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ABSTRACT

This study evaluates the performance of six atmospheric reanalyses (ERA-Interim, ERA5, JRA-55, CFSv2,

MERRA-2, and ASRv2) over Arctic sea ice from winter to early summer. The reanalyses are evaluated using

observations from theNorwegianYoung Sea Ice campaign (N-ICE2015), a 5-month ice drift in pack ice north of

Svalbard. N-ICE2015 observations include surface meteorology, vertical profiles from radiosondes, as well as

radiative and turbulent heat fluxes. The reanalyses simulate surface analysis variables well throughout the

campaign, but have difficulties with most forecast variables. Wintertime (January–March) correlation co-

efficients between the reanalyses and observations are above 0.90 for the surface pressure, 2-m temperature,

total columnwater vapor, and downward longwave flux. However, all reanalyses have a positivewintertime 2-m

temperature bias, ranging from 18 to 48C, and negative (i.e., upward) net longwave bias of 3–19Wm22. These

biases are associated with poorly represented surface inversions and are largest during cold-stable periods.

Notably, the recent ERA5 and ASRv2 datasets have some of the largest temperature and net longwave biases,

respectively. During spring (April–May), reanalyses fail to simulate observed persistent cloud layers. Therefore

they overestimate the net shortwave flux (5–79Wm22) and underestimate the net longwave flux (8–38Wm22).

Promisingly, ERA5 provides the best estimates of downward radiative fluxes in spring and summer, suggesting

improved forecasting of Arctic cloud cover. All reanalyses exhibit large negative (upward) residual heat flux

biases during winter, and positive (downward) biases during summer. Turbulent heat fluxes over sea ice are

simulated poorly in all seasons.

1. Introduction

Temperatures in the Arctic are rising twice as fast as

the Northern Hemisphere as a whole, and Arctic sea ice

is retreating in all seasons (Serreze and Francis 2006;

Bekryaev et al. 2010; Stroeve et al. 2012; Boisvert and

Stroeve 2015; Stroeve and Notz 2018). Many studies

documenting and attributing these ongoing changes in

the Arctic rely heavily on atmospheric reanalyses

(Screen and Simmonds 2012; Screen et al. 2013; Mortin

et al. 2016; Overland and Wang 2016; Graham et al.

2017a,b; Rinke et al. 2017; Kapsch et al. 2019). Rean-

alyses are also widely used as boundary conditions for

Arctic regional models and ice–ocean models (Dorn

et al. 2009; Schweiger et al. 2011; Rinke et al. 2013;

Lindsay and Schweiger 2015).

While these are frequently used for studies in theArctic,

known biases exist that have afflicted several generations

of atmospheric reanalyses (Cullather et al. 2016). For ex-

ample, most reanalyses have a warm and moist bias at the

surface in the Arctic (Beesley et al. 2000; Makshtas et al.

2007; TjernstömandGraversen 2009; Jakobson et al. 2012;

de Boer et al. 2014; Lindsay et al. 2014; Wesslén et al.

2014). This bias is strongest during cold stable periods in

winter months, and is associated with simulating surface

temperature inversions that are too weak (Tjernstöm and

Graversen 2009; Serreze et al. 2012; Graham et al. 2017a).

Furthermore, reanalyses simulate clouds poorly in the

Arctic (Walsh and Chapman 1998; Makshtas et al. 2007;

Walsh et al. 2009; de Boer et al. 2014; Engströmet al. 2014;

Lindsay et al. 2014; Wesslén et al. 2014). In particular,
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reanalyses frequently fail to simulate observed persistent

clouds during summer months. This results in a poor rep-

resentation of surface radiative heat fluxes (Walsh et al.

2009; Wesslén et al. 2014). There is also a large spread

among reanalyses for both the total precipitation and

phase of precipitation in the Arctic, but a lack of obser-

vations makes it difficult to assess which products are most

accurate (Boisvert et al. 2018). The presence of these

biases does not necessarily preclude the use of reanalyses

for analyzing interannual variability and trends in tem-

perature (Simmons and Poli 2014). However, the combi-

nation of biases, errors, and the spread among products

can generate large uncertainties when using reanalyses as

boundary conditions to model Arctic sea ice (Lindsay

et al. 2014).

A key source of uncertainty in reanalyses and reason

for the spread among products for certain variables is

the difference in methods used to parameterize subgrid-

scale processes, such as cloud physics and turbulent

mixing (Tastula et al. 2013; Engström et al. 2014; Pithan

et al. 2014; Klaus et al. 2016; Boisvert et al. 2018; Taylor

et al. 2018). Given the global coverage of most atmo-

spheric reanalyses, many parameterization schemes are

optimized for lower latitudes (Dee et al. 2011; Saha et al.

2014; Kobayashi et al. 2015; Bosilovich et al. 2015).

Regional reanalyses, such as the Arctic systems rean-

alyses, have been developed with parameterization

schemes designed specifically for polar regions

(Bromwich et al. 2014, 2016, 2018). This can help to

represent certain processes more accurately. However,

our understanding of many small-scale processes in the

Arctic remains limited (Morrison et al. 2011; Solomon

et al. 2014; Boisvert et al. 2018).

One reason for our reliance on reanalyses, despite

known biases, is the lack of reliable observations from

the central Arctic compared with the midlatitudes

(Cullather et al. 2016; Boisvert et al. 2018). In addition to

the limited availability of in situ observations, there are

large uncertainties with many satellite measurements

over the often cloudy and ice-covered Arctic Ocean

(Cullather et al. 2016). The lack of observations gener-

ates two further issues for reanalyses in the Arctic. First,

fewer observations are assimilated into the reanalyses

compared with lower latitudes. As a result, the obser-

vations have less influence in the final analysis, espe-

cially near the surface, which creates a greater reliance

on forecast models’ ‘‘first guess’’ results (Serreze et al.

2012; Cullather et al. 2016). In addition, there are fewer

observations that can be used to evaluate the perfor-

mance of reanalyses in the Arctic, especially in-

dependent observations that were not assimilated into

the reanalyses (Jakobson et al. 2012; Wesslén et al.

2014).

The winter and spring months provide the fewest

ground-based observations from the central Arctic.

This corresponds to the periods of maximum sea ice

extent (March) and polar night, when temperatures can

plummet to below 2408C. To date, the primary Arctic

datasets used for evaluating reanalyses during the

winter season are from North Pole drifting stations

(1954–2006), the 1997–98 Surface Heat Budget of the

Arctic (SHEBA) experiment, and circumpolar radio-

sonde sounding stations on the periphery of the Arctic

Ocean (Walsh and Chapman 1998; Makshtas et al.

2007; Liu et al. 2008; Tjernstöm and Graversen 2009;

Walsh et al. 2009; Serreze et al. 2012; Naakka et al.

2018). Field campaigns spanning several months, such

as the SHEBA experiment, are rare in the central

Arctic Ocean.

The Norwegian Young Sea Ice campaign (N-ICE2015)

was a 5-month field campaign in which a research ship

(R/V Lance) drifted with the sea ice from January to

June 2015, in the pack ice north of Svalbard (Granskog

et al. 2018). N-ICE2015 was the first winter field cam-

paign targeted specifically to study younger and thinner

sea ice, which is now ubiquitous in the Arctic

(Granskog et al. 2016). The location also coincides

with a region of rapid Arctic warming, increased

storminess, and significant winter sea ice retreat (Park

et al. 2015; King et al. 2017; Graham et al. 2017a; Rinke

et al. 2017). In this study, we use N-ICE2015 observa-

tions to evaluate the performance of six atmospheric

reanalyses over Arctic pack ice during winter, spring,

and early summer.

2. Data

a. N-ICE2015 observations

The N-ICE2015 field campaign consisted of four dis-

tinct ice drifts, two during winter season and two during

the spring and early-summer period (Fig. 1). The two

winter drifts covered the dates 15 January–21 February

and 24 February–19March 2015. Both winter drifts began

at approximately 838N. Observations on the first drift

were terminated after the floe broke up as it drifted

southward into the marginal ice zone. The pause in the

campaign between Drift 2 and Drift 3 allowed the ship to

refuel and resupply in Longyearbyen. The spring and

summer drifts covered the dates 18 April–5 June and

7–21 June. Drift 3 began at 838N and drifted southward

until reaching the ice edge. Subsequently, Drift 4 began at

approximately 818N and followed a path almost parallel

to the ice edge (Fig. 1).

At the start of each drift, a meteorological station was

built on the ice, approximately 300–400m from the ship,
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to measure the surface meteorology. In this study, we

use the mean sea level pressure, 2-m air temperature,

and 10-m wind speed (Hudson et al. 2015). The manu-

facturers stated measurement accuracy of these in-

struments for the conditions observed during N-ICE2015,

are 0.3hPa, 0.48C, and 0.4ms21, respectively. The surface

meteorological observations and associated uncertainties

are described in detail by Cohen et al. (2017).

