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Abstract

Background: The point spread function (PSF) of positron emission tomography (PET)
depends on the position across the field of view (FOV). Reconstruction based on PSF
improves spatial resolution and quantitative accuracy. The present study aimed to
quantify the effects of PSF correction as a function of the position of a traceable
point-like 22Na source over the FOV on two PET scanners with a different detector
design.

Methods: We used Discovery 600 and Discovery 710 (GE Healthcare) PET scanners
and traceable point-like 22Na sources (<1 MBq) with a spherical absorber design that
assures uniform angular distribution of the emitted annihilation photons. The source
was moved in three directions at intervals of 1 cm from the center towards the
peripheral FOV using a three-dimensional (3D)-positioning robot, and data were
acquired over a period of 2 min per point. The PET data were reconstructed by
filtered back projection (FBP), the ordered subset expectation maximization (OSEM),
OSEM + PSF, and OSEM + PSF + time-of-flight (TOF). Full width at half maximum
(FWHM) was determined according to the NEMA method, and total counts in
regions of interest (ROI) for each reconstruction were quantified.

Results: The radial FWHM of FBP and OSEM increased towards the peripheral FOV,
whereas PSF-based reconstruction recovered the FWHM at all points in the FOV of
both scanners. The radial FWHM for PSF was 30–50 % lower than that of OSEM at
the center of the FOV. The accuracy of PSF correction was independent of detector
design. Quantitative values were stable across the FOV in all reconstruction methods.
The effect of TOF on spatial resolution and quantitation accuracy was less noticeable.

Conclusions: The traceable 22Na point-like source allowed the evaluation of spatial
resolution and quantitative accuracy across the FOV using different reconstruction
methods and scanners. PSF-based reconstruction reduces dependence of the spatial
resolution on the position. The quantitative accuracy over the entire FOV of the PET
system is good, regardless of the reconstruction methods, although it depends
slightly on the position.
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Background
Positron emission tomography/computed tomography (PET/CT) using 18F-fluoro-2-de-

oxy-D-glucose (FDG) has become increasingly important for planning and evaluating

the outcomes of treatment [1, 2] and this modality requires accurate quantitation of

FDG uptake and distribution related to spatial resolution. However, a limitation associ-

ated with the PET/CT system is the degradation of spatial resolution that is attributed

to the positron range effect, photon non-collinearity, and detector-related effects in-

cluding the width of scintillator crystals, inter-crystal scattering, and inter-crystal pene-

tration [3–6]. Detector-response blurring at locations far from the center of the field of

view (FOV) is problematic [6, 7], particularly in the radial and axial dimensions.

Alessio et al. characterized the detector response using Monte Carlo simulations [7]

and empirical measurements [8]. The detector response in an empirical measurement

that separated radial and axial components was modeled as a point spread function

(PSF), and PSF information was incorporated into a three-dimensional (3D) iterative re-

construction [4, 6]. A reconstruction algorithm using PSF correction has been reported

to improve the spatial resolution in the scanner FOV. Such algorithms are provided

from the vendors under different names (SharpIR from GE, TrueX HD·PET from Sie-

mens and ×Sharp from Philips). However, PSF correction changes quantitative accuracy

due to the Gibbs ringing overshoot at the edges [4, 9]. Furthermore, although few stud-

ies have evaluated the effects of PSF correction using the National Electrical Manufac-

turers Association (NEMA) body phantom located at the center of the FOV [10, 11],

the relationship between FDG uptake at any location throughout the FOV and the ac-

curacy of PSF correction remains unclear. The spatial resolution of the scanner can be

measured by placing a point source within the scanner and acquiring scan data at vary-

ing locations in both the radial and axial dimension [6, 8].

A point-like 22Na source (<1 MBq) that is appropriately related to the national stand-

ard in Japan was developed for PET calibration [12, 13]. The radioactivity of this source

was calibrated with a Germanium-semiconductor spectrometer at an accredited cali-

bration center (Japanese Radioisotope Association, Tokyo, Japan); the level of uncer-

tainty in the measurement was <1.5 % (k = 2). The long half-life of 2.6 years and low

maximum positron energy of 0.546 MeV render traceable point-like 22Na sources favor-

able for direct comparisons of spatial resolution and quantitation accuracy among PET

scanners [13].

The present study aimed to quantify the effects of PSF correction as a function of the

position of a traceable point-like 22Na source over the FOV of two types of PET

scanners.

