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Evaluation of Signal-to-Noise and Distortion Ratio
Degradation in Nonlinear Systems
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Abstract—This paper presents a new figure-of-merit to evaluate
signal-to-noise and distortion (SINAD) ratio degradation in non-
linear systems, herein referred to as the noise and distortion figure
(NDF). In order to obtain a mathematical formula for this NDF, the
best linear approximation calculation is presented for memoryless
and dynamic nonlinear systems, which can be modeled by a finite
Volterra series. To the best of the authors’ knowledge, this is the
first time such an attempt of calculating the NDF for a nonlinear
and dynamic system is made. NDF results are discussed in both
types of systems by means of numerical simulations of systems up
to the third order.

Index Terms—Correlation, nonlinear distortion,

analysis, Volterra series.
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I. INTRODUCTION

IGNAL-TO-NOISE ratio (SNR) in real communication
S systems can be severely degraded when signals are pro-
cessed by nonlinear components. That degradation is normally
attributed to two different impairments: linear additive noise
and nonlinear distortion [1].

In order to account for the additive noise, the figure-of-merit
noise figure (NF) is normally used, while the third-order inter-
cept point IP3 can be made to play a correspondent role for non-
linear distortion degradation.

Unfortunately, until now, the complex behavior of nonlinear
distortion has prevented the integration of these two SNR degra-
dation figures, forcing the design engineer to evaluate any link
budget in two different steps: looking for the small amplitude
signal limitations determined by additive noise, and its high-
level end imposed by nonlinear distortion. Only by taking into
account those two perturbation causes can the design engineer
maximize the communication systems’ dynamic range.

In an effort to understand the relation between these two
signal perturbation figures-of-merit, in [2], Geens and Rolain
have detected some problems when measuring the NF in the
presence of nonlinearities and proposed a new NF to circum-
vent those problems. Nevertheless, and due to the excitation
signals that were used, the results obtained with this new
formulation of the NF can be disastrous, as it predicts certain
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zones of improvement in the output SNR (SNR,,), an obviously
impossible outcome in practical situations.

Furthermore, this study restricted its analysis to memoryless
nonlinear systems, which constitutes a severe limitation if ap-
plied to modern wide-band wireless components that are known
to exhibit strong nonlinear memory effects [3], [4].

One of the first and most important difficulties imposed by
nonlinear distortion analysis is its dependence on the type of ex-
citation signal. That issue, for a long time recognized in the non-
linear systems’ identification field [5], [6], demands a careful
selection of a convenient signal class.

Although RF and microwave engineers tend to represent
their telecommunication signals by a pure sinusoid, it is already
known that such a class of signals is totally inadequate. In fact,
it lacks nonnull bandwidth, an amplitude envelope, and the
random behavior typical of real information signals. Although
the two-tone has also been widely adopted for nonlinear distor-
tion testing, it still suffers from the fact that it only involves a
sinusoidal envelope of deterministic behavior, two properties
especially relevant in wide-band nonlinear dynamic systems. A
much better signal class used to represent real communication
signals that does not suffer from any of these drawbacks is
the band-limited white Gaussian noise, which will, therefore,
be adopted for the present definition of a new figure-of-merit
intended to be a metric of SNR degradation in the presence of
additive noise and nonlinear distortion.

The second issue worthy of discussion is the separation of
the system’s output into its signal and distortion components.
A useful criterion should be to use the same separation under-
taken in modern wireless receivers, as it would immediately lead
to practically significant transmission quality figures as bit error
rate. Thus, in that sense, we will take as a signal everything that
contains information eventually processed by a linear dynamic
operator, and as distortion, any remaining part. This way, it is
possible to classify as a signal the outcome of the so-called best
linear approximation (BLA) [6], which governs the linear be-
havior of the output signal versus the input excitation, and then
use cross-correlation to uniquely identify it. The dependence of
the system’s BLA (gain in a memoryless system) on the input
has already been discussed in the 1960s [7].

With those two assumptions in mind, it was then possible to
correctly divide the output useful signal from the noise distor-
tion, and then quantify the signal to noise and distortion ratio
(SINAD) at the output (SINADy) .

In this paper, the approach followed in [2] is first discussed
and its drawbacks explained. By using white Gaussian noise as
the standard excitation, and cross-correlation techniques, it is
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Fig. 1. NF proposed in [2]. Variation with the input power for a system with
parameters G = 100 and « = 60, as indicated in this paper.

then shown how the BLA can be determined for general mem-
oryless and dynamic nonlinear Volterra systems; this way al-
lowing the identification of the desired signal and noise compo-
nents involved in the system’s output.