Radiosondes were launched from the ship twice per

day at 1100 and 2300 UTC, providing profiles of tem-

perature, relative humidity, and wind speed (Hudson

et al. 2017). The manufacturer states that the un-

certainty in these measurements is 0.58C, 5%, and

0.15m s21, respectively. These measurements were

used to calculate specific humidity and the total column

water vapor, using the formula of Hyland and Wexler

(1983). For further information on the N-ICE2015 ra-

diosondes we refer to Kayser et al. (2017). Radiosonde

data were transmitted directly to the World Meteoro-

logical Organization’s Global Telecommunication

System (WMO-GTS) and were, thus, assimilated into

all of the reanalyses products analyzed in this study.

Surface observations from the meteorological tower

and ship were not transmitted to WMO-GTS.

Surface radiative fluxes (upward and downward

shortwave and longwave) were measured at a height of

1.0–1.2m near the meteorological tower on each floe

(Hudson et al. 2016). The measurement uncertainty for

these observations is expected to be less than 3% or

approximately 5–10Wm22. We also use measurements

of surface turbulent sensible and latent heat fluxes

(Walden et al. 2017b). These observations, and the

methods used to calculate the fluxes, are described in

detail byWalden et al. (2017a). The random uncertainty

in the turbulent heat flux measurements was calculated

for a clear and cloudy day in the both the winter and

spring periods, using the method of (Finkelstein and

Sims 2001). During winter, sensible heat flux errors are

on the order of 2.5Wm22 for clear days and 2.0Wm22

for cloudy days, while latent heat flux errors are

1.5Wm22 for clear days and 0.1Wm22 for cloudy days.

In spring, errors are approximately 0.5Wm22 for the

sensible and latent heat flux, on both clear and cloudy

days. It should be noted that while themagnitude of these

errors are small, as percentage errors they can be rela-

tively large (up to 80%). For sign convention, we define

all radiative and turbulent heat fluxes as positive down-

ward from the atmosphere into the snow/ice surface.

b. Atmospheric reanalyses

The temporal output files for the six reanalyses vary

from 1 to 6 h. For consistency, we evaluate all of the

reanalysis surface variables using a 6-h temporal window

(0000, 0600, 1200, and 1800 UTC). To compare the

N-ICE2015 observations with the reanalyses, we chose

the nearest horizontal grid point to the mean position of

the ship during that 6-h period, using the original re-

analysis grid.

The two-dimensional surface analysis fields from the

reanalyses and three-dimensional analysis fields are in-

stantaneous values (30-min averages, 615min of the

analysis time). These include 2-m temperature, 10-m

wind speed, mean sea level pressure, and total column

water vapor, as well as the vertical profiles of tem-

perature, winds speed, and humidity. We average the

N-ICE2015 observations of 2-m temperature, 10-mwind

speed, and mean sea level pressure over a 1-h window

(i.e., 630min), centered on the valid time of the re-

analysis analysis field.

To evaluate the radiosonde profiles, we retrieve the

reanalyses’ three-dimensional analysis fields at 12-h

temporal resolution, interpolated onto pressure levels.

We use 16 pressure levels below 500hPa, for all prod-

ucts. These pressure levels have a spacing of 25 hPa up to

750 hPa, and 50hPa thereafter.

The reanalysis forecast fields, including the turbulent

and radiative heat fluxes, are accumulated or average

fields over 1-, 3-, or 6-h forecast windows. For the surface

radiative heat fluxes we average the N-ICE2015 obser-

vations over the 6-h forecast window (e.g., from 0000 to

0600 UTC). Where reanalyses output are available at a

higher resolution than 6h, we average the output over a

6-h window. For the turbulent heat fluxes we use daily

average values, due to the high-frequency variability of

these fluxes.

FIG. 1. Overview map of the N-ICE2015 field campaign, with

location and dates of four ice drifts. Mean sea ice extent from the

National Snow and Ice Data Center for June 2015 is given by a

black contour (Fetterer et al. 2017).
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1) ERA-I

The European Centre for Medium-Range Weather

Forecasts (ECMWF) interim reanalysis (ERA-Interim,

herein ERA-I) is a global atmospheric reanalysis product

covering the period 1979 to the present (Dee et al. 2011).

The horizontal resolution of ERA-I is approximately

79km (T255 spectral), and there are 60 vertical levels

from the surface up to 0.1hPa. The data assimilation

system used to produce ERA-I is based on the 2006 re-

lease (Cy31r2) of the ECMWF Integrated Forecasting

System (IFS), which includes a four-dimensional varia-

tional analysis (4D-Var). The analysis window is 12h, and

analysis fields are available every 6h (Dee et al. 2011).

2) ERA5

ERA5 is a new and updated global reanalysis from

ECMWF, released in 2017, that will replace ERA-I. The

horizontal resolution of ERA5 is approximately 31km,

compared with 79km in ERA-I. Similarly, the vertical

resolution is increased from 60 to 137 model levels, up to

0.01hPa. The assimilation system used for ERA5 is the

IFS Cycle Cy41r2 with 4D-Var. Analysis fields are avail-

able every hour. Some newly reprocessed datasets and

data from recent instruments that were not assimilated

into ERA-I are included in ERA5 (https://confluence.

ecmwf.int//pages/viewpage.action?pageId574764925).

3) JRA-55

The Japanese 55-yr Reanalysis (JRA-55) is a global

reanalysis that was released in 2013. JRA-55 is pro-

duced using the TL319 version of Japan Meteorolog-

ical Agency’s (JMA) operational data assimilation

system, as of December 2009 (Kobayashi et al. 2015;

Harada et al. 2016). This system was extensively im-

proved following the earlier Japanese 25-yr Reanalysis

(JRA-25), and now includes 4D-Var. JRA-55 also as-

similates several newly available and improved past

observations, compared with JRA-25, including at-

mospheric motion vectors and clear-sky radiances

from Geostationary Meteorological Satellite (GMS)

and Multifunctional Transport Satellite (MTSAT)

imagery (Kobayashi et al. 2015). JRA-55 has a hori-

zontal resolution of approximately 55 km and 60 ver-

tical levels up to 0.1 hPa. Analysis fields are available

at 6-hourly resolution. JRA-55 has a relatively crude

classification of sea ice, and considers all regions with

an observed sea ice concentration greater than 55% to

have an ice fraction of 1.00.

4) CFSV2

The National Centers for Environmental Pre-

diction’s (NCEP) Climate Forecast System, version 2

(CFSv2), is an operational analysis that began in 2011

and is available in near real time (Saha et al. 2014).

CFSv2 provides a continuation of the 2010 NCEP Cli-

mate Forecast System Reanalysis (CFSR) (Saha et al.

2010). The analysis system used in CFSR is the Grid-

point Statistical Interpolation (GSI), with 3D-Var. The

atmospheric model used is the NCEP Global Forecast

System (GFS). The horizontal resolution is approxi-

mately 38 km (T382) with 64 vertical levels, up to

0.2 hPa (Saha et al. 2010). Analysis fields are available

every 6 h and forecast fields are available every hour.

In contrast to the other reanalyses included in this

study, CFSv2 is a weakly coupled reanalysis with an

ocean component and interactive sea ice model. The

ocean model is the Geophysical Fluid Dynamics Labo-

ratory (GFDL) Modular Ocean Model, version 4

(MOM4), which uses the Global Ocean Data Assimi-

lation System (Saha et al. 2010). Simultaneous coupled

data assimilation for the atmosphere and ocean is not

performed.

5) MERRA-2

MERRA-2 is produced with version 5.12.4 of the

Goddard Earth Observing System (GEOS5.12.4) at-

mospheric data assimilation system (Bosilovich et al.

2015). The GEOS-5 atmospheric model is used together

with the GSI analysis scheme with 3D-Var. The model

has a horizontal resolution of 0.58 latitude 3 0.6258

longitude, and 72 vertical levels up to 0.01 hPa. Analysis

fields are available at 3-h resolution.

6) ASRV2

The Arctic System Reanalysis version 2 (ASRv2) is a

regional reanalysis for the Arctic produced using a

high-resolution version of the Weather Research and

Forecasting (WRF) Model that is optimized for polar

environments (Polar-WRF) (Bromwich et al. 2018).

Polar optimizations are mainly within the Noah land

surface model, and include improved heat transfer

through snow and ice, the inclusion of fractional ice, and

the ability to specify variable snow depth on sea ice,

albedo, and ice thickness (Hines and Bromwich 2008;

Bromwich et al. 2009; Hines et al. 2015; Bromwich

et al. 2018).

ASRv2 follows the earlier coarser-resolution Arctic

System Reanalysis (Bromwich et al. 2016). The inner

domain of the model covers approximately half of the

Northern Hemisphere, with a horizontal resolution of

15 km and 71 vertical layers up to 10hPa. ASRv2 uses

the WRF Data Assimilation system (WRFDA) with

3D-Var. Initial and lateral boundary conditions for the

model are provided by ERA-I. ASRv2 fields are avail-

able at 3-h resolution.