Methods
Traceable point-like 22Na source

The traceable point-like 22Na source is described in detail elsewhere [12]. Briefly, the

source consisted of a spherical aluminum capsule (outer diameter, 3.0 mm) and a

spherical ion exchange resin bead (diameter 0.5 mm) with a surface that absorbs 22Na.

The influence of absorbed attenuation and scatter was negligible [12, 13]. The amount

of source radioactivity was 0.3 MBq at the time of the comparison of PET scanners.
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PET scanner

We used Discovery PET/CT 600 and Discovery PET/CT 710 scanners (GE Healthcare,

Milwaukee, WI, USA). Table 1 shows the features of two PET devices compared herein.

The Discovery 600 comprises 24 rings of 512 bismuth germinate (BGO) crystals (4.7 ×

6.3 × 30 mm), covering transaxial and axial FOV of 700 and 157 mm, respectively. The

spatial resolution at 1 cm from the center of the FOV was 4.9 mm at full width at half

maximum (FWHM) according to NEMA NU2-2007 [14]. The Discovery 710 comprises

24 rings of 576 lutetium-yttrium oxyorthosilicate (LYSO) crystals (4.2 × 6.3 × 25 mm),

covering transaxial and axial FOV of 700 and 157 mm, respectively. The spatial resolution

at 1 cm from the center of the FOV was 4.7 mm at FWHM according to NEMA [15].

3D-positioning robot and data acquisition

The point-like 22Na source was moved throughout the FOV using a 3D-positioning

robot (IAI Co. Ltd., Shizuoka, Japan) that allowed motions with an accuracy of

±0.02 mm (Fig. 1a). The robot was controlled by coded software running on a per-

sonal computer. The orientation accuracy of robot positioning was verified before

each acquisition in three dimensions [6]. Data acquisition in each direction started

with the source positioned at the center of the FOV. The source was then moved to

the peripheral 30 cm of the transaxial FOV at 1 cm intervals in the directions of the

x-, y-, and xy-axes (Fig. 1b). The xy-axis was moved in an oblique 45° direction, for

example (x,y = 0, 0), (x,y = 1, 1), and (x,y = 2, 2), namely, at √2-cm intervals. PET data

were acquired for 2 min at each point in 3D list mode.

Image reconstruction

We reconstructed PET data using the following algorithms: filtered back projection

(FBP), baseline ordered subset expectation maximization (OSEM), OSEM + PSF,

and OSEM + PSF + time-of-flight (TOF; Discovery 710 only). The PSF modeling

used in this study was the SharpIR algorithm conceived by Alessio et al. [7, 8].

Thirty-one data series for the x- and y-axes and 22 data series for the xy-axis di-

vided into each measured point were reconstructed. The iterative reconstruction

parameters of the Discovery 600 were 2 iterations and 16 subsets for OSEM, and 3

iterations and 16 subsets for OSEM + PSF. The iterative reconstruction parameters

of the Discovery 710 were 2 iterations and 18 subsets for OSEM, and 3 iterations

Fig. 1 Point-like 22Na source setup for PET acquisition. Source is attached to the tip of a robot (a) and
moved across three directions (b)
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and 18 subsets for OSEM + PSF and OSEM + PSF + TOF. The image matrix was

256 × 256 (pixel size, 2.73 mm) and slice thickness was 3.27 mm. A smoothing fil-

ter was not used for post-processing. Attenuation and scatter were not corrected.

The normalization scan was performed using a uniform cylindrical 18F-filled phan-

tom located at the center of the FOV.

FWHM analysis

The spatial resolution in the scanner FOV was determined from the FWHM of the PSF

obtained from the activity distribution from the point-like 22Na source. The FWHM in

three directions for each measured point was calculated according to the NEMA re-

quirements (NEMA-NU2-2012) [16]. The maximum value of the PSF was determined

using a parabolic fit of the peak point and its two nearest-neighbor points. The position

at half of the profile maximum value was determined by linear interpolation between

adjacent pixels. The pixel size was set to 1.56 mm by reducing the reconstructed FOV

width when evaluating the FWHM.