A new noise and distortion figure (NDF) relating the input
and output SINADs, SINAD, and SINAD, is then proposed.

In order to validate the derived closed-form expressions for the
newly defined NDF, a time-domain simulation was performed
for a typical dynamic nonlinear system, of third order, and the
results compared with the proposed theoretical values.

II. NONLINEAR NF REVISITED

An important figure used to measure the degradation of signal
quality between input and output is the NF, which relates the
signal to noise ratio at the input (SNR;) to the signal to noise
ratio at the output (SNRg). Geens and Rolain [2] have proven
that the presence of nonlinear distortion influences the measured
NF value, and proposed a new setup for measuring the NF using
a single tone as a test signal.

Using this approach, they reached the following expression
for the NF:

27
. G+ —a2A* — 3aV/GA?

Np = SNRi 3 @

SNRout G+ %012144 — ga\/afp

where G is the linear power gain, « is a third-order voltage gain,
and A the input tone amplitude. A closer look into (1) reveals
that there are certain zones of input signal voltage in which the
NF can be smaller than one, as shown in Fig. 1.

This result is strange since it indicates that the system can,
in fact, improve SNR from the input to the output, in a certain
sense, eliminating input noise.

A closer look into this theoretical result shows that the ap-
parent gain in the SNR is caused by the different compression
imposed to each signal: a sinusoid and white Gaussian noise.
Actually, it is known [8] that when two different signals excite
a nonlinear system, in which one is of much larger amplitude
than the other, the compression of the smaller one is mainly de-
termined by the level of the strong signal. In this case, the sinu-
soidal signal is the dominant component, therefore, determining
a greater compression to the noise. In fact, the relation between

Fig. 2. Geometric representation of the method used to determine the output
signal component.

the output sinusoid and noise will be improved due to the extra
compression imposed to noise level.

The referred problems associated to this approach can be
traced to the use of a single sinusoid as the input signal. Actually,
there is no input noise perturbing the signal since the signal has
a null spectral bandwidth and, thus, there is no noise power in-
side the signal bandwidth. Additionally, since this test signal has
a constant envelope, it is also unable to generate uncorrelated
nonlinear distortion, also know as nonlinear distortion noise [6].

A more appropriate alternative would be the use of a test
signal similar to a real communications signal, e.g., Gaussian
noise, since it has nonzero bandwidth, allowing the inclusion
of effective additive noise and uncorrelated nonlinear distortion
effects. Beyond that, it has statistical properties similar to the
ones of real signals.

III. SIGNAL AND NOISE IDENTIFICATION

Despite the advantages of using Gaussian signals pointed out
in Section II, there are also several drawbacks associated with
the separation between signal and noise components. In this
case, the signal and noise share the same spectral positions ob-
viating any straightforward separation in the frequency domain.
Moreover, the signal component may be several orders of mag-
nitude higher than the noise level.

A physical meaning solution, often used because of its prac-
tical interest, is to consider as signal the output component cor-
related with the input, as is usual in conventional rake receivers.
This result is supported by Bussgang’s theorem [9]. In Fig. 2,
we can see a geometric illustration of this operation. The projec-
tion of the output (vector v)—which has correlated (collinear)
components with the input and other ones uncorrelated (orthog-
onal)—onto the input signal component (vector u) is calculated
using the input—output correlation and the power of input and
output signals. That projection is the output signal component
(vector w).

One way to obtain that correlated component is to use the
BLA. The BLA is defined as the linear transfer function that is
the best approximation to the nonlinear system in a least squares
sense [6]. In the frequency domain, it can be given by
Say(w)

Sea (“-’)

where S,,(w) is the cross-spectral density of the input and
output signals and S,.,.(w) is the input spectral density function
that can be calculated as the Fourier transform of the cross-cor-
relation and autocorrelation functions, respectively,

Hi(w) = ()

Rmy(T):a:(t)y(t-l-T):/_ooa:(t)y(t-l-T)dt (3a)
Rm(r):m:/jom(t)x(t—i—f)dt. (3b)
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Having defined this way the signal component, we can thus con-
sider as nonlinear noise all the remaining output components.
Part of this distortion noise is irrelevant as it falls out-of-band
(i.e., around dc and the carrier harmonics) and, thus, can be
eliminated by proper filtering. The remaining in-band noise is
present in the co-channels and adjacent channels. To compute
the SINAD, one must consider as relevant noise only the
co-channel part.