4124 JOURNAL OF CL IMATE VOLUME 32

Unauthenticated | Downloaded 08/21/22 04:26 AM UTC

https://confluence.ecmwf.int//pages/viewpage.action?pageId=74764925
https://confluence.ecmwf.int//pages/viewpage.action?pageId=74764925


3. Results

a. Winter season

Here we compare N-ICE2015 observations with the

six reanalyses, for the first two ice drifts. These drifts

cover the dates 15 January–21 February and 24

February–19 March 2015 (Fig. 1). This period corre-

sponds mostly to the polar night, with negligible short-

wave radiative fluxes.

1) ANALYSIS FIELDS: SURFACE METEOROLOGY

AND VERTICAL PROFILES

Overall, the reanalyses perform well for the surface

meteorology and water vapor profiles during the winter

season (Figs. 2a–d). Correlation coefficients (R) be-

tween the reanalyses and observations are above 0.84

for the 2-m temperature, 10-m wind speed, and total

column water vapor (Table 1). The exceptional perfor-

mance of the mean sea level pressure and total column

water vapor is reasonable to expect, with the assimila-

tion of data from radiosondes (Figs. 2a,d). Nonetheless,

JRA-55 has a significant dry bias compared with the

other reanalyses (Figs. 3e,f; Table 1).

Correlation coefficients for the 10-mwind speed range

from 0.84 in ERA-I to 0.92 in ERA5 (Table 1; Fig. 2b).

Most reanalyses have a positive 10-m wind speed bias,

although the bias is not always significant (Table 1).

CFSv2 has no detectable bias. The largest bias

(11.0m s21) and RMSE (2.2m s21) are found in JRA-

55. ERA5 has the smallest RMSE of 1.4m s21. Most

reanalyses have too broad of a distribution of wind

speeds during calm periods; that is, they underestimate

FIG. 2. Time series of N-ICE2015 observations (black) for the two winter drifts (Drifts 1–2), compared with

values from the six reanalyses (colors). (a) Mean sea level pressure, (b) 10-m wind speed, (c) 2-m air temperature,

(d) total column water vapor, and (e) downward longwave radiative flux at surface.
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TABLE 1. Table shows correlations coefficients (R), biases, and root-mean-square errors (RMSEs) for the six reanalyses, based on

N-ICE2015 observations. Biases that are not statistically significant at the 95% confidence interval are shown in italics. To test the

significance, we assume that the bias is stationary during each season and calculate the confidence interval using a moving block bootstrap

approach (Künsch 1989). The optimal block length is estimated using the method described in Patton et al. (2009). The statistics are

calculated for winter (January–March), spring (April–May), and summer (June). For every variable and season, we give each reanalysis a

score out of 10. This score is defined as: Score 5 {R 1 [1 2 abs(bias)/range] 1 (1 2 RMSE/RANGE)} 3 10/3, where RANGE is the

maximum range of the N-ICE2015 observations for that variable during the given season. Statistics for the shortwave radiative fluxes and

sensible heat flux are based on daily mean values. All other variables are based on 6-hourly values.

Variable Reanalyses

Winter Spring Summer

R Bias RMSE Score R Bias RMSE Score R Bias RMSE Score

2-m air temperature (8C) ERA-I 0.96 13.0 4.5 9.24 0.97 11.3 1.8 9.65 0.70 11.6 1.7 6.72

ERA5 0.96 13.4 5.3 9.13 0.96 11.7 2.2 9.55 0.57 10.8 1.0 7.32

JRA-55 0.93 11.1 4.4 9.30 0.94 10.2 2.6 9.57 0.68 10.7 1.0 7.76

CFSv2 0.97 13.8 5.0 9.16 0.93 20.2 2.2 9.57 0.64 10.1 0.6 8.32

MERRA-2 0.97 13.0 4.2 9.30 0.96 10.9 1.6 9.66 0.81 10.3 0.5 8.81

ASRv2 0.97 11.9 3.5 9.45 0.98 10.8 1.2 9.77 0.76 10.1 0.6 8.72

10-m wind speed (m s21) ERA-I 0.84 10.4 1.9 9.01 0.85 20.2 1.5 9.04 0.96 10.3 1.1 9.53

ERA5 0.92 10.4 1.4 9.37 0.91 10.1 1.1 9.37 0.97 20.2 0.9 9.63

JRA-55 0.87 11.0 2.2 8.93 0.87 0.0 1.4 9.18 0.96 10.5 1.2 9.45

CFSv2 0.87 0.0 1.7 9.23 0.88 20.6 1.4 9.05 0.97 20.8 1.3 9.39

MERRA-2 0.87 10.2 1.7 9.19 0.88 20.4 1.3 9.14 0.97 10.1 0.9 9.66

ASRv2 0.89 10.3 1.7 9.23 0.86 20.3 1.4 9.07 0.94 20.2 1.2 9.46

Water vapor path

(kgm22)

ERA-I 0.98 0.0 0.5 9.77 0.97 10.1 0.5 9.67 0.89 10.5 1.3 9.17

ERA5 0.98 0.0 0.5 9.77 0.97 10.1 0.5 9.67 0.92 10.3 1.1 9.37

JRA-55 0.97 20.3 0.6 9.60 0.95 20.1 0.7 9.53 0.90 20.2 1.1 9.33

CFSv2 0.98 0.1 0.5 9.74 0.96 10.1 0.6 9.60 0.88 10.2 1.2 9.24

MERRA-2 0.96 0.0 0.6 9.67 0.94 10.1 0.8 9.46 0.80 10.3 1.6 8.85

ASRv2 0.99 20.1 0.4 9.80 0.99 20.4 0.5 9.62 0.94 20.2 1.0 9.49

Downward longwave

radiative flux (Wm22)

ERA-I 0.95 14 20 9.41 0.67 224 36 7.45 0.59 29 17 7.46

ERA5 0.94 19 22 9.26 0.62 12 27 8.03 0.80 27 13 8.43

JRA-55 0.95 213 24 9.19 0.72 238 47 7.01 0.53 217 27 6.45

CFSv2 0.96 19 20 9.36 0.67 223 39 7.40 0.64 23 17 7.90

MERRA-2 0.92 113 28 9.02 0.57 219 36 7.24 0.64 219 23 6.90

ASRv2 0.95 26 20 9.38 0.61 246 54 6.28 0.38 231 40 4.73

Net longwave radiative

flux (Wm22)

ERA-I 0.83 29 19 8.20 0.41 225 34 5.66 0.53 29 18 7.16

ERA5 0.82 25 15 8.52 0.15 25 24 6.00 0.80 28 14 8.30

JRA-55 0.79 216 21 7.67 0.36 236 43 4.69 0.55 219 28 6.29

CFSv2 0.84 28 14 8.50 0.41 222 32 5.86 0.65 22 16 7.99

MERRA-2 0.65 23 16 8.00 0.34 222 33 5.59 0.66 219 22 6.94

ASRv2 0.79 219 26 7.31 0.28 243 49 3.90 0.39 228 25 5.47

Downward shortwave

radiative flux (Wm22)

ERA-I — — — — 0.75 126 49 8.15 0.62 213 44 7.62

ERA5 — — — — 0.70 15 36 8.44 0.82 212 30 8.58

JRA-55 — — — — 0.77 156 65 7.56 0.67 130 51 7.32

CFSv2 — — — — 0.70 136 53 7.79 0.79 215 32 8.38

MERRA-2 — — — — 0.76 22 43 8.59 0.69 24 33 8.25

ASRv2 — — — — 0.71 179 88 6.76 0.45 193 102 4.37

Net shortwave radiative

flux (Wm22)

ERA-I — — — — 0.65 124 30 5.85 0.60 152 60 2.77

ERA5 — — — — 0.53 18 16 7.11 0.89 144 52 4.85

JRA-55 — — — — 0.45 125 37 4.74 0.66 165 67 1.92

CFSv2 — — — — 0.58 124 30 5.62 0.87 155 58 3.62

MERRA-2 — — — — 0.52 113 29 6.08 0.72 147 55 3.70

ASRv2 — — — — 0.68 138 40 4.63 0.74 141 43 4.71

Sensible heat flux

(Wm22)

ERA-I 0.18 217 39 4.01 0.36 14 8 5.91 0.34 19 12 5.65

ERA5 0.32 214 32 5.06 0.48 11 7 6.96 0.61 17 10 6.96

JRA-55 0.74 14 11 8.26 0.45 112 14 3.93 0.47 18 11 6.29

CFSv2 0.11 246 70 0.30 0.18 21 13 4.99 0.57 119 21 4.47

MERRA-2 0.23 231 38 3.43 0.24 11 7 6.16 0.18 12 9 6.14

ASRv2 0.44 225 41 4.30 20.02 16 11 3.83 0.18 15 10 5.73
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the occurrence of light winds (3–8m s21) and over-

estimate the occurrence of moderate wind (8–10ms21)

(Fig. 3c). Most reanalyses display a small negative bias

during storm periods, while JRA-55 has a distinct posi-

tive bias for strong (.15ms21) wind speeds (Figs. 3c,d).

