] / N/A

Yes/No 2011 (2007) KEGG, SEED [15, 29, 45–47] 1089

MG-RAST Similarity BLASTN, BLAT / N/A No/Yes 2008 SEED, NOG, COG, KEGG [48] 691

CAMERA Similarity All 6 BLAST programs / N/A No/Yes 2007 (2011) Pfam, TIGRFAM, COG, KOG, PRK [49, 50] 324

CARMA3 Similarity BLASTX, HMMER3 [51] / N/A Yes/Yes 2011 (2008) GO [41, 52, 53] 201

WebMGA Similarity FR-HIT [54] / N/A No/Yes 2013 Pfam, TIGRFAM, COG, KOG, PRK, GO [55] 54

DiScRIBinATE
(SOrt-ITEMS)d

Similarity BLASTX, RAPSEARCH2 / N/A Yes/No 2010 (2009) N/A [31, 56] 48

Ray Meta Similarity Exact match k-mers / N/A Yes/No 2012 N/A [57] 34

Kraken Similarity Exact match k-mers / N/A Yes/No 2014 N/A [28] 15

RTM Similarity k-mers / N/A Yes/Yes 2012 KEGG [58] 12

Genometa Similarity Bowtie [59], BWA [60] / N/A Yes/No 2012 N/A [61] 7

LMAT Similarity Exact match k-mers / N/A Yes/No 2013 N/A [62] 6

Sequedex Similarity Exact match k-mers / N/A Yes/No 2012 N/A [63] 5

MetaBin Similarity BLASTX, BLAT / N/A Yes/Yes 2012 COG [64] 4

TAMER Similarity MEGABLAST / N/A Yes/No 2012 N/A [65] 4

metaBEETL Similarity Direct comparison of
compressed text indices / N/A

Yes/No 2013 N/A [7] 2

SPANNER Similarity BLASTP / N/A Yes/No 2013 N/A [66] 2

GOTTCHA Similarity BWA / N/A Yes/No 2015 N/A [67] 0

CLARK Similarity k-mers / N/A Yes/No 2015 N/A [68] 0

MLTreeMap Marker BLASTX / N/A Yes/Yes 2010 (2007) 4 Enzyme families [69, 70] 206

AMPHORA2 Marker HMMER3 / N/A Yes/Yes 2012 (2008) N/A [13, 71, 72] 190

MetaPhlAn Marker MEGABLAST, Bowtie2 [73] / N/A Yes/Yes 2012 N/A [11] 114

MetaPhyler Marker BLASTN, BLASTX / N/A Yes/No 2011 N/A [30] 42

mOTU Marker HMMER3 / N/A Yes/Yes 2013 N/A [19] 24

Phylosift Marker LAST, HMMER3 / N/A Yes/No 2014 N/A [14] 18

phymmBL Hybrid MEGABLAST / IMM Yes/No 2011 (2009) N/A [6, 74] 182

RITA Hybrid Pipeline of BLAST variations / NB Yes/Yes 2012 (2011) N/A [75, 76] 38

SPHINX Hybrid BLASTX / k-means No/Yes 2010 N/A [10] 17

TaxyPro Hybrid CoMet web server / Mixture model Yes/No 2013 Pfam [77] 3

TWARIT Hybrid BWA short read alignment
[60] / k-means

No/Yes 2012 N/A [78] 2
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Table 2 List of metagenomics sequence classification methods and their characteristics sorted by class of method (Continued)

PhyloPythiaS Composition N/A / SVM Yes/Yes 2011 (2007) N/A [30, 79, 80] 269

TACOA Composition N/A / k-NN Yes/No 2009 N/A [33] 65

NBC Composition N/A / NB Yes/Yes 2011 (2008) N/A [81, 82] 35

RAIphy Composition N/A / RAI Yes/No 2011 N/A [83] 18

ClaMS Composition N/A / DBC signature Yes/No 2011 N/A [84] 10

INDUS Composition N/A / k-means No/Yes 2011 N/A [85] 8

TAC-ELM Composition N/A / Neural Network Yes/No 2012 N/A [86] 5

MetaCV Composition N/A / CV Yes/No 2013 KEGG [87] 4

GSTaxClassifier Composition N/A / Bayesian No/No 2010 N/A [88] 2

N/A not applicable, IMM interpolated Markov model, NB naive Bayes, SVM support vector machine, k-NN k-Nearest Neighbour, RAI relative abundance index, DBC signature de Bruijn chain signature,

