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Abstract

Objective—This work evaluates current 3-D image registration tools on clinically acquired 

abdominal computed tomography (CT) scans.

Methods—Thirteen abdominal organs were manually labeled on a set of 100 CT images, and the 

100 labeled images (i.e., atlases) were pairwise registered based on intensity information with six 

registration tools (FSL, ANTS-CC, ANTS-QUICK-MI, IRTK, NIFTYREG, and DEEDS). The 
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Dice similarity coefficient (DSC), mean surface distance, and Hausdorff distance were calculated 

on the registered organs individually. Permutation tests and indifference-zone ranking were 

performed to examine the statistical and practical significance, respectively.

Results—The results suggest that DEEDS yielded the best registration performance. However, 

due to the overall low DSC values, and substantial portion of low-performing outliers, great care 

must be taken when image registration is used for local interpretation of abdominal CT.

Conclusion—There is substantial room for improvement in image registration for abdominal 

CT.

Significance—All data and source code are available so that innovations in registration can be 

directly compared with the current generation of tools without excessive duplication of effort.

Index Terms

Image registration; Abdomen; Computed tomography

I. Introduction

The human abdomen is an essential, yet complex body space. Bounded by the diaphragm 

superiorly and pelvis inferiorly, supported by spinal vertebrae, and protected by the muscular 

abdominal wall, the abdomen contains organs involved with blood reservation, 

detoxification, urination, endocrine function, and digestion, and includes many important 

arteries and veins. Computed tomography (CT) scans are routinely obtained for the 

diagnosis and prognosis of abdomen-related disease; yet no specific image registration tools 

for the abdomen have been developed.

General-purpose registration tools (initially designed for volumetric brain registration) are 

being applied to abdominal CT scans [1, 2] On abdominal CT, inter-subject variability (e.g., 

age, gender, stature, normal anatomical variants, and disease status) can be observed in 

terms of the size, shape, and appearance of each organ. Soft anatomy deformation further 

complicates the registration by varying the inter-organ relationships, even within individuals 

(e.g., pose, respiratory cycle, edema, digestive status). Hence, characterization of tools 

specifically on abdominal structures is necessary, as opposed to relying on brain-centric 

reviews [3].

This work follows the framework of Klein et al. [3], in which 14 nonlinear registration tools 

and one linear registration algorithm were applied to 80 MRIs of the human brain. Manual 

segmentations of regions are used to assess volumetric overlap and surface-based criteria 

separately from the intensity-based metrics that drive registration. In related work, West et 

al. [4] established a platform for assessing landmark-based registrations on retrospective 

intermodality (MR, CT, and PET) brain images, where 12 methods were evaluated based on 

target registration error [5]. Murphy et al. [6] compared 20 registration algorithms to 30 

thoracic CT pairs in the EMPIRE10 challenge by metrics specified for pulmonary area 

alignment and correspondence. The VISCERAL challenge [7] provided a platform for 

evaluating abdominal organ segmentation on four image modalities.
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This work expands on [8] by including more datasets (100 vs. 20), adjusting the label sets 

(the previous individual labels of the adrenal glands were separated into two labels: right and 

left), using a different registration framework (previously all non-rigid registrations were 

initialized by one affine registration tool), and presents more comprehensive statistical 

analyses (see the methods section) (Fig. 1). We selected 5 registration tools that have been 

successful in volumetric brain registrations, including FSL (FMRIB Software Library) [9], 

IRTK (Image Registration Toolkit) [10], NiftyReg [11], ANTs (Advanced Normalization 

Tools) [12], and DEEDS (DEnsE Displacement Sampling) [13] due to their academic 

popularity and general availability. In total, six registration methods were evaluated with two 

different parameter settings for ANTs. For each registration tool, we applied affine 

registration followed by non-rigid registration. Registration results from both stages were 

evaluated based on the Dice similarity coefficient (DSC [14]), mean surface distance (MSD), 

and Hausdorff distance (HD). We note that compared to the brain and thorax registrations, 

substantial registration errors can be observed in the abdomen due to the large variability and 

deformation; registration tools tailored for these intricacies can potentially improve the 

performance. We also note that the efficacy of non-rigid registrations are greatly impacted 

by the baseline affine registrations as a lesson learned from [8], thus we modified the 

registration framework to use affine and non-rigid registration from the same registration 

tool. The main focus of this paper is to provide a public abdomen dataset and to evaluate the 

common registration tools on the provided dataset.