All reanalyses exhibit high correlation coefficients

(0.93–0.97) with the observed 2-m temperature in winter

(Fig. 2c; Table 1). Nonetheless, there are periods when

some reanalyses are more than 108C warmer than the

observations (Figs. 2c and 3a,b). RMSEs for the 2-m

temperature are large, ranging from 3.58C in ASRv2 to

5.38C in ERA5. All reanalyses have a warm bias during

winter, ranging from 11.18C in JRA-55 to 13.88C in

CFSv2 (Figs. 3a,b; Table 1). The near-surface warm bias

in reanalyses is confined foremost to cold periods, when

the observed temperature is below 2258C (Figs. 2c and

3a). At warmer temperatures (.2108C) the bias is much

smaller. A winter warm bias over sea ice has persisted

through several generations of different reanalyses

(Beesley et al. 2000; Makshtas et al. 2007; Liu et al. 2008;

Tjernstöm and Graversen 2009; Lindsay et al. 2014;

Graham et al. 2017a). Reanalyses continue to have dif-

ficulties resolving strong vertical temperature gradients

in highly stable surface boundary layers (Serreze et al.

FIG. 3. Frequency distributions of N-ICE2015 observations (black) during winter compared with reanalyses

(colors), and associated errors. (a) 2-m air temperature (28C bins), (b) 2-m temperature errors (18C bins), (c) 10-m

wind speed (2m s21 bins), (d) 10-mwind speed errors (1m s21 bins), (e) total columnwater vapor (0.5 kgm22 bins),

and (f) total column water vapor errors (0.1 kgm22 bins).

15 JULY 2019 GRAHAM ET AL . 4127

Unauthenticated | Downloaded 08/21/22 04:26 AM UTC



2012). Interestingly, we find that despite having twice

as many model levels (20 vs 10) below 900hPa, the near-

surface winter warm bias and RMSE in the newly

released ERA5 are larger than ERA-I (Table 1). In

contrast,ASRv2, which is optimized for polar regions, has

the smallest RMSE out of all the reanalyses and themean

warm bias is more than 18C smaller than most of the

global products (Table 1). JRA-55 clearly simulates the

best near-surface temperature distribution for winter

(Fig. 3a). However, it has the lowest correlation co-

efficient among all reanalyses and a relatively large

RMSE (Table 1). It is noteworthy that the reanalysis with

the smallest 2-m temperature bias in winter (JRA-55) has

the highest mean ice-covered fraction (1.00), and the re-

analysis with the largest temperature bias (CFSv2) has the

lowest (0.93) ice-covered fraction (Tables 1 and 2).

Findings from previous studies and our analyses

above suggest that the lowest skill for reanalyses in

winter is during cold-stable periods (Figs. 2 and 3). To

study these periods in more detail, we average 60

N-ICE2015 radiosonde profiles that were launched

when the surface air temperature was below2258C and

compare these to the reanalyses (Fig. 4).

The six reanalyses generally capture the shape of the

cold winter profiles well (Fig. 4). However, all reanalyses

underestimate the near-surface stability, which we de-

fine as the temperature difference between the 850- and

1000-hPa levels. The observed value for this parameter

is approximately 78C, while in the reanalyses values

range from 38C in ERA5 and MERRA-2 to 6.58C in

JRA-55 (Fig. 4a). The weak static stability in reanalyses

is associated foremost with a large near-surface warm

TABLE 2. Seasonal mean values for individual components of the surface energy budget during the winter (January–March), spring

(April–May), and summer (June) seasons of the N-ICE2015 campaign. Mean values and biases are also shown for the six reanalyses.

Biases are based on daily means. Sensible and latent heat fluxes that are not statistically significant are shown in italics. For reference, we

give the seasonal mean sea ice concentration in each reanalysis. Observed ice concentration is not provided, as measurements relating to

the energy budget are point observations over sea ice (i.e., 1.00 ice fraction).

Variable Reanalyses

Winter Spring Summer

Mean Bias Mean Bias Mean Bias

Ice concentration ERA-I 0.96 — 0.96 — 0.67 —

ERA5 0.98 — 0.98 — 0.81 —

JRA-55 1.00 — 1.00 — 1.00 —

CFSv2 0.93 — 0.95 — 0.75 —

MERRA-2 0.96 — 0.97 — 0.69 —

ASRv2 0.94 — 0.94 — 0.92 —

Net radiative flux (Wm22)

(shortwave 1 longwave)

Observations 229 — 112 — 139 —

ERA-I 237 29 111 21 181 143

ERA5 233 25 115 13 175 136

JRA-55 244 216 11 211 185 147

CFSv2 236 27 114 12 192 153

MERRA-2 231 22 12 210 167 129

ASRv2 247 219 18 24 152 114

Sensible heat flux (Wm22) Observations 114 — 27 — 23 —

ERA-I 23 217 24 14 17 19

ERA5 0 214 26 11 15 17

JRA-55 117 14 15 112 15 18

CFSv2 232 246 29 21 116 119

MERRA-2 217 231 26 11 0 12

ASRv2 211 225 21 16 12 15

Latent heat flux (Wm22) Observations 0 — 0 — 0 —

ERA-I 23 23 27 26 29 29

ERA5 23 23 211 211 212 213

JRA-55 21 21 26 25 213 213

CFSv2 222 222 215 214 218 218

MERRA-2 25 25 27 26 211 211

ASRv2 23 23 23 22 29 29

Residual heat flux (Wm22) Observations 213 — 13 — 136 —

ERA-I 231 218 23 26 180 143

ERA5 229 215 25 29 168 132

JRA-55 226 213 27 210 177 141

CFSv2 288 276 212 216 188 151

MERRA-2 242 229 214 217 158 122

ASRv2 260 247 13 0 145 19
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bias. In addition, all reanalyses have a small (,18C) cold

bias aloft, between 950 and 850 hPa (Fig. 4a). JRA-55

has a significantly larger cold bias from 900 to 975hPa

compared with the other reanalyses (Fig. 4a). Hence,

despite having the best 2-m air temperature distribution

for winter and smallest warm bias, JRA-55 does not

simulate near-surface temperature profiles more accu-

rately than other products. ASRv2 simulates the most

representative temperature profiles during cold and

stable winter periods (Fig. 4a).

The strength of the surface specific humidity inversion

is substantially underestimated by all reanalyses (Fig. 4b).

Each reanalysis exhibits a moist bias near the surface and

dry bias from 950 to 850hPa, where themaximum specific

humidity is observed. These results are consistent with

findings that ERA-I and JRA-55 underestimate the

strength of specific humidity inversions observed at

coastal meteorological stations in the Arctic (Naakka

et al. 2018). JRA-55 has the largest dry specific humidity

bias among all of the reanalyses, which explains the sig-

nificant negative bias for total columnwater vapor during

winter (Figs. 3f and 4b; Table 1). There is a large spread

among the reanalyses for relative humidity (Fig. 4c).

ERA5, ERA-I, and CFSv2 have large moist biases, of up

to 20%, throughout the troposphere. In contrast, ASRv2

and MERRA-2 have small dry biases, with ASRv2 cap-

turing the mean observed profile most accurately

(Fig. 4c).

Most reanalyses slightly underestimate (,1ms21)

wind speeds aloft during cold stable periods (Fig. 4d). In

particular, all reanalyses underestimate the wind speed

at 975 hPa, where there is a near-surface windmaximum.

Overall, ASRv2 has the most accurate wind profile for

these conditions (Fig. 4d).

2) FORECAST FIELDS: SURFACE HEAT FLUXES

AND ENERGY BUDGET

Overall, the forecast variables in the reanalyses are

simulated less well than the analysis variables for the N-

ICE2015 period (Table 1). Nonetheless, the wintertime

downwelling longwave flux is captured remarkably well

by all reanalyses (Figs. 2e and 5a,b; Table 1). The as-

similation of temperature and humidity profiles from

radiosondes likely improves the accuracy of these

downward longwave fluxes. Correlation coefficients

between the observations and reanalyses range from

0.92 in MERRA-2 to 0.96 in CFSv2, and RMSEs ranged

from 20 to 28Wm22. Four products have a positive bias

(i.e., higher downward directed longwave flux), ranging

from14Wm22 in ERA-I to113Wm22 in MERRA-2.

In contrast, ASRv2 and JRA-55, have negative biases

of 26 and 213Wm22, respectively. We note that JRA-

55 and ASRv2 have the smallest near-surface warm

biases, and largest dry specific humidity biases of the six

reanalyses (Figs. 3 and 4; Table 1). Interestingly, ERA5

has a larger positive downward longwave bias and larger

RMSE than ERA-I (Table 1).