CV composition vector
aStandalone refers to whether the program can be run locally
bSome methods have had several publications, with later publications regarding improvements on functionality. In these cases the most recent publication was listed, with the first time the method was published

in brackets
cNumber of citations is based on Web of Science as of April 21, 2015
dDiScRIBinATE is the successor for SOrt-ITEMS so they were included in the same row
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Analysis of the FW dataset reveals similar performance

between in vitro data and in silico data, and between the

FW and MetaSimHC datasets

A comparison between the FW in silico versus in vitro

datasets is illustrated in Fig. 4 under species clade exclu-

sion, and in Additional file 2: Figure S6 without clade

exclusion. For the in vitro dataset, as it is not possible to

determine which read absolutely should be associated

with which organism in the mock microbial community,

a hit to any of the taxa in the FW dataset was considered

correct. In addition, this meant the sensitivity, precision,

and taxonomic distance was based on all of the reads
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Fig. 1 Performance as clade exclusion level is varied. Sensitivity (a) and precision (b) on the MetaSimHC dataset of simulated 250 bp reads. There is a

wide range of variability in the sensitivity and precision of the methods with sensitivity tending to decrease as the level of clade exclusion moves from

species to class. Performance is calculated based on proportion of reads appropriately assigned and averaged per genome (see Methods)
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classified rather than averaged over all taxa. The results

are similar between the in vitro and in silico communi-

ties, suggesting that for this simple community the

methods evaluated are relatively robust to Illumina se-

quencing errors with the sequencing technology used. A

comparison of results between MetaSimHC and FW in

silico revealed that the relative performance of methods

remained similar when analyzing these two different

datasets (Fig. 5). Additionally, the numbers of incorrectly

predicted species, based on different thresholds of per-

centage abundance in the predicted community, were

again tabulated for the in vitro data (Table 3). Many of

the methods incorrectly predict hundreds of species,

with MetaCV incorrectly predicting 1226 species, al-

though after filtering out low abundance predictions the

numbers of incorrect predictions were drastically reduced.

Under genus clade exclusion conditions (Additional file 1:

Table S7), the number of incorrectly predicted species in-

creases further, and even after filtering out low abundance

predictions there were sometimes considerable numbers

of false species predictions. The number of incorrectly

predicted species is higher for the in vitro data relative to

the in silico data (Table 4). The greater number of incor-

rectly predicted species is particularly notable in some

methods that perform very well on the in silico data such

as MEGAN4 BlastN, which goes from 0 incorrectly pre-

dicted species to 110. The performance for each of the

component genomes on all in silico datasets is provided in

Additional file 5.

There is substantial variation in the computational cost of

different methods

To evaluate how long the various methods took to run,

22,000 reads of 100, 250, 500 and 1000 bp, and an add-

itional 44,000 reads of 250 bp were simulated using the

MetaSimHC dataset. The time taken by the methods to

complete an analysis of these sequences varied widely, and

nearly all methods scaled roughly linearly with both read

length and number of reads on our datasets (Additional

file 2: Figure S7). Sequence similarity based methods that

rely on BLASTX take considerably longer than all other

methods except TACOA, taking over 24 h for just 22,000

reads of 250 bp under the CPU conditions in the test (one

Intel Xeon E5-2660 2.2 GHz CPU and 282 GB of RAM).

At the other extreme, Kraken and CLARK took less than

1 min to classify all of the reads.