II. Methods

The registration evaluation process follows the flowchart in Fig. 2.

A. Data Acquisition

Under institutional review board supervision, 100 abdominal CT scans were collected 

anonymously from two clinical trials. From an ongoing colorectal cancer chemotherapy 

trial, the baseline sessions of the abdominal CT scans were randomly selected from 75 

metastatic liver cancer patients; the remaining 25 scans were acquired from a retrospective 

post-operative cohort with suspected ventral hernias. All 100 scans were captured during 

portal venous contrast phase with variable volume sizes (512 × 512 × 53 ~ 512 × 512 × 368) 

and field of views (approx. 280 × 280 × 225 mm3 ~ 500 × 500 × 760 mm3). The in-plane 

resolution varies from 0.54 × 0.54 mm2 to 0.98 × 0.98 mm2, while the slice thickness ranged 

from 1.5 mm to 7.0 mm. All image scans and their associated labels were converted to 

NIFTI format with the DCM2NII tool of the MRIcron package [15]. The image orientations 

in the NIFTI header describe the relative position of patients with respect to the scanner. Due 

to the inconsistencies of scanning protocols, the images were re-oriented to standard 

orientation with the FSL package before any further processing [9].

Thirteen abdominal organs were considered regions of interest (ROI), including spleen, right 

kidney, left kidney, gall bladder, esophagus, liver, stomach, aorta, inferior vena cava, portal 

and splenic vein, pancreas, left adrenal gland, and right adrenal gland. The organ selection 

was essentially based on [16]. As suggested by a radiologist, we excluded the heart for lack 

of full appearance in the datasets, and included the adrenal glands for clinical interest. These 
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ROIs were manually labeled by two experienced undergraduate students with 6 months of 

training on anatomy identification and labeling, and then verified by a radiologist on a 

volumetric basis using the MIPAV software [17]. A subset of 13 scans was randomly 

selected, and independently labeled by each of the two raters. Mean overall DSC overlap 

between the raters (i.e., inter-rater variability) was 0.87 ± 0.13 (0.95 ± 0.04 when 

considering only the spleen, kidneys, and liver).

B. Registration Pipeline

General-purpose registration software typically provides options and parameters for specific 

applications. Six registration methods from six registration tools were evaluated in this 

study, and indicated as FSL, ANTS-CC, ANTS-QUICK-MI, IRTK, NIFTYREG, and 

DEEDS respectively. All registration commands evaluated in this study were verified by the 

developers of the corresponding registration software.

All tested methods follow a standard registration pipeline: For each image pair, source 

(moving/floating) and target (fixed/reference) images, the registration was driven by the 

similarity metrics between their intensity images. The registration was divided into two 

stages - affine registration that aligned the two images with co-linearity persevering 

transformation (translation/rotation/scaling/shearing), followed by a non-rigid registration 

that refined the local correspondence with deformation models. Based upon the 

transformation/deformation generated from the intensity-driven registration, the labels 

associated with the source image were propagated to the target space with nearest neighbor 

interpolation as the estimate of the target structures.

We note that before performing this large-scale study, we invited the authors of the evaluated 

algorithms to optimize their algorithms on a subset of our dataset (10 scans). The authors of 

NIFTYREG and DEEDS provided us their optimized parameters; the authors of IRTK 

approved our configuration with no further optimization; the authors of ANTs and FSL 

approved our configuration while considering their level of participation did not warrant 

authorship to this manuscript. The focus of parameter optimization for NIFTYREG and 

DEEDS lay on levels of a multi-resolution strategy, thresholds of intensity range, use of 

discrete optimization; default parameters, or those recommended in the example of the 

software documentation were used if no optimization was provided by the registration 

authors.

We briefly describe the registration setups for each method without detailed parameters. The 

full registration commands can be found in the supplementary material.

• FSL used the FLIRT and FNIRT for affine and non-registration, 

respectively. The affine registration with 9 degrees of freedom (DOF) was 

initialized by a rigid registration. Both rigid and affine registrations 

constrained the search of rotations with “-nosearch”.