Correlation coefficients for the net longwave flux are

lower than the downward longwave flux, in all rean-

alyses (Table 1). Correlation coefficients range from

0.65 in MERRA-2 to 0.84 in CFSv2. All reanalyses ex-

hibit negative biases (i.e., upward) for the net longwave

flux, which range from 23Wm22 in MERRA-2 to

219Wm22 in ASRv2 (Figs. 5c,d). These negative biases

FIG. 4. (a) Mean temperature, (b) specific humidity, (c) relative humidity, and (d) wind speed profiles from N-ICE2015 radiosondes

(black) launched when surface temperature was below 2258C (60 profiles), compared with profiles from reanalyses (colored).
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FIG. 5. Frequency distributions of N-ICE2015 observations (black) during winter compared with reanalyses

(colors), and associated errors. (a) Downward longwave radiative flux at surface (10Wm22 bins), (b) downward

longwave errors (reanalyses–observations) (5Wm22 bins), (c) net longwave radiative flux at surface (10Wm22

bins), (d) net longwave errors (reanalyses–observations) (5Wm22 bins), (e) sensible heat flux at surface (10Wm22

bins), (f) sensible heat flux errors (10Wm22 bins), (g) latent heat flux at surface (2Wm22 bins), and (h) latent heat

flux errors (2Wm22 bins).
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are largest during cold and stable periods (Fig. 6) and are

foremost the result of an overly large upward longwave

flux at the surface, resulting from the positive tempera-

ture bias.

The largest negative net longwave biases are found in

ASRv2 and JRA-55 (Table 1). This is consistent with the

negative downward longwave bias in these reanalyses,

which compound the bias for the upward longwave flux.

In contrast, the four remaining products exhibit positive

biases for the downward longwave flux, which partially

compensate the upward longwave flux bias. Nonethe-

less, the resultant net longwave flux bias remains nega-

tive. We note that while the net longwave bias in ERA5

is smaller in magnitude than ERA-I, this reflects larger

compensating biases in downward longwave and upward

longwave radiation in ERA5 than ERA-I (Table 1).

This highlights the importance of evaluating all terms of

the energy budget independently (de Boer et al. 2014),

rather than considering only net biases.

We next compare the sensible and latent heat fluxes in

reanalyses with observed measurements of these tur-

bulent heat fluxes over sea ice (Figs. 5 and 6). Observed

latent heat fluxes over sea ice are near zero during the

N-ICE2015 winter (Walden et al. 2017a) (Figs. 5g and

6e). These are consistent with observations from satel-

lite data (Taylor et al. 2018). However, most reanalyses

simulate large upward latent heat fluxes, with biases up

to222Wm22 (Figs. 5g,h and 6e; Table 2). Importantly,

the range of values for latent heat fluxes simulated by

the reanalyses is far larger than the observed values.

FIG. 6. Time series for observed (black) components of the surface energy balance during N-ICE2015, and those

from the six reanalyses (colors). (a) Net longwave flux, (b) net shortwave flux, (c) 10-mwind speed, (d) sensible heat

flux, (e) latent heat flux, and (f) residual heat flux at surface [sum of (a)1 (b)1 (d)1 (e)]. All fluxes are defined as

positive downward.
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Over the winter drifts, less than 4% of the original

30-min average latent heat flux observations have a

magnitude greater than 5Wm22. In contrast, simulated

6-h average latent heat fluxes frequently exceed

10Wm22 in all reanalyses (Figs. 5g,h and 6e).

Sensible heat fluxes are typically of the correct order

of magnitude in the reanalyses (Fig. 5e). However, the

simulated fluxes are often in the opposite direction to

the observations (Fig. 6d; Table 2). As a result, corre-

lation coefficients are typically very low (0.11–0.74)

(Table 1). The strong stable inversions observed during

the N-ICE2015 winter result in a mean downward

(positive) sensible heat flux of 114Wm22 over the sea

ice (Table 2). However, JRA-55 is the only reanalyses

that simulates a positive mean sensible heat flux

(Table 2). Overall, JRA-55 performs best among all

reanalyses for the sensible heat flux, with the highest

correlation coefficient of 0.74, the smallest RMSE, and

the smallest bias of 14Wm22 (Figs. 5e,f and 6d;

Table 1). All other reanalyses have mean upward fluxes,

and large negative biases that range from214Wm22 in

ERA5 to 246Wm22 in CFSv2. The negative sensible

heat flux biases in these reanalyses are consistent with

the reanalyses underestimating the strength of surface

inversions in winter and having positive surface air

temperature biases (Fig. 4a).

The poor performance of reanalyses for turbulent

heat fluxes over sea ice is consistent with findings from

the SHEBA campaign where observations were used to

evaluate the ECMWF operational forecast model in

1997–98, with a lead time of 12–35 h (Beesley et al.

2000). Similarly, large errors in turbulent heat fluxes

have been identified in several reanalyses overAntarctic

sea ice (Tastula et al. 2013).

It is important to note that reanalyses provide grid cell

average fluxes, in contrast to the point-based measure-

ments that have a small footprint and were made over

sea ice. The approximate area of a grid cell within the

reanalyses ranges from 225km2 in ERA5 to 640km2

in ERA-I, and models typically only resolve features

with length scales of 5–7 grid boxes (Skamarock 2004).

JRA-55 is the only reanalysis with a mean ice fraction of

1.00 during the N-ICE2015 winter. It also has the

smallest apparent sensible and latent heat flux biases

(Table 2).With its dynamic sea icemodel, CFSv2 has the

largest mean open water fraction (0.07) during winter,

among the different reanalyses. CFSv2 also suffers from

the largest apparent sensible and latent heat flux biases

(Table 2). To balance these apparent biases, CFSv2

would require a positive (i.e., upward) sensible and la-

tent heat flux over the open water fraction of 1640

and 1315Wm22, respectively. ERA-I requires the

smallest sensible (1410Wm22) and latent (175Wm22)

heat fluxes over the open water fraction to balance its

apparent biases. There are no wintertime observations

of sensible and latent heat fluxes over leads during

N-ICE2015, but previous studies have estimated these

could be on the order of 1600 and 1150Wm22, re-

spectively (Maykut 1978; Marcq and Weiss 2012).

Hence, the open water fraction of grid cells in reanalyses

will be a major contributing factor to the apparent tur-

bulent heat flux errors, and it is therefore not possible to

say with certainty which reanalysis is most accurate. We

also note that the open water fraction could contribute

to an apparent bias in emitted longwave radiation; an

open water fraction of 0.05 at the seawater freezing

point of 21.88C, would produce an apparent bias of

7Wm22 for a snow-surface temperature of 2408C over

the ice-covered fraction, or 3.7Wm22 for 2208C.

We finally consider the overall surface energy budget

over sea ice in the observations and the reanalyses. This

budget is equal to the sum of the net radiative flux

(longwave1 shortwave) and the sensible and latent heat

fluxes (Walden et al. 2017a). The resultant imbalance

can be considered as a residual heat flux, which is bal-

anced by an ocean heat flux through the sea ice and/or a

change of energy storage in the snow layer adjacent to

the atmosphere.We do not decompose these terms here.

During winter, the observed residual heat flux is nega-

tive, with a mean value of 213Wm22 and modal value

of 220Wm22 (Figs. 6f and 7a). The negative residual

heat flux implies that the surface is losing energy, as we

would expect in winter (Walden et al. 2017a). Individual

terms of the surface energy budget reveal that the

FIG. 7. Frequency distribution for the observed residual heat flux (black) with 10Wm22 bins, compared with the six reanalyses (colors),

for (a) winter (January–March), (b) spring (April–31 May), and (c) summer (after 1 Jun).
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radiative cooling is partially balanced by a downward

sensible heat flux (Figs. 5 and 6; Table 2). In the rean-

alyses, the mean winter residual heat fluxes range

from 226Wm22 in JRA-55 to 288Wm22 in CFSv2

(Figs. 6f and 7a; Table 2). Hence, all of the reanalyses

have substantial negative biases. The overly negative

energy budget in the reanalyses is caused by the near-

surface winter warm bias, and thus overly strong radiative

cooling. The bias is also further compounded by the large

negative sensible and latent heat flux biases (Table 2).

b. Spring and early summer

The spring and summer period of N-ICE2015 cover the

third and fourth ice drifts from 18 April to 5 June and

7 June to 21 June 2015. These drifts are situated in closer

proximity to the ice edge compared with the two winter

drifts (Fig. 1). With the exception of two warm events on

16 May and 19 May, associated with storms, near-surface

temperatures in spring do not rise above 2108C until

24May (Cohen et al. 2017). Following this date, the near-

surface air temperature, total column water vapor, and

downward longwave flux increase progressively until

1 June, when the 2-m temperature reaches a near-

constant 08C (Fig. 8). We classify 1 June as the onset of

summer (Cohen et al. 2017), although this timing is likely

influenced by the ship’s drift reaching close proximity to

the ice edge as well as the seasonal progression (Fig. 1).

1) ANALYSIS VARIABLES: SURFACE

METEOROLOGY AND VERTICAL PROFILES

Similar to the winter season, we find close agreement

between the reanalyses analysis fields and observations

FIG. 8. Time series of N-ICE2015 observations (black) for Drifts 3 and 4, covering spring (April–May) and early

summer (June), compared with values from the six reanalyses (colors). (a) Mean sea level pressure, (b) 10-m wind

speed, (c) 2-m air temperature, (d) total column water vapor, (e) downward longwave radiative flux at surface, and

(f) downward shortwave flux at surface.
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of mean sea level pressure, 2-m temperature, 10-m wind

speed, and total column water vapor during spring and

early summer (Fig. 8; Table 1).