Quantitative analysis

Data were analyzed using OsiriX software (Pixmeo, Bernex, Switzerland). Circular re-

gions of interest (ROI) were defined around the source position to obtain the total

ROI value. We placed ROI on 21 image planes around the central image plane within

a range of ±10 image planes to cover the entire smeared radioactivity in the axial dir-

ection. The sum of the ROI values derived from 21 image planes was defined as ROI-

total. Scattered 1.275-MeV γ rays along with β+ decay of 22Na might increase ROI

values when the radius of the ROI is larger. In the present study, the ROI radius was

set to 16 mm so that the uniformity in the field of view was evaluated using the trace-

able point-like source in a way that is independent of the partial volume effect, on the

basis of a previous study [13]. The recovery coefficient (RC), a function of radial dis-

tance from the center of the FOV, served as a quantitative index [14], as follows:

RC ¼ ROItotal � νpixel= Rsource=εð Þ

where νpixel is the volume of pixel in cc, Rsource is the emission rate of 0.511-MeV γ rays

from the 22Na source in s−1, and ε is the β+ branching ratio of 22Na.

Table 1 Comparison of device features

Discovery 600 Discovery 710

Transaxial FOV (mm) 700 700

Axial FOV (mm) 157 157

No. of ring 24 24

No. of individual crystals 12,288 13,824

No. of crystals/ring 512 576

No. of image planes 47 47

Crystal size (mm) 4.7 × 6.3 × 30 4.2 × 6.3 × 25

Crystal array per block 8 × 6 9 × 6

Scintillator material BGO LYSO

Coincidence window (nsec) 9.5 4.9
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Results
The images of the point source for FBP and OSEM were broad and faint when lo-

cated far from the center of the FOV, whereas hot spots for PSF and PSF + TOF

became sharp and dense throughout the FOV. The trends of results from the Dis-

covery 600 and 710 scanners were almost identical.

Figure 2 shows the radial FWHM as a function of radial distance from the cen-

ter of the FOV in three directions. The radial FWHM for FBP and OSEM in-

creased towards the periphery of the FOV, whereas PSF and PSF + TOF recovered

and spatial resolution was more uniform over the entire FOV. The FWHM data

were similar among the measured directions and scanners. The results of PSF

and PSF + TOF were identical using the Discovery 710. The radial FWHM for

PSF and PSF + TOF increased and decreased in a cyclic fashion across the FOV.

Figure 3 shows the tangential FWHM. Regardless of reconstruction methods, the

tangential FWHM were stable at all positions. The tangential FWHM of PSF and

PSF + TOF were smaller than those of FBP and OSEM.

Figure 4 shows that the RC as a function of radial distance from the center of

the FOV in three directions, remained stable across the FOV in all reconstruction

Fig. 2 Radial FWHM at different radial locations for x- (a, b), y- (c, d), and xy- (e, f) axes using Discovery 600
(a, c, e) and Discovery 710 (b, d, f)
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methods, in particular for the Discovery 600, and fluctuated only at the center of

the FOV in both scanners.

Discussion
We evaluated the spatial dependence of PSF-based PET reconstruction using a trace-

able 22Na point-like source on two PET scanners with different detector designs. The

results showed that PSF correction improves spatial resolution and does not affect

quantitative values over the entire FOV.

The methodology used to measure the response of the PET system that deter-

mines the spatial dependence of the PSF inside the FOV is important. Several fac-

tors must be considered to obtain an accurate response from the PET system, such

as the source dimensions, type of isotope, media surrounding the point source (air,

water, or warm radioactive background), and the number and position of measure-

ments to account for all possible responses of the system [17]. In particular, at-

tenuation and scattering owing to the source (phantom) and its correction produce

uncertainty in performance evaluations. We adopted a 22Na point-like source that

is traceable to a national standard, and a 3D-positioning robot. Although the 22Na

point-like source has been proposed for PET calibration [12, 13], it is also useful

Fig. 3 Tangential FWHM at various moving radial locations for x- (a, b), y- (c, d), and xy- (e, f) axes using
Discovery 600 (a, c, e) and Discovery 710 (b, d, f)
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for evaluating the intrinsic characteristics of different PET scanners in terms of re-

sponses to the source in a manner that is independent of uncertainty caused by at-

tenuation and scatter.

The radial FWHM for FBP and OSEM increased to approximately 4 and 5 mm, respect-

ively, for the scanner FOV at 30 cm, whereas tangential FWHM was more or less inde-

pendent of the radial offset (Figs. 2 and 3). Both PSF and PSF + TOF achieved a radial

FWHM in the peripheral FOV that was equivalent to the center of FOV, and the FWHM

was uniform (approximately 2 mm) across the FOV in both scanners. Although this

FWHM was 30–50 % lower than that of OSEM at the center of FOV, evaluation with the

point source in air might have caused PSF over-correction of resolution because of un-

acceptable noise properties, which is a clinically unrealistic scenario. Alessio et al. found

more modest resolution gains with PSF correction when sources were placed in a warm

background [8]. On the other hand, the FWHM were similar between the Discovery 600

and 710 scanner using PSF correction. Wiant et al. examined the spatial dependence of

PSF-based reconstruction in 2D mode (with septa) using a Discovery ST PET/CT scanner

(GE Healthcare), thus validating the accuracy of the PSF correction across the FOV [6].