• ANTS-CC and ANTS-QUICK-MI used different parameter settings with 

the ANTs package. The parameters were derived from the example scripts 

(antsRegistrationSyN and antsRegistrationSyNQuick, respectively) in the 

ANTs package. ANTS-CC used cross-correlation as the image similarity 
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metric, while ANTS-QUICK-MI used mutual information. ANTS-

QUICK-MI was specified to converge with fewer iterations than ANTS-

CC, and thus noted with “QUICK”. Both methods applied 5 levels of 

multi-resolution sampling, windowed the intensity range, started with the 

alignment of center of mass, initialized the affine registration with rigid 

registration, and used symmetric normalization (SyN) transform for the 

non-rigid registration. Multi-thread computing was enabled to use two 

CPU cores for one registration process.

• IRTK sequentially used rigid, affine, and non-rigid registrations. For all 

three procedures, the target padding value was set to −900 to reduce the 

impact of the background in the CT scans (air with −1024 Hounsfield 

units), 3 levels of multi-resolution sampling were applied. Assuming 

relatively homogenous orientations of patient bodies in the CT scan, the 

options of “translation_only” and “translation_scale” were specified for 

the rigid and affine registration, respectively, so that only translation (and 

scaling for the affine registration) adjustments were allowed, and the 

search over rotations was prohibited. The B-spline control spacing free-

form deformation for the non-rigid registration was set to be 20, 10 and 

5mm for the 3 resolution levels, respectively.

• NIFTYREG used 5 levels of multi-resolution sampling for both affine and 

non-rigid registrations. For the non-rigid registration based on a block-

matching approach and free-form deformation, an upper intensity 

threshold of 500 was set for both target and source image, and the 

maximum iteration for convergence was limited to 1000. Multi-thread 

computing was enabled to use two CPU cores for one registration process.

• DEEDS used 5 scale levels with grid spacing ranging from 8 to 4 voxels, 

displacement search radii from 6 to 2 steps with quantizations between 5 

and 1 voxels. The regularization weighting was set to be 0.4. Self-

similarity context descriptors [18] were derived, while their Hamming 

distance between images were used to guide the local displacement. All 

scans were resampled to an isotropic resolution of 2.2 mm3, and cropped 

to have same dimensions. The non-rigid registration was initialized using 

an affine registration that was based on the same similarity metric, a 

similar block-matching search and trimmed least squares.

C. Running Registrations

All registrations were run on an Oracle Grid cluster of twelve 64-bit Ubuntu 14.04LTS 

Linux servers. Each server had 12 2.8GHz cores and 48 GB RAM. Each registration was 

specified with the approximated maximum memory usage based on their computational 

complexity; multiple registrations were allocated on the memory requirements on servers, 

and operated in parallel. The memory specified in GB for FSL, ANTS-CC, ANTS-QUICK-

MI, IRTK, NIFTYREG, and DEEDS were 20, 20, 20, 10, 10, and 5. Given 100 scans, 9900 

sets of output registration can be generated for each method with a leave-one-out scheme. 

Specifically, for each target image among the 100 scans; the remaining 99 scans were used 
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as source images to the target image in a pair-wise manner. However, during initial running 

trials, we found that FSL and ANTS-CC took an unreasonable amount of time to complete 

(> 6 h, see Table 1). Therefore, these two methods are only validated on a randomly selected 

subset of the datasets. Specifically, 20 target images and 20 source images were randomly 

selected without replacement from the 100 datasets, and 400 registrations were applied from 

all combinations of the source-target pairs. For the other four methods, i.e., ANTS-QUICK-

MI, IRTK, NIFTYREG, and DEEDS all 9900 registrations were applied. In total, this study 

used approximately 103,800 hours of CPU time for registration.

D. Evaluation Metrics

DSC was used to evaluate the volumetric overlap between the estimated segmentation and 

the true segmentation. Briefly, consider A as the segmentation volume, B the ground truth 

volume, and |·| the L1 norm operation,

(1)

Surface error criteria characterize how far the surfaces of the estimated segmentation and the 

true segmentation are from each other. Vertices were collected from the surfaces of both the 

segmentation and the ground truth, based on which distances between the sets of vertices are 

measured in terms of their spatial coordinates. Let the vertices on the segmentation and the 

ground truth surface be X and Y, respectively, and d(·,·) be an indicator of distance measure. 

Then typically, the MSD error and HD error from the segmentation to the ground truth can 

be measured as below.

