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Abstract 

Background: Chloroquine has been administered to the soldiers of the Republic of Korea as prophylaxis against 

vivax malaria. Recent increase in the number of chloroquine-resistant parasites has raised concern over the chemo-

prophylaxis and treatment of vivax malaria.

Methods: To monitor the development of chloroquine-resistant parasites in the Republic of Korea, analyses of single 

nucleotide polymorphisms (SNPs) of pvmdr1 and microsatellite markers were performed using samples collected 

from 55 South Korean soldiers infected with Plasmodium vivax.

Results: Four SNPs, F1076L, T529, E1233, and S1358, were identified. Among these, S1358 was detected for the first 

time in Korea. The microsatellite-based study revealed higher genetic diversity in samples collected in 2012 than in 

2011.

Conclusions: Taken together, the results indicate that P. vivax with a newly identified SNP of pvmdr1 has been 

introduced into the Korean P. vivax population. Therefore, continuous monitoring for chloroquine-resistant parasites is 

required for controlling vivax malaria in the Republic of Korea.
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Background
Malaria caused by Plasmodium vivax is the most com-

mon human malaria infection, affecting 40  % of the 

world’s population [1, 2]. In the Republic of Korea, 

vivax malaria had been successfully eliminated by the 

late 1970s by an effective World Health Organization 

(WHO) programme. However, this infectious disease has 

re-emerged, since a soldier was diagnosed with P. vivax 

infection in 1993 [3, 4]. Since then, vivax malaria has 

been the only type of malaria detected in the Republic of 

Korea, accounting for 18,052 cases reported from 1994 to 

2013 [5].

Vivax malaria endemic regions in the Republic of 

Korea are concentrated near the demilitarized zone that 

separates South Korea from the Democratic People’s 

Republic of Korea (DPRK or North Korea). �us, mili-

tary personnel and residents living in the demilitarized 

zone are under high risk of contracting vivax malaria. 

Military personnel accounted for 25.3  % (1029/4063) 

of all malaria cases reported from 2008 to 2010 [6]. 

�is percentage rose to 44.7  % (1811/4063) when mili-

tary personnel diagnosed with vivax malaria follow-

ing discharge from the service were counted [7]. In this 

regard, mass chemoprophylaxis using chloroquine and 

primaquine has been administered to soldiers since the 

year 1997 to control vivax malaria infection. For the 
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chemoprophylaxis, 300 mg chloroquine is administrated 

weekly to military personnel from June to August (for 

12 weeks), and then, 30 mg primaquine is administrated 

daily for 2 weeks.

Chloroquine has been used to not only kill P. vivax in 

asexual blood stages and gametocytes, but also to pre-

vent the spread of malaria in low-risk areas. However, its 

massive use in the treatment of vivax malaria and con-

tinuing long-term chemoprophylaxis could facilitate the 

acquisition of resistance to chloroquine [8]. Since the 

first report of chloroquine-resistant P. vivax in 1989 in 

Papua New Guinea, the number of chloroquine-resist-

ant cases has increased in several countries, including 

Indonesia, Southeast Asia, India, and Central and South 

America [9–15]. Although cases of chloroquine-resist-

ant malaria infections have been confirmed recently, 

chloroquine is still used as the therapeutic and chemo-

prophylactic drug for P. vivax infections in the Republic 

of Korea [16]. �us, the administration of chloroquine to 

soldiers stationed near the demilitarized zone has raised 

the concern of accelerating the development of drug-

resistant P. vivax.

Monitoring the genetic polymorphism that con-

fers chloroquine resistance to malaria provides useful 

information regarding the efficacy of drugs in treating 

malaria. However, compared to P. falciparum, previous 

studies using genetic markers for chloroquine-resistant P. 