The accuracy of PSF correction was independent of detector design, possibly because the

detector-response function was determined by optimizing each type of scanner.

Fig. 4 Recovery coefficient at various radial locations for x- (a, b), y- (c, d), and xy- (e, f) axes using
Discovery 600 (a, c, e) and Discovery 710 (b, d, f)
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The radial FWHMs for PSF and PSF + TOF slightly increased and decreased in a cyc-

lic fashion across the FOV (Fig. 2). This could be explained by the location of the point

source within a pixel. The maximum pixel value was underestimated due to the pos-

ition of the source relative to the grid of pixel separation [18]. The point spread func-

tion of hotspots became deformed (sharp and dense) by PSF correction, and thus the

location of a point source in a pixel is thought to considerably influence the FWHM.

This problem can be addressed to decrease the FOV or increase the matrix size.

Time-of-flight could reduce axial blurring to recognize the correct axial plane of ori-

gin for each line-of-response (LOR) [19]. However, TOF did not affect the spatial reso-

lution of the entire transaxial FOV (Figs. 2 and 3). The FWHM of spatial uncertainty

using TOF was around 7–8 cm since the time resolution of LYSO was 500 psec; thus,

TOF does not directly improve spatial resolution [20].

Quantitative performance among different reconstructions across FOV has not

previously been evaluated. The RC was stable across the FOV in all reconstruction

methods using both scanners. We calculated the total ROI values covering the

traceable 22Na point-like source to create a quantitative index. Although the degree

of smearing of radioactivity differed depending on the reconstruction methods,

ROItotal remained constant across all reconstruction methods. We found that PSF

correction does not impact the total quantified value regardless of changes in peak

height and the shape of the PSF. The integral of the modeled PSF normally equals

unity and therefore it has no effect on the total reconstructed activity, only on

how exactly that activity is distributed in the PET image. This is confirmed by the

results that the curves for OSEM, OSEM with PSF, and OSEM with TOF and PSF

are identical. The RC fluctuated only at the center of FOV in both scanners. The

uncertainty of measurement at the center of the FOV in PET is due to a geometric

factor, which principally results in avoiding taking measurements at the center of

the FOV during quantitative analyses [13]. The RC of PSF and PSF + TOF were

identical. The point-like 22Na source was small and independent of absorber at-

tenuation and scatter, and thus TOF gain was not obtained [20].

The results shown in Fig. 4 revealed that the quantification is indeed position

dependent, with excellent performance near the center of the FOV, and a slight under-

estimation near the edge of the FOV. The detector efficiency variations and geometric

factors such as the solid angle subtended are typically corrected by the normalization

scan for the uniformity across the FOV [21]. Nevertheless, the RC decreased slightly to-

wards the periphery of the FOV in all reconstruction methods. We consider that this

might be due to the uncertainty of a standard normalization method using cylindrical

water phantoms and the uncertainty of attenuation and scatter corrections.

The present study has several limitations. First, several PSF modeling with different

principles are provided by vendors. Differences in PSF modeling might have influenced

the results. Further study with other PSF modeling algorithms is required to assess the

relationship between the location of FDG uptake inside the FOV and the accuracy of

PSF correction. Second, we evaluated spatial resolution and quantitative accuracy using

only one point source in air. A point source in air is a very artificial object, very differ-

ent from the tracer distributions in human bodies which are seen in clinical routine.

Further study should evaluate the influence of attenuation and scattering using a hot

point source surrounded by activity and a phantom with hot spheres of different sizes
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in a warm background in a more realistic imaging scenario to verify the advantages and

disadvantages of PSF and TOF correction in the FOV periphery [22].

Conclusions
A traceable 22Na point-like source allowed evaluations of spatial resolution and quanti-

tative accuracy among different reconstructions across the FOV. We found that PSF-

based reconstruction reduces dependence of the spatial resolution on the position. The

quantitative accuracy over the entire FOV of the PET system is good, regardless of the

reconstruction methods, although it depends slightly on the position. PSF correction

might benefit the acquisition of PET images from obese patients that occupy most of

the FOV and of small or distal lesions such as nodal metastases [23].
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