Discussion
All of the methods analyzed performed very well in

terms of sensitivity and precision when the query
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Fig. 3 Performance as clade exclusion level is varied with overpredictions (see Methods for details) classified as correct. Sensitivity (a) and

precision (b) on the MetaSimHC dataset of simulated 250 bp reads. Methods such as MEGAN4 which classify many reads at lower taxonomic

levels see a considerable increase in performance, whereas more conservative methods such as CARMA3 see only a slight improvement.

Performance is calculated based on proportion of reads appropriately assigned and averaged per genome (see Methods)

Peabody et al. BMC Bioinformatics  (2015) 16:363 Page 10 of 19



sequences were in the reference databases (i.e. when

there was no clade exclusion). Of course, this type of

analysis would be expected to give potentially artificially

high accuracy values since one is essentially evaluating

using test data identical to the reference/training data.

Under this type of analysis scenario, the more inform-

ative metrics to examine are taxonomic distance and the

number of incorrectly predicted species. Notably, several

methods substantially overpredicted the number of

species present in the simulated communities. This in-

cluded popular methods such as MG-RAST and

MEGAN4. However, most of these incorrectly predicted

species are predicted at a very low abundance. By setting

a threshold to filter out low abundance predictions, the

number of incorrect predictions can be considerably re-

duced. The thresholds presented here are not intended

as suggestions, but rather to demonstrate the principle

of using thresholds to filter out incorrect predictions.

Microbial communities in certain environments are very

complex, such as those found in soil [34]. These envi-

ronments, which are very diverse and contain a large

number of organisms, would have a large proportion of

the microbes found at less than 1 % of the total

abundance of the community, and thus a 1 % filtering

threshold would filter out many of the microbes actually

in the metagenome. If thresholds are used, they should

ideally be chosen based on a mock community control

that reflects the anticipated level of diversity and com-

plexity expected in the metagenomics analysis being per-

formed. If the goal is to choose thresholds based on

relative abundance, genome size of the organisms would

also be useful to take into account. Otherwise, if two or-

ganisms are present in the community at low levels but

one organism’s genome is much bigger, the organism

with the smaller genome may get filtered out while the

organism with the larger genome does not, due to

greater number of reads from the larger genome. It is

important for researchers doing metagenomics projects

to know the level of precision of the method that they

are using to have an idea of how well they can trust the

taxa predicted at lower abundance. There is a trade-off

between finding all of the taxa that exist in the sample,

and confidence in the prediction of the taxa. Two ways

to adjust this trade-off are to choose a more precise

(conservative) method, or to alter the minimum abun-

dance threshold, with only the taxa over this abundance
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Fig. 4 Performance of FW in silico versus FW in vitro. Sensitivity (a) and precision (b) of methods on the FW dataset comparing the performance

on the in silico community versus the in vitro community under species clade exclusion. The results are similar between the in vitro and in silico

communities, demonstrating that methods appear to be relatively robust to real Illumina sequencing errors for this simple community.

Performance is calculated based on proportion of reads appropriately assigned and averaged per genome (see Methods)
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threshold being reported. Some methods already have a

way of choosing this threshold. For example, MEGAN4

by default requires at least 5 reads to hit a taxon before

the taxon is reported. The reads that are initially

assigned to a taxon with less than the chosen threshold

number of reads are then pushed up the taxonomy until

they reach a taxon with a number of reads assigned to it

that is over the threshold. However, when many reads

are analyzed, overprediction will still occur and we have

found for our analyses that it is necessary to use an add-

itional threshold for removal of low abundance reads

that are likely false predictions for such methods. Ideally

this threshold may be chosen in part from an analysis of

an in vitro mock community sample—an important ex-

perimental control in any metagenomics analysis. Such

evaluation of methods using real sequence data also acts

as an additional important control regarding other as-

pects of metagenomics sequencing pipelines.