(2)

(3)

where sup represents the supremum, inf the infimum, avg the average. Symmetric surface 

differences were used in this study as they better capture errors between potentially rough 

surfaces, i.e.,

(4)

(5)
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All metrics were evaluated in an organ-wise manner between the registered labels (estimated 

segmentation) and the manual labels (ground truth).

E. Statistical Analyses

For each pair of methods, permutation tests were performed to examine the statistical 

significance for the overall DSC and MSD across all organs. Following [3, 19], each test 

provided an exact p-value calculated as the percentage of N permutations that the absolute 

mean differences after permutation is larger than the original absolute mean differences 

between the metrics of two methods on a subset of independent registration pairs, where no 

overlap is allowed within the images (including both target and source images) associated 

with the selected registrations, and thus the correlation between registrations with shared 

scans was prevented. The tests were repeated M times with randomized selection of subsets, 

and an average p–value was obtained to indicate the significant difference between tested 

methods. Tests involving FSL or ANTS-CC (or both) selected subsets among the 20 target 

images and 20 source images (400 registrations) that these two methods had been applied, 

where 10 independent registration pairs could be obtained for each subset. Tests within the 

other four methods (i.e., ANTS-QUICK-MI, IRTK, NIFTYREG, and DEEDS) selected 50 

independent registration pairs among 100 images (9900 registrations). In both cases, we let 

N = 1000 for the number of permutations, and M = 10000 for the number of random 

selections of subsets.

Indifference-zone ranking considers two metrics as equal when they are within a delta of one 

another, where the delta characterizes the practical difference [20]. We performed two 

groups of indifference-zone ranking to examine the practice significances for DSC and MD 

in an organ-wise manner among the non-rigid registrations of the tested methods. The first 

group included all methods with 400 registrations, while the second group had ANTS-

QUICK-MI, IRTK, NIFTYREG, and DEEDS evaluated with 9900 registrations. For each 

organ, let i and j be the row and column index of an L × L matrix (L is 6 and 4 for the first 

and second group, respectively), Lij was assigned with the values of −1, 0, or 1, for the cases 

when the evaluation measure for the ith method was at least delta less than, within delta of, 

or at least delta greater than that of the jth method. The outputs were then averaged across all 

registrations. The delta value was specified for each organ on each subject based on the 

surface area of organs. The surface area of an organ label was calculated by summing up the 

face areas in contact with the background across the foreground voxels; it was adjusted by a 

constant coefficient to yield a delta value that represents the practical difference of the 

evaluation metric. For DSC, we used a mean delta value of 0.05 for DSC across all organs 

and 7 mm for MSD. A higher indifference-zone score represents a better DSC performance, 

while a lower score was favorable for the MSD performance.

III. Results

Registrations were successful in terms of software error codes except for 6 out of 9900 

ANTS-QUICK-MI failed without producing output. The evaluated metrics of the non-rigid 

outputs on each organ were illustrated in Fig.s 3, 4, and 5 in terms of DSC, MSD, and HD, 

respectively. Note that the affine outputs were presented in the supplementary material.
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Regarding the overall performance across all registration methods, over half of the 

registrations have the DSC values lower than 0.7 for the majority of the organs. The MSD 

and HD boxplots clearly illustrate the overbearing amount of outliers with up to 500 mm.

When comparing registration methods with each other, DEEDS presented the best overall 

DSC of non-rigid registration across all organs (Fig. 3). For non-rigid registration, 

NIFTYREG presented slightly higher median DSC over ANTS-QUICK-MI and IRTK, 

while FSL and ANTS-CC demonstrated overall inferiority compared to the other three 

methods. On the MSD and HD boxplots, the dominance of any registration tool is not 

visually apparent given the substantial outliers for all methods. To evaluate the results that 

were not catastrophic failures (i.e., those that could meaningfully contribute to a multi-atlas 

approach [1, 2]), Fig. 6 presents MSD results in the form of cumulative percentage, where a 

higher portion of samples below a certain MSD upper bound was more favorable, where 

DEEDS yields the highest percentage of registrations with lower MSD. Table I presents the 

overall performance of DSC, MSD, and HD averaged across all organs for all tested 

methods on the subset of 400 registrations, while Table II shows the metrics for ANTS-

QUICK-MI, IRTK, NIFTYREG, and DEEDS on all 9900 registrations; DEEDS 

demonstrates the best overall performance in both cases. The computation time was also 

collected in Table I, where ANTS-QUICK-MI and NIFTYREG could complete in 

approximately 1h and 2h, respectively using 2 CPU cores, and DEEDS had the lowest 

computational time (< 4 min).