The first approach considered is to calculate the output signal
component in the case we have a memoryless nonlinearity mod-
eled by a power series.

A. BLA Calculation for a Memoryless Nonlinearity

We will consider as input a Gaussian signal z() so that the
output is given by

y(t) = anz (t)". “

In order to obtain the output signal component, we will eval-
uate the input—output cross-correlation. Applying the definition
of (3) and the properties of averaging Gaussian random vari-
ables [5] R, (7) will be
Ry (T) = aqRyy (T) + 3z Res (0) Ry (T)

+15a5R0 (0)* Ry (1) + -+ (5)

which can be written in a generalized form as

N

. (’I’L + 1)' ";1
ny (7') = Rzz (T) . zd:da W‘Rzm ( )
o ( : ) .

In (6), we have a general result for input—output cross-cor-
relation of a memoryless nonlinear system modeled by an
Nth-order polynomial. This expression indicates that correla-
tion only exists between output odd-order terms and the input
since it is known that the average of the product of a number
of Gaussian random variables is only nonzero if that number
is even.

With (2) and (6), we can directly express the linear transfer
function (or gain) of a memoryless nonlinearity modeled by a
polynomial as

N

B (n+1)! n1
Hr, (w)—gd:da WRM =) @)
2

This expression states that the BLA is not only dependent on the
system parameters «;, but also on the input signal characteris-
tics, namely, its even-order moments.

B. BLA Calculation for a Nonlinear System With Memory

Let us now address a nonlinear system that presents memory,
but is sufficiently well behaved so that it can be described by
a Volterra series. Although conceptually similar to the memo-
ryless case, this problem is significantly more difficult to treat

analytically. We will start the derivation process by writing the
analytical expression for the output (8) as follows:

+oo
y(t) = / hi(t—o)x (o) do

— 00

+oo +oo
-I—/ / ha (t—017t—0'2)$(Ul)x(dz)ddlddz

+oo +oo +oo
/ / / hgt Jht O'2t 0'3)

) 0'2) 0'3) doidoados+ -+ ®)

or,in a general form, as follows:

N 4o .
Z/ n'fél.d./_oo hyp (t—01,t —02,..., t—0y)

n=1" ">
x(o1)x(o2) - - x(0y)dordoy - - - doy,.
&)
Once again, using the definition of cross-correlation (3), we
will calculate the cross-correlation between input and output,

considering a Gaussian random signal z(t) and y(t) given by
(9), and R, (7) in (10) as follows:

Ry (7)

= Z an

/ -~ hi (7 —0) Raw () do

of // B r=00) e (1)

h3 01,0’2 0’3 d0'1d0'2d0'3+

_ Z ( ) - nﬂ)/;wn'f;ﬂ'd/;wl?m (r—01)- -
2

y(t) =

nodd

Rzz (Un—l_on) hn (017-'-7 (10)

Now we will use the same procedure of the last section to
determine the BLA. We compute the Fourier transform of (10)
and then use (2) to find Hy(w). In order to find the Fourier
transform of (10), we write h,(71,...,7,) as a function of the
n-dimensional inverse Fourier transform of H, (wy,...,wy).
By changing the order of integration between w’s and ¢’s and
using some simple properties of the Fourier transform, we will
then reach (11) as follows:

On)doy ...doy,.

HL()
n 1

—+o0 400
/ / Hn(wvwlv_wlv"'vwﬂv_wﬁ)
—oo IFfold J oo 2 :

- Spz (W1) ... Spa (w%)dwl...dw%. (11

This expression (which to the best of the authors’ knowledge
is new) gives the BLA of a nonlinear dynamic system modeled
by a Volterra series of order N when subject to a Gaussian
input signal. It states that the BLA is dependent, not only on
the system parameters and the even order moments of the input
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(the integrated power), but also on the stimulus’ power spectral
density (PSD) [the shape of S, (w)]. The main interest of (11)
resides in the fact that the BLA varies with the input signal PSD
in a way that can be interpreted as if S, (w) were “weighting”
the nth-order Volterra kernel. Therefore, H (w) will be different
whenever S....(w) gives more importance to the different parts of
the multidimensional frequency response of each of the H,, (w)’s.