As demonstrated in Fig. 1, the sensitivity and precision

of methods vary dramatically. Methods show a general

trend of decreasing sensitivity as the rank of clade exclu-

sion increases. This is expected as the sequences left in

the database will become increasingly divergent, and the

scores of the matches, if any, will decrease. There is a

notable decrease in performance for methods relying on

sequence composition or nucleotide-based BLASTN

similarity searches, versus the protein/amino acid

sequence-based BLASTX and RAPSearch2 similarity

based methods. This confirms what has been reported

previously, that sequence composition based methods

have lower performance than sequence similarity based

methods at shorter read lengths [6]. BLASTN is likely

outperformed by amino acid-based similarity approaches

under clade exclusion because nucleotide sequence

search is well known to be less sensitive for more diver-

gent sequences due to its lower number of different

characters (4 bases versus the 20 amino acids).

The differences in performance between methods can

be partially explained by the distribution of taxonomic

ranks that they assign reads to. As seen in Fig. 2,

CARMA3 and DiScRIBinATE are assigning reads more

conservatively; that is, they are assigning much fewer

reads to the lower taxonomic ranks. Many of these lower

level predictions of other methods are in fact overpredic-

tions, as demonstrated by their large increases in sensi-

tivity and precision between Figs. 1 and 3. Due to the

way we evaluated methods, the most conservative

methods will show the highest sensitivity and precision,
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Fig. 5 Performance of MetaSimHC compared to FW in silico. Sensitivity (a) and precision (b) of methods on the MetaSimHC dataset compared to

the FW in silico of simulated 250 bp reads. Values are averaged over all levels of clade exclusion from species to class. Although the microbes in

the dataset changed, the relative performance of the methods remains very similar. Performance is calculated based on proportion of reads

appropriately assigned and averaged per genome (see Methods)
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Table 4 Number of incorrectly predicted speciesa for different abundance thresholdsb without clade exclusion. Fewer incorrectly

predicted species are predicted with the in silico data that does not contain errors versus the in vitro data containing sequencing

errors (Table 3)

No cutoffb Cutoff > 0.01 %b Cutoff > 0.1 %b Cutoff > 1 %b

Method Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect

CARMA3 11 41 11 3 11 1 11 1

CLARK 11 0 11 0 11 0 11 0

DiScRIBinATE RAPSearch2c N/A N/A N/A N/A N/A N/A N/A N/A

Kraken 11 0 11 0 11 0 11 0

Filtered Kraken 11 0 11 0 11 0 11 0

MEGAN4 BLASTN 11 0 11 0 11 0 10 0

MEGAN4 RAPSearch2 11 92 11 29 11 1 10 0

MetaBin 11 286 11 41 11 3 11 0

MetaCV 11 0 11 0 11 0 11 0

MetaPhyler 10 12 10 12 10 8 7 3

PhymmBLc N/A N/A N/A N/A N/A N/A N/A N/A

RITA 11 0 11 0 11 0 11 0

TACOAc N/A N/A N/A N/A N/A N/A N/A N/A

MG-RAST best hit 10 646 10 136 10 26 10 6

MG-RAST LCA 10 300 10 54 10 8 9 3

aUsing the FW in silico dataset of sequenced reads from 11 species
bA cutoff of > × %, for example 0.01 %, would indicate that only species with a predicted abundance of at least × % of the total set of predictions were considered
cThese methods do not predict to the species level at this read length (they require longer read lengths). See additional analyses at other levels of clade exclusion

Table 3 Number of correctly and incorrectly predicted speciesa for different thresholdsb without clade exclusion. Some methods vastly

overpredict the number of species, even when the true number of species is low (in this case the true number of species is 11)

No cutoffb Cutoff > 0.01 %b Cutoff > 0.1 %b Cutoff > 1 %b

Method Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect

CARMA3 11 56 11 4 11 0 10 0

CLARK 11 364 11 25 11 5 11 0

DiScRIBinATE RAPSearch2c N/A N/A N/A N/A N/A N/A N/A N/A

Kraken 11 327 11 25 11 5 11 0

Filtered Kraken 11 14 11 1 11 0 11 0

MEGAN4 BlastN 11 110 11 19 11 3 9 1

MEGAN4 RAPSearch2 11 183 11 41 11 1 9 1

MetaBin 11 561 10 77 10 6 10 1

MetaCV 11 1226 11 232 11 6 10 1

MetaPhyler 11 9 11 9 11 5 7 1

PhymmBLc N/A N/A N/A N/A N/A N/A N/A N/A

RITA 11 466 10 80 10 10 10 1

TACOAc N/A N/A N/A N/A N/A N/A N/A N/A

MG-RAST best hit 11 927 10 180 10 36 10 8

MG-RAST LCA 11 476 11 69 11 5 11 1

aUsing the FW in vitro dataset of sequenced reads from 11 species
bA cutoff of > × %, for example 0.01 %, would indicate that only species with a predicted abundance of at least x % of the total set of predictions were considered.