vivax did not conclude a strong correlation between the 

genetic markers and chloroquine-resistant phenotype in 

P. vivax, because the molecular mechanisms of chloro-

quine resistance in P. vivax is still elusive [17]. Among 

the genetic markers for chloroquine-resistant P. vivax, 

the multidrug resistance-1 gene of P. vivax (pvmdr1) 

has been identified as a possible genetic marker of chlo-

roquine resistance with in vitro characterization of iso-

lates [18]. In Southeast Asia and Papua New Guinea, 

the Y976F mutation (TAC→TTC) in pvmdr1 has been 

shown to be correlated with chloroquine resistance [19–

21]. In addition, the association of severe malaria and 

expression levels of pvmdr1 with chloroquine resistance 

was reported by showing 2.4-fold increase in pvmdr1 

expression levels in parasites from patients compared to 

the susceptible group of vivax malaria in the Brazilian 

Amazon [21]. �is chloroquine resistance appears to be 

the result of a two-step mutation pathway, in which the 

F1076L mutation is followed by the Y976F mutation [22, 

23]. �e F1076L mutation is found in all Korean samples 

tested, and is unlikely to result in chloroquine treatment 

failure [24], while the Y976F mutation has not yet been 

reported in the Republic of Korea [25]. However, con-

sidering that the South Korean military has been per-

forming mass chemoprophylaxis for more than 15 years, 

there likely is strong evolutionary pressure for selection 

of the double mutant.

Recently, the genetic diversity as well as intra- and 

inter-population relationships of P. vivax isolates 

obtained from the Republic of Korea (from 1994 to 2008) 

were analysed [26, 27]. By using microsatellite mark-

ers, this analysis provided an explanation for the genetic 

diversity observed among strains. In this study, the prev-

alence of five common non-synonymous single-nucleo-

tide polymorphisms (SNPs) and four synonymous SNPs 

at the pvmdr1 locus, including the Y976F and F1076L, 

was examined in 55 P. vivax isolates obtained from mili-

tary vivax malaria patients who had taken chemopro-

phylaxis near the demilitarized zone of the Republic of 

Korea. �e population structure of these isolates was 

analysed using the microsatellite method with 10 micro-

satellite markers.

Methods
Ethics statements

�is study was approved by the ethics committee of the 

Army Forces Medical Command (Approval No. AFMC-

13-IRB-053, July 2011). An approval form was used to 

obtain written informed consent from each participant 

and all participants provided their informed consent for 

collecting a 5-mL blood sample.

Blood samples and DNA extraction

A total of 55 blood samples were collected from patients 

infected with malaria and admitted to the Armed Forces 

Hospitals near the demilitarized zone located in north-

ern Gyeonggi-do Province in the northwest region of the 

Fig. 1 Map of Gyeonggi-do Province in the Republic of Korea: 

endemic regions of vivax malaria near the demilitarized zone in 

which samples were collected
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Republic of Korea in 2011 and 2012 (Fig. 1). �e admis-

sion and clinical management of the patients were under-

taken independently of this study. Aliquots (200 µL) of 

venous blood samples were stored at −20  °C in ethyl-

enediaminetetraacetic acid (EDTA)-coated bottles until 

extracting genomic DNA using a QIAamp® DNA Blood 

Mini Kit (Qiagen, USA) according to the manufacturer’s 

instructions.

Identi�cation of single nucleotide polymorphism (SNP) 

in the pvmdr1 gene

�e pvmdr1 gene was amplified by nested PCR using 

pvmdr1 gene specific primers [25, 28]. Amplification 

of pvmdr1 gene fragments was performed applying a 

nested PCR approach and regents, primers, and cycling 

conditions as outlined in Table  1. �e final PCR prod-

ucts were resolved by electrophoresis on a 1.5 % agarose 

gel stained with ethidium bromide, and visualized under 

ultraviolet illumination. �e second PCR products were 

sequenced and the deduced amino acid sequences were 

compared to the amino acid sequence of pvmdr1 from 

the Sal I strain of P. vivax (Salvador I, GenBank acces-

sion no. AY571984). �e amino acid sequence align-

ment and analyses were performed using Clustal Omega 

[29].