IV. NOISE AND DISTORTION FIGURE

Having developed the theoretical tools to isolate the signal
components from the noise components, we are now able to de-
fine a new figure-of-merit that simultaneously deals with noise
and distortion [10].

The relation between the NF and SNR, i.e., the ratio between
signal and noise powers, is well known. As a matter of fact,
although the NF is frequently referred to as the ratio between
input and output SNRs, the IEEE-adopted formal definition of
an NF is [11]

_GN,+N,

NF
GN,

(12)
in which N, is the output available noise power spectral densi-
ties at a given source noise temperature, as seen if the system
were noise free, and N, is the system’s added noise, respec-
tively. Defined this way, the NF varies with frequency and is,
thus, also called the spot NF.

In anonlinear system, the approach described above is incom-
plete [2] because the SNR degradation caused by the nonlinear
intermodulation noise is not taken in account. Another common
figure-of-merit, which is more useful in the context of nonlinear
systems, is the SINAD. According to [12], it can be defined as
the ratio of signal PSD to noise and distortion power spectral
densities and can, thus, be expressed as

S (w)
N (w) 4+ D (w)
where S(w), N(w), and D(w) are, respectively, the signal, ad-
ditive noise, and nonlinear distortion power spectral densities.

It was already mentioned above that the NF can represent the
ratio of SNR; to SNR,. If the same ratio is evaluated using the
SINAD, a figure identical to the NF will be found, except that
it will now also include the distortion impact. Accordingly, we
will call it the NDF (14) as follows:

SINAD; (w)
SINAD, (w)

SINADy;, (w) = (13)

NDF(w) =

Si (w)

(w
|Hp(w)]” - 8 (w)

|Hp(w)|” - Ni (w) + N, (w) + IMD (w)

=

_ @) Ni ) + Na (@) +IMD @)
[Hi (W) - Ni (w)

The NDF is thus defined as the ratio of the input SINAD to
the output SINAD. In (14), Hp(w) is the BLA, N;(w) is the
input available noise PSD, N,(w) is the PSD of the additive
noise introduced by the device, and IMD(w) is the PSD of inter-
modulation distortion (IMD) delivered to the load. For guaran-
teeing compatibility with the former IEEE NF definition, these
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Fig. 3. Block diagram of a general nonlinear bandpass dynamic system.
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Fig. 4. Block diagram of the simulator used to validate NDF (NLF denotes
nonlinear function).

SINADs describe spot frequency values and, thus, they are de-
fined as the ratio between the spot signal PSD function to the
sum of the spot PSD functions of the noise and distortion.

Atthe device’s input port, these PSDs refer to the source avail-
able powers of the signal and noise when the source’s equivalent
noise internal resistance is at the standard noise temperature (290
K). The current NDF definition is, therefore, assuming that the
signal available from the source is undistorted and, thus, that this
situation must be guaranteed if the NDF is to be measured. In fact,
what must be guaranteed is that the source’s IMD cannot gen-
erate any appreciable IMD inside the device-under-test (DUT)
and thatits value, when seen at the DUT’ s output, is much smaller
than the one due to the DUT itself.

Authorized licensed use limited to: UNIVERSIDADE DE AVEIRO. Downloaded on July 1, 2009 at 11:35 from IEEE Xplore. Restrictions apply.



LAVRADOR et al.: EVALUATION OF SINAD RATIO DEGRADATION IN NONLINEAR SYSTEMS 817

dBm

0.14 0.16 0.18 0.2

0.1 0.12
Normalized Freq
a)
20 L ]
0 + ]
E -20
o
©
-40
-60
0.1 0.12 0.14 0.16 0.18 0.2
Normalized Freq
b
20 ]
0
E -20
o
©
-40
-60
0.1 0.12 0.14 0.16 0.18 0.2

Normalized Freq
0)

Fig. 5. Input spectrum of the test signals used for the BLA extraction (simple
line) and output spectrum (dark line). (a) Signal spectrum 1. (b) Signal spectrum
2. (c) Signal spectrum 3.