Correctly predicted species are any of the 11 species that were used to simulate the reads in the dataset, whereas any other predicted species was incorrect
cThese methods do not predict to the species level at this read length (they require longer read lengths). See additional analyses at other levels of clade exclusion
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but may not be making classifications at specific enough

taxonomic ranks to be useful. TACOA, for example,

shows high sensitivity and precision, yet makes classifi-

cations at very high taxonomic ranks that would not be

useful for most researchers.

Not surprisingly, the sensitivity increases for methods

as read length increases. The most dramatic increase ap-

pears to be between read lengths of 100 and 250 bp.

Thus, when choosing a sequencing technology, it may

be important to try and obtain a sequence read length of

at least around 250 bp. The precision and the taxonomic

distance of methods remained relatively unchanged. This

was likely due to any increased performance in precision

and taxonomic distance offset by additionally classified

reads (as seen by the increase in sensitivity) with greater

dissimilarity to sequences in the databases of methods,

which would have poorer performance in terms of preci-

sion and taxonomic distance.

Our comparison of the in silico to the in vitro fresh-

water community showed similar results in terms of

relative performance of the methods. This gives us some

confidence in our results of the other in silico simula-

tions, as well as demonstrating the robustness of the

evaluated methods to real sequence errors for this sim-

ple community. However, this would not necessarily

generalize to more diverse communities, or other se-

quencing technologies. The sensitivity and precision of

the methods followed the trends seen in the Meta-

SimHC in silico evaluation, although filtered Kraken

showed somewhat lower relative precision. Upon further

analysis, this appeared to be due to the nature of the

way precision was calculated in this comparison. For the

comparison to be done fairly between the in silico and

in vitro community, the metrics were based on all reads ra-

ther than the average for all organisms. Filtered Kraken

seemed to stand out in that for most organisms it classi-

fied few of the reads, and the ones it classified were

mostly correct. However, for two organisms (E. coli

and B. cereus), the majority of the reads were classi-

fied incorrectly. This means that because more of the

reads of E. coli and B. cereus were classified than the

other organisms, their (mostly inaccurate) classifica-

tions had a relatively large influence on the precision.

The numbers of genomes/taxa in the mock communi-

ties was small, relative to the anticipated number of

species in most real metagenomic analyses, so abnor-

mal results from individual genomes could have a

large impact on the results, as seen here with filtered

Kraken. It is also notable that E. coli and B. cereus,

mainly due to historical reasons, come from regions

of the taxonomic tree that are not reflective of the

typical case for many environments; genomes with

high sequence similarity and composition in this part

of the tree are classified as the same species, whereas

if they were found in other parts of the tree they

would be classified as different species or genera [35, 36].

Thus, species that are not yet discovered will not be classi-

fied in a similar manner to the genomes in Escherichia

or Bacillus, and so the performance of methods on

these genomes likely does not reflect performance on

as yet undiscovered microbes in metagenomics sam-

ples. However, it must be emphasized that there is no

one mock community dataset that can best evaluate

all metagenomics software. Key is for researchers to

design mock communities for evaluation that are suit-

able for their experiment, and use this published analysis

to appreciate the types of issues they should watch out

for.