The permutation tests found that the superiority of DEEDS in non-rigid registration was 

significantly better (p < 0.05) than all other methods in DSC, and the majority of the others 

in MSD (Tables III and IV). The indifference-zone ranking also indicated that DEEDS 

yielded the best registration performance in an organ-wise manner. NIFTYREG presented 

the second best results, closely followed by ANTS-QUICK-MI and IRTK, while FSL and 

ANTS-CC were last (Fig. 7).

One registration sample with median overall DSC performance is shown in Fig. 8. The 

volumetric rendering of the registered labels from 6 methods was demonstrated and 

compared with the manual labels of the target scan to provide a qualitative sense of the 

registration quality. While large misalignment from all methods can be identified without 

much effort, ANTS-QUICK-MI, IRTK, NIFTYREG, and DEEDS have the majority of the 

registered organs located at the close positions, and scaled in similar sizes with respect to 

those in the target image. Visually, the organ shapes of the target are best captured by 

DEEDS.

Three pairs of registrations were selected with the top 5% (good), ± 5% around median 

(moderate), and bottom 5 % (poor) overall DSC performance, respectively. Registration 

results on these cases are illustrated in Fig. 9, where a coronal slice for each case is selected 

for the target, source, and all registered images. Based on the overlaid organ labels and the 

underlying images, DEEDS presents the overall best registrations. Meanwhile, the 

registration performance is substantially affected by the similairities between the target and 

source images including the image FOVs, patient body sizes, organ shapes, and secondary 

organ complexities (intestines and vessels). On the other hand, we found there are still many 
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catastrophic failures remaining after removing the subsets with large mismatches of those 

variables (results not shown here for brevity). Many other underlying features can have great 

impact on the registrations, and require further investigation.

IV. Discussion

In this study, we analyzed 6 registration methods from 5 different general-purpose image 

registration toolkits and applied them to abdominal CT scans. Evaluating the volumetric 

overlap and surface errors on the registered labels on 13 organs of interests showed that the 

current registration tools were generally far from ideal, where (1) median accuracy was 

below 0.7 for the majority of organs, and (2) massive outliers indicating catastrophic 

registration failures were observed. Registration performance is found to be negatively 

affected by the dissimilarities between the target and source images including the image 

FOVs, patient body sizes, and organ shape, where fundamental body misalignments were 

observed (Fig. 9). Additional challenges come from the implicit discontinuity within the 

abdomen given the secondary structures (e.g., fat, muscles, bones, intestines in this study). 

Their variations caused large deformations between different organs of interest so that an 

affine registration can hardly align all organs at the same time. In addition, their extensive 

presence and large coverage across the abdomen could mislead the registration algorithms 

and generate undesirable deformation; for the same reason, small organs could be registered 

to the secondary structures or other large organs.

We note that the registration results in this study could be biased towards the tested datasets. 

First, all scans were contrast enhanced, where organs could be more distinguishable from 

muscle and fat tissue. Registrations between non-contrasted scans may demonstrate 

additional challenges not shown with our datasets. Second, the population of patients had a 

greater chance of sharing specific abnormalities, e.g., enlarged spleen and liver, defected 

abdominal wall. In fact, these patients could also have multiple other diseases, have been 

treated with different surgical procedures, and demonstrate various other abnormalities 

(atrophied kidney, missing gallbladder). We consider the registration evaluation on our 

datasets to be biased towards challenging cases. Datasets among healthy subjects may yield 

better registration outcomes. On the other hand, contrasted CT scans on patients with all 

sorts of abdominal diseases are the most common image format acquired in traditional 

clinical trials. We consider the registration evaluation performed in this study valuable for 

translational research.