When SINAD calculations are to be made with this NDF, and
the device is isolated, it is naturally expected that the input IMD
is zero since the source can be supposed to produce an undis-
torted signal. However, if that is not the case, or if the device is
embedded in a chain whose precedent blocks already generate
some distortion, then this available distortion PSD should be
added to the source available PSD of the signal and the additive
noise (since all three are assumed uncorrelated).
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Fig.6. In-band BLA:simulated (simple line); theoretical (dark line). (a) Signal
spectrum 1. (b) Signal spectrum 2. (¢) Signal spectrum 3.

Note, however, that, in this latter case, a precise calculation
of the total output IMD would require knowledge of the phase
of those distortion components since, being correlated with the
ones generated by the DUT, they cannot be simply added in
power at the output. However, the more usual practical situa-
tion is that the precise IMD phase relations are unknown, and

Authorized licensed use limited to: UNIVERSIDADE DE AVEIRO. Downloaded on July 1, 2009 at 11:35 from IEEE Xplore. Restrictions apply.



818 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 52, NO. 3, MARCH 2004

no other alternative is then left to rely on a mere absolute value
addition. Such a power wise addition would, therefore, corre-
spond to an average power value, as discussed in [13].

At the output port, the situation is a little bit more complex,
as the DUT’s IMD depends on the load termination. Thus, we
will have to consider the actual load impedance and define the
output PSDs of the signal, IMD, and noise as referring to the
actual powers delivered to that load. That is, while the IEEE
NF definition assumes that the DUT is a system that can be
described by an operator whose input variables are the available
source PSDs, and the output variables are the available output
PSDs, we now have to assume that our system is represented by
an operator whose input variables are the input available PSDs,
while the output variables are the PSDs delivered to the load.

In practice, however, these two distinct definitions will lead
to similar values in the vast majority of situations. Indeed, since
the output mismatch suffered by the signal is the same as the one
suffered by the noise, the ratio of their PSDs (the SNR, which
is essential in NF calculation) is an invariant to load impedance.
Thus, an NF defined from output available PSDs, or another one
defined from PSDs actually delivered to the load, will only differ
if the noise introduced by the load (thermal noise) is significant
compared to the noise delivered to that load by the DUT, and
since the equivalent noise temperature of the load and the source
are probably the same, this can only happen if a rare situation
of a DUT with small gain and very low added noise is to be
characterized. Therefore, significant discrepancies between our
NDF and the previous IEEE NF will only be noticed for DUTs
of very small gain and very low added powers of additive noise
and distortion. If the load added noise PSD were subtracted from
the total noise PSD measured at the load (indeed, it can be sub-
tracted because the noise associated to the load is uncorrelated
to any other noise generated in the measurement system), then
the NDF and the IEEE NF would again be perfectly consistent.

Finally, since the IEEE NF was originally defined for linear
systems, it was always a measure of the system’s induced SNR
degradation independent of the signal input power. That is so
because, keeping the gain constant, the output SNR becomes in-
dependent of the input signal power or noise power. On the con-
trary, the NDF is especially useful for nonlinear systems where
the gain and generated IMD are strongly dependent on the input
power. Therefore, it should be of no surprise that the NDF must
be defined for a certain input power. In the case of dynamic non-
linear systems, the BLA of (11) actually shows that it will even
be dependent on the available signal’s PSD.

To exemplify the use of the NDF, a nonlinear system excited
by an input z(¢) composed of a signal s(¢) and noise n(t) is
considered [z(t) = s(t) + n(¢)]. The SINAD, can be calcu-
lated if the output signal, noise, and distortion components are
separately identified. As stated above, those components can be

separated using the BLA. With input z(t), the output z(¢) can
be decomposed in

z(t) = he(t) xz (1) +y (1)

where y(t) is uncorrelated with z:(¢) and has two distinct compo-
nents: the additive noise introduced by the system and the gen-
erated nonlinear distortion. Since the origin of these two compo-
nents is physically distinct, they are uncorrelated with each other
and can thus be added in power. The value of h(t) can be de-
termined using the BLA. According to this formulation, the fol-
lowing output signal component was found: by, (¢) * z(¢),i.e., the
output signal is the output component that can be obtained with
the linear transfer function derived from the input output cross-
correlation. With all these statements, we can write the SINAD,,
as

15)

SINAD, (w) = Hy @) 5: ) .
’ |Hp(w)]* - N; (w) + No(w) + IMD (w)(16)

In this expression, .S;(w) and N;(w) denote the input signal
and input noise power spectral densities, respectively. H (w)
is the BLA transfer function, N, (w) is the PSD of the DUT’s
induced additive noise, and IMD(w) is the PSD of the stochastic
nonlinear IMD.