The differences we saw in computational cost of the

methods were substantial. Although we only ran a few

small test datasets of thousands of reads, we were able

to clearly show very large differences in computational

cost of the methods. Current metagenomics datasets

often include millions of reads; without access to large

amounts of compute power, many researchers will not

find it practical to utilize BLASTX based methods for

Illumina sequence sized data sets as are currently pro-

duced. The need for a more rapid alternative is already

being addressed by such methods as RAPSearch2 [32],

LAST [37], PAUDA [38], and DIAMOND [39]. Notably,

RAPSearch2 shows similar, or in some cases even in-

creased, performance relative to the same methods using

BLASTX, while requiring much less time to run (over

30x faster in our analyses). Many methods provide the

option of running multiple threads, so access to add-

itional processors will allow the methods to run substan-

tially quicker. Furthermore, for most methods reads are

classified independently from one another, so files of

reads can be broken up into multiple smaller files and

each file run on a separate processor, and the results of

the classifications combined. In addition to computa-

tional cost, the amount of RAM used by different

methods varies considerably. Both Kraken and CLARK

require large amounts of RAM, but do provide reduced

standard databases for users with low-memory comput-

ing environments (known as MiniKraken and Clark-l).

Certain methods also allow users to adjust settings to

allow trade-offs between speed, accuracy and RAM

usage, such as the sampling factor value in CLARK. A

final consideration of computational resources when

choosing a method is the amount of disk space that a

method requires. The databases used by some methods

require relatively large amounts of disk space, such as

the standard database of Kraken which requires at least

160 GB of disk space. Another aspect that may affect

method choice is the relative ease of generating new da-

tabases for the methods. Certain methods rely on the re-

sults of a similarity search, and expanding the database
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is a relatively simple process of generating a new data-

base for that similarity search, such as BLAST. However,

other methods may require substantial computational

resources that researchers may not have access to. For

example, the authors of GOTTCHA state that the cre-

ation of a database from the 2500 prokaryotic genome

projects available in 2012 required 2 TB of RAM. Other

methods, such as many online only methods, do not

even allow the modification/expansion of the database.

Protein sequence similarity-based methods (e.g.

BLASTX, RAPSearch2) perform very well in clade exclu-

sion scenarios but do not perform as well as nucleotide

based methods when there is no clade exclusion. This is

likely because a proportion of microbial genome se-

quence (commonly around 6–14 % [40]) are non-coding.

Protein similarity-based methods still have a relatively

high sensitivity, generally >0.94 and, as noted in [41],

this is due to many reads overlapping at least partially

with a coding region. This explanation makes sense with

our finding that as read length is increased, sensitivity of

the aforementioned methods increases (from 0.94 at

read lengths of 100 to 0.99 at read lengths of 1000 nu-

cleotides for MEGAN4 BLASTX on the MetaSimHC

dataset), as it would be less likely that a longer read

would cover only non-coding regions. A quick examin-

ation of these incorrectly classified reads confirmed that

they were the non-coding regions of the genomes, in

many cases rRNA genes.

The results presented should guide researchers to the

choice of method that best fits their research question

and computational resources. Clearly, certain methods

perform well in certain situations. Kraken, Filtered

Kraken, and MEGAN4 BLASTN perform exceedingly

well when there is no clade exclusion, yet their sensitiv-

ity is low when there is clade exclusion. However, fil-

tered Kraken classifies only a small percentage of reads

when the species present in the dataset is not in the

database. For example, filtered Kraken classifies less than

8 % of the reads under genera exclusion (Fig. 2). A strat-

egy researchers may therefore use is to take their dataset

and first run it on filtered Kraken, followed by running

the reads not classified by filtered Kraken on a more

conservative method such as DiScRIBinATE RAP-

Search2. Filtered Kraken would classify the reads from ge-

nomes in the reference database, while leaving the

majority of reads from genomes not in the reference data-

base unclassified. Then, DiScRIBinATE RAPSearch2,

which will assign a much greater proportion of reads from

genomes not in reference databases, could be run on the

unclassified reads. If a conservative method such as

DiScRIBinATE RAPSearch2 is run alone, it may miss

many of the assignments of known genomes to the species

rank, due to its tendency to make assignments at higher

ranks. However, in some cases, such as when analyzing

less well characterized microbiomes (such as in water ver-

sus human feces) the use of such conservative methods

could be entirely appropriate. The pipeline idea of com-

bining methods is integrated into some methods like

RITA, which first identifies a highest-confidence set of

predictions, then subjects the sequences not yet classified

to a series of downstream classification steps. CARMA3

performs well in both the no-clade exclusion scenario

(with a small taxonomic distance, classifying many reads

to the species level) as well as the clade exclusion scenario.