Correlation coefficients between the reanalyses and

observed 2-m temperature are high during spring,

ranging from 0.93 to 0.98 (Table 1). After temperatures

approach 08C, during summer, there is less variability

and so correlations are lower (0.57–0.81). CFSv2 has a

nonsignificant cold bias during spring. However, all

other reanalyses have warm biases in both spring and

summer (Figs. 8c and 9a; Table 1). ERA5 (11.78C) has a

larger warm bias than ERA-I (11.38C) during the cooler

spring months, but during the summer period ERA5

(10.88C) has a smaller bias than ERA-I (11.68C)

(Figs. 8c and 9a; Table 1). Near-surface air temperature

biases and RMSEs are smaller during spring and sum-

mer compared with winter, in all reanalyses (Table 1).

Observations from N-ICE2015 show that the surface

layer was frequently unstable during spring (Walden

et al. 2017a; Kayser et al. 2017). The smaller tempera-

ture biases during spring and summer, compared with

winter, are therefore consistent with reanalyses having a

temperature- and/or stability-dependent warm bias,

with the largest biases during cold-stable conditions.

Correlation coefficients for the total column water

vapor are high (0.94–0.99) during spring. As with the 2-m

temperature, correlation coefficients are lower during

summer (0.80–0.94), compared with the winter and

spring seasons. Absolute biases and RMSEs are also

larger during summer, compared with winter and

spring, although this reflects higher background water

vapor content and variability (Table 1; Figs. 2d, 3f, 8d,

and 9c). JRA-55 and ASRv2 have dry biases in all

seasons, ranging from 20.1 to 20.4 kgm22 in spring

and summer (Table 1; Fig. 9c). The other four rean-

alyses have moist biases in spring and summer, ranging

from10.1 to10.5 kgm22, although the biases are often

nonsignificant (Figs. 8d and 9c; Table 1).

Correlation coefficients between the reanalyses and

observed 10-m wind speed increase from 0.85–0.91 in

spring to 0.94–0.97 in summer (Fig. 8b; Table 1). RMSEs

during the spring and summer are also smaller thanwinter

values in all reanalyses. During winter, most reanalyses

have a small positive 10-m wind speed bias, whereas in

spring biases are predominantly negative (Figs. 3d and 9b;

Table 1). During the summer period, three reanalyses

have a positive wind speed bias and three have negative

biases, and most of the biases are nonsignificant. ERA5

performs better than ERA-I for the wind speed during

winter, spring, and summer, with higher correlation co-

efficients, smaller biases, and smaller RMSEs in each

season (Table 1). Interestingly, despite the higher hori-

zontal resolution and vertical resolution in ASRv2 than

most of the global reanalyses, it does not perform no-

ticeably better for the 10-m wind speed (Table 1). This

may reflect the fact that our observations are from the

ArcticOcean, far away from the complex topography that

is better resolved by this regional reanalysis.

Previous studies have shown that atmospheric rean-

alyses have difficulties simulating realistic clouds, par-

ticularly during spring and summer months (Walsh et al.

2009; Lindsay et al. 2014; Wesslén et al. 2014). We

therefore focus our analyses of radiosondes from the

spring and summer months of N-ICE2015 on the pres-

ence of clouds. We choose three sets of conditions to

study, with two examples from each case (Fig. 10). The

first case corresponds to clear-sky conditions, which

were observed on 8 and 23May 2015. The second case is

where thick clouds were observed down to the surface,

such as on 25May and 2 June. The final case corresponds

to times when lifted cloud layers were present. Exam-

ples of these conditions occurred on 30 April and 6May.

There were relatively few cloud-free days during the

N-ICE2015 spring and summer (Cohen et al. 2017;

Walden et al. 2017a). However, on these cloud-free

days, most of the reanalyses simulate the shape of the

moisture profiles relatively well, albeit with a tendency

toward a positive relative humidity bias near the surface

in many products (Figs. 10a,b). For both examples,

ERA5 simulates a spurious thin cloud layer at 950–

975 hPa (Figs. 10a,b). On 23 May, ASRv2 also has a

distinct moist bias at 750 hPa.

The reanalyses mostly capture the general shape of

moisture profiles at times when thick cloud layers extend

close to the surface, below 900hPa (Figs. 10c,d). How-

ever, the reanalyses often strongly underestimate the

strength of the near-surface specific humidity inversions

in these clouds. These inversions may also be simulated

at the wrong height. As a result, the reanalyses often

have a dry bias at the lower levels of these clouds

(Figs. 10c,d). For example, on 25 May ERA-I, CFSv2,

and MERRA-2 have large dry biases for both the spe-

cific and relative humidity below 850hPa. Interestingly,

on 25May ASRv2 simulates the most accurate moisture

profile, and on 2 June ASRv2 has the largest dry bias

among all reanalyses.

The reanalyses typically perform worst at times when

multiple cloud layers are observed (Figs. 10e,f). All of

the reanalyses fail to capture the small-scale variability

in the specific and relative humidity in these layers, and

often the reanalyses underestimate the specific humidity

within the cloud layers. As a result, the cloud layers in

the reanalyses are either absent, too thin, or at the wrong

height (Figs. 10e,f).

The reanalyses mostly simulate the shape of temper-

ature and wind profiles well in spring and summer,
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FIG. 9. Frequency distribution of errors (reanalyses 2 observations) during spring and summer for the six re-

analyses, with respect to observations from N-ICE2015. (a) 2-m temperature (18C bins), (b) 10-m wind speed

(1m s21 bins), (c) total column water vapor (0.1 kgm22 bins), (d) net shortwave flux at surface (10Wm22 bins),

(e) net longwave flux at surface (5Wm22 bins), (f) surface sensible heat flux (10Wm22 bins), and (g) surface latent

heat flux (2Wm22 bins).
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including the six examples shown here (Fig. 11). How-

ever, the reanalyses frequently underestimate the

strength of surface, elevated, and/or cloud-top temper-

ature inversions. For example, on 25 May all of the re-

analyses simulate the observed cloud-top inversion at

825 hPa (Fig. 11c). However, the strength of this in-

version is substantially underestimated in all reanalyses.

The strong inversion in the observations likely indicates

the presence of a cloud-top liquid water layer. Such layers

of cloud liquid water generate strong radiative cooling,

leading to the formation of inversions (Morrison et al.

2011). Reanalyses are known to underestimate the con-

centration of liquid water in Arctic clouds (Pithan et al.

2016, 2014; Engström et al. 2014; Wesslén et al. 2014; de

Boer et al. 2014). The absence of this cloud liquid water

layer in the reanalyses, or presence of less liquid water,

would result in less radiative cooling and thus a weaker

cloud-top inversion, as we see (Fig. 11c). Small cloud-top

inversions are also visible in the observations for the el-

evated cloud layers at 850 hPa on 30 April and 750 hPa

on 6 May (Figs. 11e,f). However, temperature in-

versions are not visible at these heights in any re-

analysis. This could indicate that the cloud layers are

absent in the reanalyses, or that the vertical resolution

of the reanalyses is not sufficient to accurately resolve

these features. Cloud liquid water and ice content

measurements are not available for N-ICE2015, and so

cannot be evaluated further here.

2) FORECAST VARIABLES: SURFACE HEAT

FLUXES AND ENERGY BUDGET

The reanalyses perform significantly worse for the

radiative fluxes during the spring and summer months of

N-ICE2015, compared with winter (Figs. 2, 6, and 8;

Table 1). While most reanalyses exhibit a small positive

bias for the downward longwave radiative flux in winter,

there are substantial negative biases in spring and

summer (Figs. 2e and 8e; Table 1).With the exception of

ERA5, biases in spring range from 219Wm22 in

MERRA-2 to 246Wm22 in ASRv2. During summer,

biases range from23Wm22 in CFSv2 to231Wm22 in

ASRv2. Correlation coefficients for the downward

longwave flux range from 0.92 to 0.95 during winter, but

just from 0.38 to 0.80 in spring and summer. RMSEs are

largest during the spring period and range from

27Wm22 in ERA5 to 54Wm22 in ASRv2. For com-

parison, RMSEs in winter range from 20–28Wm22, and

17–40Wm22 in summer (Table 1). Interestingly, ERA5

FIG. 10. Examples of vertical profiles of specific and relative humidity from N-ICE2015 radiosondes, compared with reanalyses for

(a),(b) clear days, (c),(d) days with clouds close to surface, and (e),(f) lifted cloud layers.
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is the only reanalysis with a positive and/or non-

significant downward longwave bias during spring. The

magnitudes of the downward longwave biases and

RMSEs in ERA5 are substantially smaller than ERA-I

and the other reanalyses during spring and summer

(Fig. 8e; Table 1). ERA5 is also the only reanalyses to

have a smaller downward longwave bias in spring com-

pared with winter and summer. Nonetheless, the cor-

relation coefficient in spring is lower than summer and

winter (Table 1).