Analysis of ten microsatellite markers

To determine the relationships between the differ-

ent pvmdr1 genotypes of P. vivax, 10 microsatellite 

markers were typed for 28 samples collected in the 

year 2011 and 27 collected in the year 2012. The 

10 microsatellite markers used for this assay were 

as follows: MS1, MS3, MS5, MS8, MS10, MS12, 

MS16, MS20, Msp1F7, and Pv3,27. The primer sets 

and amplification conditions used for the PCRs 

have been described elsewhere [30, 31]. The fluo-

rophore-labelled PCR products were quantified 

using an Applied Biosystems 3730 DNA Analyzer 

with the GeneMapper software Version 4.0 (Applied 

Biosystems, USA). In order to reduce potential arti-

facts from background noise or stutter, an arbitrary 

fluorescent intensity threshold of 50 relative flores-

cence units was applied for peak detection. All elec-

tropherogram traces were additionally inspected 

manually. For each isolate, at each locus, the pre-

dominant allele, the highest intensity peak and any 

additional alleles with a peak height of at least one-

third of the height of the predominant allele were 

scored [32]. Genotyping success was defined as the 

presence of at least one allele at a given locus in a 

given sample.

Population genetic analyses and statistical treatments

�e major alleles of each locus were used for our pop-

ulation genetic analysis. �e level of genetic diversity 

of the P. vivax population in Republic of Korea was 

assessed by allele number per locus (A) and expected 

heterozygosity (He). �e He values for each locus 

were calculated using the formula He  =  [n/(n  −  1)] 

[1 − ∑pi
2], where n is the number of isolates examined 

and pi is the frequency of the ith allele. �e statistical 

significance of the differences in these values was evalu-

ated by Welch’s t test.

Multilocus linkage disequilibrium (LD) was assessed 

using LIAN v3.6 based on the allelic data for the 10 

microsatellite DNA loci [33]. �is program computed 

the standardized index of association (IA
S), a measure of 

genotype-wide linkage. �e P-values were determined by 

a Monte Carlo simulation process, performing 100,000 

iterations. Only those samples for which a complete set 

of microsatellite alleles were scored were used for this 

analysis. Additionally, the multilocus genotypes found in 

multiple isolates were only counted once in the analysis 

[34].

Microsatellite genotypes of the isolates were deter-

mined based on a combination of the allelic data of the 10 

loci. �e relationships between the genotypes were deter-

mined by eBURST analysis [35].

Table 1 Primers and cycling condition of a nested PCR for amplifying pvmdr1

Primer name Sequence (5′–3′) Annealing temperature (°C) Size of PCR product (bp)

First pvmdr1 F1 TTGAACAAGAAGGGGACGTT 61 4290

pvmdr1 R1 CTTATATACGCCGTCCTGCAC

Second pvmdr1 F2 CAGCCTGAAAGATTTAGAAGCCTT 58 539

pvmdr1 R2 CATCCACGTCCACAGTGGAAC

pvmdr1 F3 GGATAGTCATGCCCCAGGATTG 62 604

pvmdr1 R3 CATCAACTTCCCGGCGTAGC

pvmdr1 F7 GATGAGCCTGCTGATGCGATTCTAC 60 745

pvmdr1 R5 ATATACGCCGTCCTGCACCGAG
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Results and discussion
In the Republic of Korea, an extensive malaria chemopro-

phylaxis campaign using chloroquine and primaquine has 

been conducted annually since the year 1997. �e cumu-

lative numbers of the soldiers receiving this treatment 

exceeded approximately 1.8 million by 2011. Although 

this chemoprophylaxis has contributed to the contain-

ment of vivax malaria, the possibility of the emergence of 

chloroquine-resistant P. vivax strains has been a concern. 

Indeed, chemoprophylaxis failure has been reported in 

several cases, despite the attainment of sufficiently high 

plasma concentrations of hydroxychloroquine [6, 16]. 

�erefore, monitoring for chloroquine-resistant P. vivax 

is important for the control of malaria in Republic of 

Korea.