Among the tested registration methods in the presented parameter settings, DEEDS provided 

the best overall performance, with median DSC, MSD, and HD as 0.49, 4.93 mm and 31.72 

mm, respectively for all organs. The DSC metric is in favor of large structures; small 

disagreement in small structures can result in large decrease in DSC in the context of [1, 2, 

21]. We can consider the reasonable DSC values for large (liver, spleen, kidneys), medium 

(pancreas, stomach, aorta, inferior vena cava), and small (gallbladder, esophagus, portal and 

splenic vein, adrenal glands) organs to be 0.95, 0.85, and 0.6 respectively. Based on these 

criteria, even the best registration in this study did not provide sufficient accuracy to extract 

the organs of interest. The massive registration failures further discouraged the direct 

individual use of the registration tools in clinical applications. However, if combined with 
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pre-processing and post-processing procedures, registrations with this level of overall 

accuracy are encouraging and could achieve robust results. Essentially, multi-atlas 

techniques [22] can be used to augment local interpretation of abdominal CT scans (e.g., 

segmentation) by using multiple atlas-to-target registrations. Great care must be taken to 

account for the registration outliers, where atlas selection [23–26] and statistical fusion [27–

29] are the keys for robust multi-atlas segmentation (MAS). From the perspective of MAS, 

registration is the bottleneck, especially in the abdomen; a better registration tool can yield 

better segmentation performance.

Based on the results shown in this study, many opportunities are open for future 

investigation and development for a registration tool tailored for abdomen.

First, although the presented registration configurations were approved by all the developers 

of the tested registration methods, further optimization could be possible, e.g., in terms of 

levels of the multi-resolution strategy, thresholds of intensity range, use of block matching 

strategy in affine initialization, regularization on deformation, and etc. Across the tested 

registrations, a good combination of the similarity metrics (mutual information, cross-

correlation, sum of squared distance, and Hamming distances of the self-similarity context) 

and transformation models (B-splines and diffeomorphism) has been covered for 

deformation, while registrations using other transformation models (e.g., demons [30], 

optical flow [31]) could be evaluated by experts with these approaches in continuing 

analysis via the newly released public dataset.

Second, contributions in abdominal segmentation also provide some hints toward the 

potential development of abdominal registration algorithms. While using existing 

registration tools for segmentation, many efforts have been focused on standardizing the 

abdomen space. Wolz et al. [1] constrained a FOV with 25 cm along the cranial-caudal axis 

before registration. Linguraru et al. [21] initialized the registration by aligning a single 

landmark (xiphoid process). Okada et al. [32] and Zhou et al. [33] normalized the abdominal 

space using pre-segmented diaphragm and rib cage. Recent efforts on organ localizing [34] 

and organ hierarchical modeling [35] provide the options to minimize the impact of the 

substantial registration errors. Piece-wise registrations/segmentations have been 

demonstrated with better performance than their body-wise counterparts [36, 37]. These pre-

processing techniques provide extra features other than intensity-based similarity metrics, 

and can potentially benefit registrations for capturing the most desirable organ deformation.

Third, we see a new direction in fundamental design for the registration method towards the 

challenging problems in the abdomen. DEEDS yields the best performance in this study, and 

it is different from other methods mainly by using discrete optimization. Instead of relying 

on differentiable similarity metric in traditional continuous optimization, DEEDS subdivides 

the image domain into non-overlapping cubic blocks, and calculates the displacement for 

each block followed by displacement regularization between blocks. This type of discrete 

design can capture a large range of potential deformations, and thus coped well with the 

discontinuous pattern between structures of interest in the abdomen. Further exploration in 

the discrete optimization can be expected to benefit the abdominal registrations.
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Last, we consider that a structured challenge regarding registration in the abdomen using the 

presented datasets will further boost the development of abdomen-specific and/or general 

registration algorithms. We have already set up the infrastructure on Sage Synapse as a 

publically available challenge for researchers to evaluate their registration and segmentation 

algorithms (https://www.synapse.org/#!Synapse:syn3193805/wiki/89480). Note the 

challenge page was originally established for a MICCAI 2015 challenge, while all 

functionalities remain active. More comprehensive benchmarks to evaluate the efficacy of 

capturing the abdominal organs will be required to solidify the impact of this potential 

challenge.

V. Conclusion

This manuscript presents the current state of the art for registration performance at 13 

abdominal organs on CT scans by evaluating six academically popular registration methods 

without extensive optimizations. In this study, we (1) recommend a best registration method 

to the registration users for their abdomen-related applications, and (2) suggest future 

directions for registration developers towards more robust and accurate registration 

algorithms in the abdomen. Specifically, DEEDS is currently the best choice for registration 

users to perform abdominal organ segmentation. Registration developers can focus on the 

perspectives of discrete optimization, non-intensity-based feature derivation, and parameter 

configurations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 

Illustration of 13 organs of interest on volumetric rendering and 2-D slices of axial, coronal 

and sagittal orientations.
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Fig. 2. 