Correlation coefficients between the observed net

longwave radiative fluxes and reanalyses are very low in

spring and summer (Fig. 6a; Table 1). These values

range from 0.15 (ERA5) to 0.41 (CFSv2 and ERA-I)

during spring, and from 0.39 (ASRv2) to 0.80 (ERA5) in

summer. The largest biases (243Wm22) and RMSEs

(49Wm22) are found in spring, rather than summer

(Fig. 6a; Table 1). As with the winter season, all rean-

alyses have a negative (upward) net longwave bias

during spring and summer (Fig. 9e; Table 1). During

spring and summer, this negative bias is primarily driven

by a negative bias in the downward longwave flux

(Fig. 8e). In contrast, during winter the bias is the result

of the warm bias at the surface and thus overly strong

upward longwave flux (Fig. 2). ERA5 has the smallest

RMSEs among all reanalyses for the net longwave flux

during spring and summer, and performs considerably

better than ERA-I. In contrast, the regional reanalysis

ASRv2 has the largest net longwave biases among all

products in all seasons (Table 1).

Most reanalyses have positive (i.e., downward) bia-

ses for the surface net and downward shortwave fluxes

during spring (Figs. 6b and 8f; Table 1). Spring biases

for the net shortwave flux range from 118Wm22 in

ERA5 to 138Wm22 in ASRv2 (Fig. 9d; Table 1). For

the downward shortwave flux, spring biases range

from 22Wm22 in MERRA-2 to 179Wm22 in

ASRv2. MERRA-2 is the only reanalysis with a nega-

tive bias, and this is nonsignificant. During summer,

four reanalyses have negative downward shortwave

flux biases, three of which are nonsignificant (Table 1).

Summer biases range from 215Wm22 in CFSv2

to 193Wm22 in ASRv2. Despite the negative down-

ward shortwave flux biases, all reanalyses have positive

biases for the net shortwave flux in summer, ranging

from 141Wm22 in ASRv2 to 165Wm22 in JRA-55.

Especially during summer months, the net shortwave

bias is often more positive than the downward

FIG. 11. Examples of vertical profiles of temperature and wind speed from N-ICE2015 radiosondes, compared with reanalyses for

(a),(b) clear days, (c),(d) days with clouds close to surface, and (e),(f) lifted cloud layers.
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shortwave bias (Table 1). This indicates that the sur-

face albedo in the reanalyses is too low, compared with

the observations. Reanalyses are known to treat the

albedo of snow-covered sea ice crudely, resulting in

substantial errors (de Boer et al. 2014; Wesslén et al.

2014). Moreover, we note again that the observations

are point measurements made over snow-covered sea

ice, while the reanalyses provide grid cell averages in-

cluding an open water fraction with low albedo

(Table 2). The lowest mean ice concentration during

summer is 0.67 in ERA-I.

Low-level clouds were remarkably persistent through-

out the spring months of N-ICE2015 (Walden et al.

2017a). However, it seems that with the exception of

ERA5, these persistent clouds are not accurately sim-

ulated by the reanalyses (Fig. 6). As a result, we see

negative downward longwave flux biases at the surface

in most reanalyses, and overly strong radiative cooling.

Typically, these biases are partially compensated pos-

itive downward and net shortwave flux biases (Figs. 6,

8, and 9; Table 1), which further suggest a lack of clouds

and/or poorly simulated cloud properties and humidity

profiles (Wyser et al. 2008). It is interesting that while

optimized for the polar environment, ASRv2 has the

largest radiative flux biases among all reanalyses

(Figs. 8 and 9; Table 1), suggesting that this reanalysis

does not have an improved representation of spring

clouds in the Arctic.

ASRv2 and JRA-55 clearly suffer from a similar

problem of absent clouds during summer, resulting in

large positive biases for the downward shortwave flux

and negative biases for the net longwave flux (Figs. 8e,f

and 9d,e; Table 1). In contrast, the other reanalyses have

negative biases for both the downward shortwave flux

and downward longwave flux (Table 1). In these cases, it

appears that clouds are likely present in the reanalyses

and observations, but the cloud properties (e.g., phase,

temperature, height, and liquid and/or ice water con-

tent) are simulated poorly by the reanalyses (Wyser

et al. 2008). As a result, the simulated clouds reflect too

much incoming shortwave radiation and emit too little

longwave radiation downward toward the surface.

As with winter, the mean observed latent heat fluxes

over sea ice are near zero throughout the spring and

summer drifts (Fig. 6e). However, all reanalyses simu-

late large negative (upward) latent heat fluxes (Table 2;

Figs. 6e and 9g). For example, all reanalyses simulate

sustained large negative latent heat fluxes, ranging

from 225 to 260Wm22, during a storm event on

11 June with mean wind speeds of 15m s21 (Fig. 6).

However, the observed daily mean latent heat flux at

this time is positive and near zero. Latent heat flux biases

in spring and summer are mostly larger than the winter

season (Table 2). Thismay reflect the closer proximity to

the ice edge of the winter drifts, and thus lower mean ice

concentration within the reanalyses grid cells (Fig. 1;

Table 2). However, JRA-55 has a mean ice fraction of

1.00 throughout the spring and summer drifts and has a

substantial negative latent heat flux bias of 213Wm22

during the final weeks of the field campaign (Fig. 9g).

Furthermore, in spring and summer, the temperature

contrast between the ice and open water is much smaller

than in winter, reducing the difference in turbulent

fluxes over these two surfaces. It is thus clear that major

errors exist in the reanalyses for surface latent heat

fluxes, regardless of ice concentration.

The sensible heat fluxes observed over sea ice are of

smaller magnitude in spring and summer compared

with winter (Table 1; Fig. 6d). The average fluxes are

also negative (i.e., upward) rather than positive

(Table 2). This is consistent with the fact that un-

stable conditions were frequently measured at the

surface during spring (Walden et al. 2017a). Typi-

cally, most reanalyses have positive sensible heat flux

biases during spring and summer (Fig. 9f; Table 2). In

spring, CFSv2 is the only reanalysis with a negative

sensible heat flux bias of21Wm22. The other reanalyses

have positive biases ranging from 11 to 112Wm22, al-

though several of these are nonsignificant (Table 2). JRA-

55 has the largest bias during spring and an overall mean

positive flux, in contrast to the observed negative flux.

During early summer the observed sensible heat flux

is23Wm22, but all reanalyses have large positive biases

ranging from12 to119Wm22. The bias in JRA-55 is of

similarmagnitude to the other reanalyses during summer,

despite having no open water fraction (Fig. 9d; Tables 1

and 2).

In spring, the observed residual heat flux is near zero

(Walden et al. 2017a) (Fig. 6f). At this time most rean-

alyses have a negative bias, albeit of smaller magnitude

than winter (Fig. 7b). These biases ranged from 0Wm22

in ASRv2 to 217Wm22 in MERRA-2 (Table 2). The

negative biases are primarily caused by a combination of

the near-surface warm bias and lack of clouds, which

result in overly strong radiative cooling. This bias is

compounded by the negative latent heat flux bias in all

reanalyses (Table 2). However, the biases are partially

compensated by the positive net shortwave bias and, in

most cases, positive sensible heat flux bias (Fig. 6). Im-

portantly, the small residual heat flux bias in ASRv2

reflects several large compensating biases, and not the

accurate representation of the surface energy budget

(Tables 1 and 2).

During early summer, the residual heat flux is positive

with a mean value of 32Wm22 (Walden et al. 2017a).

All of the reanalyses have a positive residual heat flux at
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this time and moreover, accurately captured the timing

of the transition toward a positive energy budget

(Fig. 6f). Nonetheless, all reanalyses have large positive

biases ranging from19Wm22 in ASRv2 to151Wm22

in CFSv2 (Fig. 7c; Table 2). The primary source of this

bias is the positive net shortwave flux at the surface,

caused by the low surface albedo and in some cases

poorly simulated clouds. The low albedo in the rean-

alyses is likely due to a combination of the open water

fraction of the grid cell and simplistic treatment of snow

on sea ice; we note neither the net shortwave biases nor

the residual heat flux biases are negatively correlated

with mean ice concentration in the reanalyses (Tables 1

and 2). The positive net shortwave bias is partially

compensated by stronger radiative cooling and an overly

strong upward latent heat flux from the surface, while a

positive sensible heat flux compounds the bias in all

reanalyses (Figs. 9d–g; Table 2). Thus, while large, the

net bias for the residual heat flux masks several larger

compensating biases in the individual components of the

energy budget. Often these biases are of similar or

greater magnitude than the observed flux (Tables 1

and 2).

4. Discussion

A winter warm bias in atmospheric reanalyses, over

Arctic sea ice, has been reported by many earlier studies

(Beesley et al. 2000; Makshtas et al. 2007; Liu et al. 2008;

Tjernström and Graversen 2009; Lindsay et al. 2014;

Cullather et al. 2016; Graham et al. 2017a). It is therefore

not surprising that we identify a similar bias here in the

latest generation of reanalyses. Interestingly, despite the

higher vertical resolution of the newly releasedERA5, the

winter warm bias is larger than that in ERA-I. More re-

assuringly, the Arctic regional reanalyses, ASRv2 simu-

lates stable surface temperature inversions more

accurately than any of the other reanalyses, and has the

highest combined score for correlation, bias and RMSE

(Figs. 2c, 3a,b, and 4a; Table 1). This can likely be at-

tributed to the land surface model used in ASRv2 being

optimized for polar environments (Hines et al. 2015).