However, CARMA3 takes a considerable time to run, and

may not be computationally feasible for those with large

datasets and without access to notable compute power.

Another technique involving combining methods would

be to use multiple methods and look for consistent assign-

ments among methods [27]. Depending on the type of

analysis, this could increase precision and confidence in

the assignments, although at the cost of sensitivity in most

cases and run time (due to running multiple methods).

The test datasets used in this evaluation are limited in

their complexity and diversity, as well as the number of

reads simulated. For example, millions of reads are often

sequenced for metagenomics samples, while our datasets

were smaller, containing tens to hundreds of thousands

of reads. Furthermore, many environments sampled are

far more complex and diverse, containing a much larger

number of microbes with varying relative abundance,

such as soil or the human gut. Our analyses were also ei-

ther on in silico simulated communities or communities

sequenced with a single sequencing technology. The aim

of this research was not to recommend any specific

method, but to raise awareness of the advantages and

disadvantages of different methods and issues in meta-

genome analyses. This evaluation highlights that there

are large differences in methods on even the relatively

simple communities used for our datasets, such as num-

ber of organisms predicted, sensitivity and precision,

how specific the classifications tend to be (taxonomic

rank), and computational resources required to run.

However, other factors such as the diversity and mi-

crobes present in a community, and the sequencing

technology used, will also affect the performance of the

methods. Additionally, certain tools may have advan-

tages and be particularly useful for specific environ-

ments. For example, some tools contain genomes in

their databases that are not present in RefSeq, while

most methods use RefSeq exclusively for their databases.

An example of this is MetaPhlAn, which includes many

draft genomes from the larger Human Microbiome

Project (HMP) [42], and thus may be particularly useful

for human microbiome samples. Metagenomics as a field

is expanding rapidly. New tools are needed to classify

the sequences obtained from these studies. There is a

large need, and lots of interest in this, as evidenced by
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the large number of methods released over the past few

years. However, it is non-trivial to perform an evaluation

of methods. This is due to the sheer number of metage-

nomic methods available, the difficulty in setting up

some of these methods, and the challenge in performing

robust evaluation techniques such as clade exclusion or

leave-one-out evaluation. Furthermore, methods only

available on the web are generally unable to be thor-

oughly evaluated as in many cases they do not allow the

use of custom reference databases or training sets, and

sometimes limit the number of reads that can be

uploaded. To address these difficulties, an initiative called

the Critical Assessment of Metagenomic Interpretation

(CAMI) has been initiated [43]. This community-led ini-

tiative will have researchers run their own methods on

data sets made up of unpublished microbial genomes.

This will be a valuable contribution to methodology as-

sessment, but researchers are still encouraged to use mock

microbial communities as controls for their own particu-

lar analyses, especially mock communities that reflect the

types of microbes, diversity, and complexity they expect to

see in their study. While CAMI will provide a useful add-

itional comparative evaluation of methods, one should al-

ways perform a metagenomics analysis using appropriate

controls to best refine methodology and any threshold

cutoffs suitable for the specific analysis needs.

Another issue is that there does not seem to be a con-

sensus on the way to evaluate performance. Some re-

searchers consider classification of a read to a

taxonomic level more specific than what is correct (e.g.

a novel Escherichia species being assigned to Escherichia

coli rather than Escherichia) as assigned correctly (e.g.