In vitro assays provide drug susceptibility estimates 

free from the effects of most factors that affect in  vivo 

assays. However, the lack of a robust, standardized and 

widely applicable protocol for long-term in vitro culture 

hinders P. vivax malaria research. �erefore, short-term 

ex  vivo assays have been successfully used to moni-

tor the chloroquine resistance of P. vivax isolates [25, 

36]. In addition to the ex  vivo chloroquine susceptibil-

ity assays, molecular markers, such as pvmdr1, have 

been used to examine chloroquine resistance in P. vivax 

isolates. �e pvmdr1 gene encoding for an ATP bind-

ing cassette transporter, has been shown to modulate 

the responses of P. vivax to chloroquine and other anti-

malarial drugs [17, 28]. �erefore, the SNPs of pvmdr1 

were evaluated in isolates obtained from patients resid-

ing in the demilitarized zone. Compared to the pvmdr1 

gene of the reference P. vivax Sal I strain, SNPs at four 

loci of pvmdr1, one non-synonymous mutation (F1076L) 

and three synonymous SNPs (T529, E1233, and S1358; 

Table  2) were detected in the P. vivax isolated from 

patients. Mutant alleles at position 1076 (F1076L) were 

present in all isolates (100 %) obtained from samples col-

lected in 2011 and 2012. �e number of SNPs at position 

529 (T529) and 1233 (E1233) was higher in the 2011 iso-

lates (T529, 57.1 %; E1233, 42.9 %) than in 2012 (T529, 

55.6 %; E1233, 33.3 %). Among these four SNPs, F1076L, 

T529, and E1233 have been reported previously [25]. 

�e newly identified SNP was in codon 1358 (S1358). 

�e S1358 SNP has been reported to be associated with 

the low chloroquine susceptibility of P. vivax in �ailand 

and Myanmar: this result could be considered to be an 

early sign of the increasing presence of the chloroquine-

resistant P. vivax strains in the Republic of Korea [25]. 

However, none of the analysed samples harboured a 

mutation at codon 976 (Y976F), which has been identi-

fied as a possible genetic marker of chloroquine resist-

ance in Southeast Asia and Papua New Guinea [28, 

37–39]. �is data suggests that chloroquine-resistant 

P. vivax may not currently be prevalent in the Republic 

of Korea. �e dN/dS ratios, the ratio of the rate of non-

synonymous substitutions to the rate of synonymous 

substitutions, were 0.935 (29/31) and 0.865 (32/37) for 

the isolates from 2011 and 2012, respectively. Although 

the dN/dS ratio of samples collected is below 1 and less 

than the dN/dS ratio of 2011 samples, these data cannot 

be concluded that the 2012 samples were under selective 

pressure.

Following the identification of SNPs, the multiple 

clone infection pattern, genetic diversity as well as inter- 

and intra-population differences between the pvmdr1 

groups was evaluated using 10 loci. Different alleles sizes 

observed in a single locus were classified as a multiplic-

ity of infection (MOI). �e MOI referred to multiple 

clone infection. Multiple clone infection was observed 

in some of the microsatellite loci in 24 of the 55 isolates 

(49.1  %). Multiple clone infection occurred more fre-

quently in samples from 2011 (60.7  %, n =  17) than in 

those from 2012 (37.0 %, n = 10). �e number of MOI 

loci per sample was also examined. �e highest number 

of MOI loci per isolate was four, which we observed in a 

single isolate.

�e major alleles of each locus were used for our pop-

ulation genetic analysis. As shown in Table  3, genetic 

diversity in P. vivax isolates from 2012 (A = 6.49 ± 0.49, 

Table 2 Distribution of  pvmdr1 mutations among  the  

P. vivax isolates obtained from the South Korean soldiers

Mutation Year % of mutated isolates (no. 
of isolates with mutation/total no. 
of isolates)

2011 2012

S513R (AGT/AGA) 0 (0/28) 0 (0/27)

T529 (ACA/ACG) 57.1 (16/28) 55.6 (15/27)

Y976F (TAC/TTC) 0 (0/28) 0 (0/27)

K997R (AAG/AGG) 0 (0/28) 0 (0/27)

F1076L (TTT/CTT) 100 (28/28) 100 (27/27)

E1233 (GAG/GAA) 42.9 (12/28) 33.3 (9/27)

S1358 (TCC/TCT) 0 (0/28) 3.7 (1/27)

K1393 N (AAG/AAC) 0 (0/28) 0 (0/27)

E1396 (GAG/GAA) 0 (0/28) 0 (0/27)