The NDF will now be computed for a particular case of the
input and for a nonlinear memoryless system where the signals
are flat over a bandwidth B with power P; and P, given by
(17) as follows:

—wg Sw< —wr; wp Sw<lwy

Ly
Sss(w)=1{ 2B’
0, elsewhere

—wg Sw< —wr; wp Swlwy

P,
Snn(w)={ 2B’
0, elsewhere.

7)

The output PSD in the fundamental zone may be obtained,
replacing (17) in (4), up to the third order, and can be written as

S,y (w) = [a% +6ayas (P + Po) + 902 (Py + pn>2J

(P +P)
2B
B2
+ 604% (—w2 + (wp +wy)w + > wLwH>
3

3 3 2 2
e (P2 + P} +3P2P, 4+ 3P,P)) .

Using (7), we can identify the signal components in (18) and
isolate them from nonlinear distortion. Also taking into account
the effect of additive noise, the in-band output SINAD can be
obtained, as depicted in (19), shown at the bottom of this page.

(18)

[Oél +30é3 (PS +Pn)]

2 Ps

SINAD, (w) =

P, B?
[051 + 3ag (PS + Pn)]QE + 60&% <—w2 + (WL + wH)w + 7 - wLwH> .

3. (P, + P,)*

8B3 + N
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Using (14) and (19), in-band NDF(w) for this case is given
by (20), shown at the bottom of this page, where we can see that
the NDF assumes a parabolic pattern inside the band. That is
due to the triple convolution of the bandpass signal used in this
example.

This expression will not tend to (1) since the statistical prop-
erties of Gaussian noise (even when the bandwidth is narrow)
are different from a single sinusoid.

In the case of a nonlinear system with memory, the process is
much more laborious, but follows exactly the same procedure.
We first calculate the BLA using (11), then derive the output
spectral density, and use these two values to compute output
noise and distortion.

V. VALIDATION OF THE THEORETICAL RESULTS

In order to validate the above theory, the NDF of the gen-
eral system of Fig. 3 was estimated from time-domain numer-
ical simulations, and these results were compared to the ones
directly obtained from (14). Several tests were performed for
different input signals and distinct system configurations.

The Volterra series representation of the system in Fig. 3 was
obtained in [14] and is rewritten here for convenience as follows:

aq

D(w)

Hy (w) = 21

and

Hj (w1, w2, w3)
1 1
D(wl)D(wg)D(wg,) D(wl +w2+w3)
2 |:F(UJ1+W2) F(w; +ws)
D(w1+w2) D(w1+w3)

2
: {013-1-—042

3 5]

D((UQ —|—w3)
(22)

where D(w) = 1 — a1 F(w).

This general system can be set to model both situations pre-
sented above, i.e., the memoryless nonlinear system and the
system with memory.

The memoryless nonlinear system is obtained by eliminating
the feedback path, making F'(w) = 0, while the system with
memory is obtained by proper tuning of the feedback path. In
[14], it was proven that only an F'(w) reactive to the base band
frequencies can be responsible for the envelope memory ef-
fects. Thus, in the dynamic case, F'(w) was designed in order
to present some reactive behavior at low frequencies.

In order to observe the impact of the input signal spectrum
on the BLA and, thus, on the NDF, in the dynamic case, we will
simulate this system recurring to three different input signals.

The simulator block diagram is depicted in Fig. 4.
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Fig.7. In-band NDF: simulated (simple line), theoretical (dark line). (a) Signal
spectrum 1. (b) Signal spectrum 2. (¢) Signal spectrum 3.
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Fig. 8. Frequency response of the feedback filter F'(w) used.

A. NDF Calculation in a Memoryless Situation

Lets consider first a memoryless nonlinearity (F'(w) = 0).
Although the theoretical conclusions stated that the BLA is con-
stant with the input spectrum in memoryless nonlinear systems,
three different spectrums are used in order to compare it with
the behavior of systems including memory.

Fig. 5 depicts the input spectrum of each test signal used.
In this figure, the output spectrum is also plotted, where the
adjacent-channel distortion generated in the nonlinearity can be
observed.

As can be seen in Fig. 6, the BLA is unaffected by the input
signal spectrum shape. This confirms the theoretical results pre-
viously obtained in Section III, which state that the Hy, (w) of
(7) is only dependent on the even-order moments of the input
signal and not on its shape.