[28]). Other researchers, however, classify these overpre-

diction assignments as false positives or mispredictions

(e.g. [31]). Depending on the research goal, one may pre-

fer a more liberal or conservative method. For example,

if a researcher is interested in comparing the genera in

one metagenomics sample to another sample, overpre-

dictions that are incorrect at the species level will not

matter if they are correct at the genera level. The more

conservative method may assign the same reads to the

family level, and will thus completely miss the relevant

taxa. On the other hand, if a researcher is interested in

taking all of the predictions at all taxonomic ranks, they

may make erroneous conclusions that a specific species

is increased in one sample over another if it is just an

overprediction. It should also be stressed that many

methods allow flexibility in the parameters used, so it

may be possible to tune a method to be more or less

conservative. However, some parameters cannot be

changed, and there are fundamental differences in the

ways reads are classified by different methods. For ex-

ample, MEGAN4 and MG-RAST make assignments

based on bit-score as the sole parameter for judging

significance. Other methods, such as DiScRIBinATE,

CARMA3, and MetaPhyler, employ additional measures

such as alignment parameter thresholds and/or a recip-

rocal BLAST search step, which have been shown to im-

prove the accuracy of taxonomic assignments in certain

scenarios [44]. For example, using these methods a read

from a novel Pseudomonas species with a single hit over

the bit-score threshold to Pseudomonas aeruginosa may

not align well enough to be assigned to the species level

based on the additional alignment parameters, and thus

could be assigned correctly to Pseudomonas. However,

in MEGAN4 or MG-RAST the read would pass the bit-

score threshold and because there were no other hits, it

would be assigned directly to Pseudomonas aeruginosa.

Again, careful examination of controls (like an in vitro

mock community sequenced alongside metagenomics

samples) may provide insight into the best method to

use and suitable threshold cutoffs for low abundance

reads, especially if that mock community includes a suit-

able level of diversity and/or includes species expected

in the metagenomics analysis. Developers of new

methods are encouraged to enable their method to be

evaluated using customized reference datasets, including

clade exclusion-based analysis, to enable robust analysis

of their method.

Conclusions
There has been a real need for a comprehensive evalu-

ation of metagenomics classification methods, due to the

notable number of new methods being released. In this

case we have focused on taxonomic classification, for

which an expanded comparative analysis was needed, to

build on previous assessments and include more clade

exclusion-based analysis. For the methods we analyzed,

there is no single method that stands out as superior to

all others, as there are a wide variety of characteristics in

which the methods differ—characteristics that may make

them more suitable for certain research group infra-

structure, and research projects, than others. Few re-

searchers will have the time to evaluate methods

robustly themselves, so may just use the method which

is most popular or easiest to use, which would not ne-

cessarily be well suited for their particular computational

resources and/or goals. This evaluation explains some of

the issues researchers should consider when choosing an

analysis approach for their metagenomics project, and

reveals that very misleading results can occur, in particu-

lar notable overprediction of the number of taxa and/or

missed taxa, if an inaccurate or unsuitable analysis ap-

proach is used. The results from this evaluation will

hopefully help guide researchers’ decisions in selecting

appropriate analysis methods suitable for their metage-

nomics studies. As new methods are developed, further

evaluations will need to be performed, including with a
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reference dataset like MetaSimHC, and/or the CAMI ap-

proach. This study provides a model for such analyses to

compare method accuracies and benefits, and highlights

criteria that should be evaluated. It would be very help-

ful for evaluation purposes if method developers would

allow their method’s reference databases to be manipu-

lated, to permit analyses like clade exclusion, to avoid

biases that can occur when no clade exclusion is per-

formed (including with unpublished genomes as planned

for CAMI, depending on the relatedness of other taxa to

these unpublished genomes). Regardless, researchers are

strongly encouraged to include appropriate negative and

positive controls for their metagenomic experiments, in-

cluding appropriate in vitro mock communities reflecting

their expected type of data (high/low diversity, well char-

acterized previously or not, etc.) to help fine tune their

methodology as appropriate for their specific experiment.

Robust metagenomic data analysis is absolutely critical at

this stage of the development of microbiome research as a

key research area. Microbiome research promises to be

widely applicable to many, studying human health, the en-

vironment, agrifood, mining and other natural resource

management, but it will only be valuable if high-quality,

careful analysis is performed.
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