Major improvements have been made in the treatment

of atmospheric moisture, clouds, and precipitation in at-

mospheric reanalyses over the last two decades (Walsh

and Chapman 1998; Cullather et al. 2000; Engström et al.

2014; Sotiropoulou et al. 2015; Bromwich et al. 2016;

Boisvert et al. 2018). Nonetheless, problems with Arctic

clouds continue to afflict reanalyses in all seasons

(Cullather et al. 2016). Among reanalyses analyzed pre-

viously, products from the ECMWF have often been

found to perform better than those by other groups with

respect to Arctic clouds (Walsh et al. 2009; Lindsay et al.

2014; Wesslén et al. 2014; de Boer et al. 2014). Consistent

with this pattern, we find that ERA5 has the smallest

radiative flux biases during the spring and summer pe-

riods of N-ICE2015 (Figs. 6a,b, 8e,f, and 9d,e; Table 1). In

contrast, ASRv2 has some of the largest biases related to

clouds during spring and summer.Results from theArctic

Summer Cloud–Ocean Study (ASCOS) campaign during

autumn 2008, also indicated that ASRv1 and ASRv2

performs less well than ERA-I with respect to Arctic

clouds (Wesslén et al. 2014). Nonetheless, we urge cau-

tion in making broad statements about how representa-

tive the N-ICE2015 biases are for the wider Arctic and

specific seasons. It is likely that the accurate simulation of

clouds varies by location, season and weather pattern in

all reanalyses, including ERA5.

All of the reanalyses show low skill simulating tur-

bulent heat fluxes over sea ice (Figs. 5, 6, and 9; Tables 1

and 2). The simulated fluxes are often of the wrong

magnitude and/or direction. Notably, the apparent

sensible heat flux biases for N-ICE2015 are of larger

magnitude than those identified in earlier reanalyses and

models for the SHEBA campaign (Cullather and

Bosilovich 2012; Beesley et al. 2000). The larger sensible

heat flux biases in reanalyses for N-ICE2015, compared

with SHEBA, likely reflect the closer proximity of the

ice edge and thinner, younger sea ice during N-ICE2015.

This results in a higher open water fraction in the re-

analysis grid cell. During the winter season, large lo-

calized turbulent heat fluxes occur over open water

areas and leads (Maykut 1978; Marcq and Weiss 2012).

These large open water fluxes are included in the rean-

alyses grid cell average fluxes, but are not reflected in the

point measurements made over sea ice. This disparity

can result in large apparent biases in the turbulent heat

fluxes simulated by reanalyses.

Turbulent heat fluxes are notoriously difficult to

model, and depend on the accurate simulation of mul-

tiple variables including the near-surface temperature

and humidity profiles, wind speed and direction, and

surface radiative fluxes. While reanalyses typically cap-

ture the general evolution of these fields, at any given

time errors may exist that propagate through into the

calculation of the turbulent heat fluxes. A recent study

demonstrated that by swapping input data from ERA-I

to the Atmospheric Infrared Sounder (AIRS) while

using the same flux calculation scheme, differences in

the simulated latent heat flux could reach 40Wm22 over

the Beaufort Sea (Boisvert et al. 2015). Impressively,

satellite-derived sensible and latent heat fluxes in-

dicate relatively high skill for capturing the observed

N-ICE2015 turbulent heat fluxes (Taylor et al. 2018).

Sensible and latent heat fluxes derived from AIRS had

RMSEs of just 5 and 1Wm22, respectively (Taylor et al.
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2018). In contrast, RMSEs in the six reanalyses are up to

70Wm22 (Table 1). Our understanding of turbulent

heat fluxes in the Arctic is severely hampered by a lack

of in situ observations and the short spatial and temporal

scales of these fluxes. The strong performance of satel-

lite data for measuring these parameters is therefore

encouraging (Taylor et al. 2018).

We find substantial negative residual heat flux biases

(up to 276Wm22) in all reanalyses during winter

(Figs. 6f and 7a; Table 2). In CFSv2, the bias is 5 times

larger than the observed flux. Likewise, during the

summer period all reanalyses have large positive re-

sidual heat flux biases (Fig. 7). The smallest residual heat

flux biases are found during spring. However, this is the

result of large compensating biases in the individual

terms of the surface energy budget (Fig. 9). These large

apparent biases in the surface energy budget over sea ice

must be taken into consideration if using these products

to force sea ice models (Tables 1 and 2).

5. Summary

In this study, we evaluate the performance of six at-

mospheric reanalyses (ERA-I, ERA5, JRA-55, CFSv2,

MERRA-2, andASRv2) overArctic sea ice fromwinter

until early summer. The reanalyses are evaluated

against a comprehensive suite of observations from the

N-ICE2015 field campaign, which consists of a rare 5-

month ice drift in pack ice north of Svalbard from

January–June 2015.

Overall, the reanalyses perform remarkably well for

the winter season (January–March). We find high cor-

relation coefficients (.0.90) between the reanalyses and

observations for most of the surface meteorology pa-

rameters, as well as the downwelling longwave radiative

flux. Nonetheless, all reanalyses have a positive winter

2-m temperature bias that ranges from 11.18C in JRA-

55 to 13.88C in CFSv2. This winter warm bias is

associated primarily with poorly resolved (too weak)

surface inversions during cold-stable periods. While

JRA-55 has the best near-surface temperature distri-

bution and smallest warm bias during winter, it suffers

from a large cold and dry bias aloft. ASRv2 simulates

surface inversions most accurately. Interestingly, the

winter warm bias is larger in the newly released ERA5

than ERA-I. In all reanalyses, the winter warm bias re-

sults in an excessive upward and net longwave flux from

the surface. Mean winter net longwave biases range

from 23Wm22 in MERRA-2 to 219Wm22 in ASRv2.

The representation of radiative fluxes in reanalyses is

found to beworse during spring (April–June), compared

with winter and summer. Correlation coefficients for the

net longwave radiative flux in spring range from 0.15 in

ERA5 to 0.41 in CFSv2. All reanalyses fail to simulate

accurately the persistent clouds observed during spring.

This results in a pattern of negative net longwave biases

at the surface and positive shortwave biases. Notably,

ERA5 performs better than ERA-I, and all other re-

analyses, in its simulation of surface radiative fluxes

during spring and summer. In contrast, ASRv2 has the

largest radiative flux biases in spring, with 138Wm22

for the net shortwave flux and 243Wm22 for the net

longwave flux.

Our analyses demonstrate that reanalyses have major

difficulties resolving individual components of the sur-

face energy budget over sea ice. All reanalyses show

poor skill in simulating surface turbulent heat fluxes

over sea ice. We find low correlation coefficients (0.02),

large apparent biases (46Wm22), and large RMSEs

(70Wm22) for the sensible and latent heat fluxes during

winter, spring, and summer. These apparent errors can

partially be explained by the difference between the

point observations made over sea ice and grid cell av-

erage values outputted by the reanalyses, which

include a small but important open water fraction

(Table 2). In winter, negative biases in the turbulent

TABLE 3. Table highlights the strengths andweaknesses of each reanalysis. For the strengths we list the variables with the highest score in a

given season, and weaknesses show the lowest scores. Scores are provided in Table 1.

Reanalyses Strengths Weaknesses

ERA-I Downward longwave radiation in winter 2-m temperature in summer

Total column water vapor in spring

ERA5 10-m wind speed in winter and spring 2-m temperature in winter and spring

Surface turbulent and radiative fluxes in spring and summer

JRA-55 Turbulent heat fluxes in winter Water vapor path in winter (cold and dry bias aloft).

10-m wind speed in winter and summer

CFSv2 Captures longwave radiative fluxes well in all seasons. 10-m wind speed in spring

Turbulent heat fluxes in winter and summer

MERRA-2 2-m temperature in summer Total column water vapor in spring and summer

10-m wind speed in summer Downward longwave radiation in winter

ASRv2 2-m temperature in winter and spring Radiative fluxes in all seasons

Total column water vapor in winter and summer Turbulent heat fluxes in spring
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heat fluxes compound the negative net longwave radi-

ative biases to generate large negative residual heat flux

biases in all reanalyses. These residual heat flux biases

range from 213Wm22 in JRA-55 to 276Wm22 in

CFSv2. In summer, we find large positive residual heat

flux biases in all reanalyses, ranging from 19Wm22 in

ASRv2 to 151Wm22 in CFSv2, which are the result of

several large compensating biases in the energy budget.

We conclude that all of the reanalyses products con-

sidered in this study show high skill in the simulation of

analysis fields during the N-ICE2015 period (Table 1).

However, some large errors exist in the simulation of

radiative and turbulent heat fluxes. Therefore the rep-

resentation of the surface energy budget over sea ice is

often relatively poor. No single reanalysis product is

superior overall. Instead, each reanalysis has strengths

and weaknesses for different variables, which vary by

season, as we summarize in Table 3. Finally, we urge

caution in making broad statements about how repre-

sentative the seasonal N-ICE2015 biases are for the

wider Arctic.
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