Registration pipeline. Given a pair of target image and a source atlas (image and labels), an 

affine registration was applied followed by a non-rigid registration for each of the six 

evaluated registration methods. The registered labels were validated against the ground truth 

(manual labels) in terms of DSC, MSD, and HD.
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Fig. 3. 

Boxplot of DSC values on 13 organs for the non-rigid outputs of six registration methods.
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Fig. 4. 

Boxplot of MSD values on 13 organs for the non-rigid outputs of six registration methods.
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Fig. 5. 

Boxplot of HD values on 13 organs for the non-rigid outputs of six registration methods.
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Fig. 6. 

Brightness-coded cumulative percentages based on MSD values on 13 organs for the non-

rigid outputs of six registration methods. Six methods were represented in 6 difference 

colors. Each column indicates a cumulative curve for the associated organ with the 

underlying registration method; it demonstrated the percentage of included registration 

outputs along the increase of the MSD upper bound with its brightness transition from 

bottom to top. A column with quicker transition from dark to bright indicates more 

registration outputs with small MSD.
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Fig. 7. 

Indifference-zone map for DSC and MSD. For both metrics, the indifference-zone ranking 

was applied on 400 registrations for all six methods, and 9900 registrations for ANTS-

QUICK-MI, IRTK, NIFTYREG, and DEEDS. A higher value for the DSC indifference-zone 

map indicates better performance, while a lower value is more favorable for MSD.
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Fig. 8. 

Volumetric rendering on a single subject with median overall DSC performance. The organ 

color scheme follows that in Fig. 1.
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Fig. 9. 

Illustrations of six registration methods on three registration pairs with good, moderate, and 

poor performances.
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TABLE I

Metrics on 400 registrations for all tested methods (mean ± std)

Method DSC MSD (mm) HD (mm) Time (min)

FSL 0.12 ± 0.19 37.92 ± 44.11 84.28 ± 59.96 951.73 ± 201.20

ANTS-CC 0.18 ± 0.21 27.15 ± 32.65 62.92 ± 44.60 411.60 ± 74.20

ANTS-QUICK-MI 0.27 ± 0.25 15.96 ± 19.22 49.66 ± 32.96 50.18 ± 21.93

IRTK 0.28 ± 0.26 19.07 ± 26.50 55.58 ± 39.26 220.27 ± 91.79

NIFTYREG 0.35 ± 0.29 15.72 ± 19.16 59.59 ± 42.60 116.91 ± 34.94

DEEDS 0.49 ± 0.26 8.63 ± 16.16 40.15 ± 32.11 3.73 ± 0.77

Note that ANTS-CC, ANTS-QUICK-MI, and NIFTYREG used two CPU cores for each registration process. The mean DSC across four large 

organs (liver, spleen, kidneys) is 0.19, 0.31, 0.43, 0.48, 0.55, and 0.70 for FSL, ANTS-CC, ANTS-QUICK-MI, IRTK, NIFTYREG, and DEEDS, 

respectively.
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TABLE II

Metrics on 9900 registrations for four registration methods (mean ± std)

Method DSC MSD (mm) HD (mm)

ANTS-QUICK-MI 0.23 ± 0.23 20.68 ± 26.14 57.44 ± 39.85

IRTK 0.26 ± 0.26 20.36 ± 24.01 58.71 ± 37.33

NIFTYREG 0.35 ± 0.29 16.98 ± 21.58 62.52 ± 44.29

DEEDS 0.47 ± 0.26 9.79 ± 17.44 43.18 ± 35.08

Note that the mean DSC across 4 large organs (liver, spleen, kidneys) is 0.38, 0.46, 0.55, and 0.68 for ANTS-QUICK-MI, IRTK, NIFTYREG, and 

DEEDS, respectively.
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TABLE IV

Averaged p-values of permutation tests between 4 methods performed on 9900 registrations

Method ANTS-QUICK-MI IRTK NIFTYREG DEEDS

ANTS-QUICK-MI 0.174 0.000 0.000

IRTK 0.501 0.002 0.000

NIFTYREG 0.255 0.272 0.000

DEEDS 0.024 0.019 0.071

Note the entries in the upper triangular part represent p-values tested on DSC, while those in the lower triangular part were tested on MSD. The 

shaded entry indicates significant difference (p < 0.05) between the correspondent methods of the row and column.
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