Table 3 Genetic diversity and  multilocus linkage disequi-

librium in P. vivax populations

A average number of the alleles ± SE, He average expected heterozygosity ± SE

Year A He IA
S

2011 5.23 ± 0.76 0.52 ± 0.29 0.028

2012 6.49 ± 0.49 0.72 ± 0.14 0.052



Page 5 of 7Chung et al. Malar J  (2015) 14:336 

He =  0.72 ±  0.14) was greater than in those from 2011 

(A = 5.23 ± 0.76, He = 0.52 ± 0.29). Moreover, the level 

of multilocus LD (IA
S) was calculated using allelic data 

from all P. vivax isolates (Table 3). No significant multilo-

cus LD (IA
S = 0.040, P > 0.05) was observed in the P. vivax 

population. Notably, there was greater multilocus LD in 

the 2012 population (IA
S = 0.052) than in the 2011 popula-

tion (IA
S = 0.028). �e genetic diversity of P. vivax popula-

tion in Korea was greater than that reported by Iwagami 

et al. [26, 27]. Although the sample size (n) was small, the 

increased genetic diversity and decreased multilocus LD 

levels of recent P. vivax isolates observed appears to be 

a trend in Korea [26, 40]. �e multilocus LD levels were 

very low (IA
S = 0.028 in 2011; IA

S = 0.052 in 2012), suggest-

ing a large possibility of outbreeding between different 

genotypes. �ese results are noteworthy since the num-

ber of vivax malaria cases is declining in Korea (1772 

cases in 2010, 826 cases in 2011, and 542 cases in 2012), 

which suggests that genetically new P. vivax isolates may 

emerge in the Republic of Korea every year. However, 

because the isolates exhibited few genetic differences, it 

would be difficult to conclude that the new P. vivax iso-

lates are from different high-risk areas of the Republic of 

Korea [41].

Microsatellite genotypes of the 55 isolates were deter-

mined based on a combination of the allelic data of the 10 

microsatellite loci, and 30 genotypes (G1–G30; Table 4) 

were identified. �ree major genotypes, G12, G16, and 

G17 were identified. Seven (12.7  %) of the 55 isolates 

belonged to genotype G16, whereas five isolates each 

belonged to genotypes G12 and G17. �e relationship 

between the 30 genotypes was determined by eBURST 

analysis with the following criterion: when two isolates 

shared more than two identical loci (out of the three loci), 

these were connected with a branch (Fig. 2). �e eBURST 

analysis revealed two major groups, Group 1 and Group 

2. Group 1 contained 22 isolates (40.0 %), including the 

isolates of genotypes G12, G16, and G17. Group 2 con-

tained three isolates (5.5 %), including the isolates of gen-

otypes G5, G6, and G7. Five isolates of genotypes G4, G8, 

G29, and G30 were not included in the two major groups, 

nor were they connected to any other genotypes. Addi-

tionally, a single isolate with a new SNP at codon 1358 

(S1358) was classified as genotype G24 and was located 

at the end of the branch, indicating that this genotype 

is newly introduced into the Republic of Korea P. vivax 

population.

Conclusions
In conclusion, the pvmdr1 gene was analysed in samples 

collected from South Korean soldiers. �e results showed 

that an isolate with a new SNP (S1358) of pvmdr1 has 

been introduced into the Korean P. vivax population and 

that the genetic diversity of the Korean P. vivax popula-

tion is likely to be greater in 2012 than in 2011. �ere-

fore, further continuous monitoring for the presence of 

Table 4 Thirty genotypes of the P. vivax population in the 

Republic of Korea

a Genotype includes the newly identi�ed SNP on codon S1358 (TCC/TCT)

SNP of pvmdr1 Total

2011 2012

G1 3 3

G2 1 1

G3 1 1

G4 1 1

G5 1 1

G6 1 1

G7 1 1

G8 1 1

G9 1 1

G10 1 1 2

G11 1 1

G12 3 2 5

G13 3 3

G14 1 1

G15 1 1

G16 4 3 7

G17 4 1 5

G18 3 3

G19 2 2

G20 1 1 2

G21 1 1

G22 1 1

G23 1 1

G24a 1 1

G25 2 2

G26 1 1

G27 1 1 2

G28 1 1

G29 1 1

G30 1 1

Total 28 27 55
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chloroquine resistant parasites using molecular markers is 

needed for the control of vivax malaria in the Republic of 

Korea.
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