Although the BLA is an invariant to the input spectrum shape,
the NDF varies with it. This variation is due to the fact that, in
the frequency zones where the input signal spectral density is
higher, the nonlinear distortion level increases at a faster rate
than the output signal. Hence, the NDF must also present higher
values. Furthermore, if the input spectral density has a flat shape
(signal spectrum 2), the output nonlinear distortion has para-
bolic shape, as predicted in (20). That is mildly seen on Fig. 7(b).

B. NDF Calculation in a Nonlinear System With Memory

In order to calculate the BLA for a nonlinear system with
memory, a polynomial with ar; and a3 identical to the memory-
less case was used, but o was increased to give more emphasis
to the memory effect that we are looking for [14], [15]. Note
that, in (22), despite the increase of the polynomial second de-
gree coefficient aa, we are also varying the third-order Volterra
kernel [14]. A low-frequency feedback filter F'(w) with fre-
quency response, shown in Fig. 8, was introduced.

Note that this filter has a rejection ratio of over 20 dB in the
fundamental frequency zone and a steep rolloff at the low fre-
quencies from 0 to Bw/2 (Bw of the signals used were approx-
imately 2% of the sampling frequency).

Fig. 9 shows the input and output spectra of the test signals
used. The output has an adjacent distortion level higher than
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Fig. 9. Input spectrum of the test signals used for the BLA extraction (simple

line) and output spectrum (dotted line). (a) Signal spectrum 1. (b) Signal
spectrum 2. (c) Signal spectrum 3.

the one used when compared to the memoryless case (Fig. 5).
This is a consequence of the fact that, in this case, the strong
second-order coefficient also contributes to in-band distortion
due to the feedback path, as seen in (22).

The valley shown in the BLA plot of Fig. 10(b) is due to
the high-pass characteristic of the feedback filter manifested be-

Authorized licensed use limited to: UNIVERSIDADE DE AVEIRO. Downloaded on July 1, 2009 at 11:35 from IEEE Xplore. Restrictions apply.



LAVRADOR et al.: EVALUATION OF SINAD RATIO DEGRADATION IN NONLINEAR SYSTEMS

-2 L L I |
0.145 0.15 0.155 0.16
Normalized Freq
a)

2 I ! I |
0.145 0.15 0.155 0.16

Normalized Freq
b)

dB
o
T

-2 L 1 L |
0.145 0.15 0.155 0.16

Normalized Freq
c)

Fig. 10. In-band BLA: simulated (simple line); theoretical (dotted line).
(a) Signal spectrum 1. (b) Signal spectrum 2. (c) Signal spectrum 3.

tween dc and 0.02, as F'(w) increases from the center of the band
(dc) to the extremes (=Bw, the occupied signal bandwidth).
This effect can only be noticed in this figure because that case
is the only resulting from a flat input spectrum. For the input
spectra 1 and 3 [see Fig. 10(a) and (¢)], and due to the dynamic
behavior of the feedback path, the BLA is affected simultane-
ously by the input spectrum and filter shapes, this way reducing
the effect of the filter form.
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Fig. 11. In-band NDF: simulated (simple line); theoretical (dotted line).
(a) Signal spectrum 1. (b) Signal spectrum 2. (c) Signal spectrum 3.

The residual differences seen between theoretical and simu-
lated results are due to the fact that the noise signal in use here is
not of infinite length, but a limited sequence whose realizations
were averaged in frequency.

In Fig. 11, the NDF is also presented and, as theoretically
predicted, also varies with the input spectrum.
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VI. CONCLUSIONS

In this paper, the misleading result presented in [2] was dis-
cussed, and its main drawbacks pointed out. Nevertheless, the
important conclusion obtained in [2], stating that the usual NF
standard is affected by nonlinearities, is used to propose a new
figure-of-merit, called the NDF, which relates the input and
output SINADs. Therefore, an NDF definition for nonlinear sys-
tems, but still consistent with the traditional linear NF, was ad-
vanced.

Additionally, and in order to analytically characterize the
NDF, the BLA was calculated for memoryless and dynamic
systems. In the memoryless case, it was shown that BLA is only
dependent on the nonlinearity and input power. In dynamic
systems, however, it also changes with the input spectrum
shape.

The excellent agreement between simulated and theoretical
results gives us confidence to use this figure-of-merit in link
budget designs.
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