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Evaluation of Speaker Verification Security and

Detection of HMM-based Synthetic Speech
Phillip L. De Leon, Member, IEEE, Michael Pucher, Member, IEEE, Junichi Yamagishi,

Inma Hernaez, and Ibon Saratxaga

Abstract—In this paper, we evaluate the vulnerability of
speaker verification (SV) systems to synthetic speech. The SV
systems are based on either the Gaussian mixture model-
universal background model (GMM-UBM) or support vector
machine (SVM) using GMM supervectors. We use a hidden
Markov model (HMM)-based text-to-speech (TTS) synthesizer,
which can synthesize speech for a target speaker using small
amounts of training data through model adaptation of an average
voice or background model. Although the SV systems have a very
low equal error rate (EER), when tested with synthetic speech
generated from speaker models derived from the Wall-Street
Journal (WSJ) speech corpus, over 81% of the matched claims
are accepted. This result suggests vulnerability in SV systems and
thus a need to accurately detect synthetic speech. We propose
a new feature based on relative phase shift (RPS), demonstrate
reliable detection of synthetic speech, and show how this classifier
can be used to improve security of SV systems.

Index Terms—speaker recognition, speech synthesis, security

I. INTRODUCTION

THE objective in speaker verification (SV) is to accept or

reject a claim of identity based on a voice sample [1].

Many investigations on the imposture problem as related to SV

have been reported over the years as well as methods to prevent

such impostures. The simplest imposture is playback of a voice

recording for a targeted speaker and the well-known solution

is a text-prompted approach [2]. In addition, the vulnerability

of SV to voice mimicking by humans has also been examined

in [3], [4]. On the other hand, advanced speech technologies

present new problems for SV systems including imposture

using speech manipulation of a recorded voice via analysis-by-
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resynthesis methods [5]–[7], voice conversion of the recorded

voice [8]–[11], and diphone speech synthesis methods [7].

The use of synthesized speech potentially poses two related

problems for SV systems. The first problem is confirmation

of an acquired speech signal as having originated from a

particular individual. In this case, the speech signal might be

incorrectly confirmed as having originated from an individual

when in fact the speech signal is synthetic. The second

problem is in remote or on-line authentication where voice

is used. In this case, a synthesized speech signal could be

used to wrongly gain access to a person’s account and text-

prompting would not present a problem for a text-to-speech

(TTS) system. In both of these problems, the speech model

for the synthesizer must be targeted to a specific person’s

voice. SV is also being used in forensic applications [12]

and therefore security against imposture is also of obvious

importance.

The problem of imposture against SV systems using syn-

thetic speech was first published over 10 years ago by Masuko,

et al. [13]. In their original work, the authors used a hidden

Markov model (HMM)-based text-prompted SV system [2]

and an HMM-based TTS synthesizer. In the SV system, feature

vectors were scored against speaker and background models

composed of concatenated phoneme models. The acoustic

models used in the speech synthesizer were adapted to each

of the human speakers [14], [15]. When tested with 20 human

speakers, the system had a 0% false acceptance rate (FAR)

and 7.2% false rejection rate (FRR); when tested with synthetic

speech, the system accepted over 70% of matched claims, i.e. a

synthetic signal matched to a targeted speaker and an identity

claim of that same speaker.

In subsequent work by Masuko, et al. [16], the authors

extended the research in two ways. First, they improved

their synthesizer by generating speech using F0 (fundamen-

tal frequency) information. Second, they improved their SV

system by utilizing both F0 and spectral information. The F0

modeling techniques used in synthesis were the same used in

the SV system. By improving the SV system, the authors were

able to lower the matched claim rate for synthetic speech to

32%, however, the FAR for the human speech increased to

1.8%.

In the last 10 years, both SV and TTS systems have

improved dramatically. Around the same time as Masuko’s

work, Gaussian mixture model-universal background model

(GMM-UBM) SV systems were first proposed [1]. Since this

time, GMM-UBM based SV systems have produced excellent

performance and have achieved equal error rates (EERs) of
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0.1% on the TIMIT corpus (ideal recordings) and 12% on

NIST 2002 Speaker Recognition Evaluations (SRE) (non-

ideal recordings) [17], [18]. Newer systems based on support

vector machines (SVMs) using GMM supervectors have been

proposed and in some cases can lead to lower EERs [19], [20].

Until recently, developing a TTS synthesizer for a targeted

speaker required a large amount of speech data from a

carefully prepared transcript in order to construct the speech

model. However, with a state-of-the-art HMM-based TTS

synthesizer [21], the speech model can now be adapted from an

average model (derived from other speakers) or a background

model (derived from one speaker) using only a small amount

of speech data. Moreover, recent experiments with HMM-

based speech synthesis systems have also demonstrated that

the speaker-adaptive HMM-based speech synthesis is robust

to non-ideal speech data that are recorded under various con-

ditions and with varying microphones, that are not perfectly

clean, and/or that lack phonetic balance. In [22] a high-quality

voice was built from audio collected off of the Internet. This

data was not recorded in a studio, had a small amount of

background noise, and the microphones varied in the data.

Further [23] reported construction of thousands of voices for

HMM-based speech synthesis based on corpora such as the

Wall Street Journal (WSJ0, WSJ1, and WSJCAM0), Resource

Management, Globalphone and SPEECON. Taken together,

these state-of-the-art speech synthesizers pose new challenges

to SV systems.

In prior work, we utilized a state-of-the-art TTS synthe-

sizer and revisited the problem of imposture using a GMM-

UBM SV system with a small speech corpus [24] and then

extended to a larger corpus [25]. Recently, we examined

the performance using the SVM-based SV system and initial

experiments on detecting a synthetic speech signal [26]. In

this paper, we provide complete evaluations using both GMM-

UBM and SVM-based SV systems and new results from a

proposed synthetic speech detector (SSD) which uses phase-

based features for classification. First, we train two different

SV systems (GMM-UBM and SVM using GMM supervectors)

using human speech (283 speakers from the WSJ corpus).

Second, we create synthetic test speech for each of the 283

speakers by adapting a background model to the targeted

speaker. Finally, we measure EER and true acceptance rates

when tested using human speech and measure the matched

claim rate using synthetic speech. As we will demonstrate, the

matched claim rate is above 81% for each of the SV systems

hence the vulnerability of the SV systems to synthetic speech.

Next, we turn our attention to detection of synthetic speech

as a means to prevent imposture by synthetic speech. We

summarize results with a previously-proposed method which

uses average inter-frame difference of log-likelihood (IFDLL)

[27] and show that this is no longer a viable discriminator

for high-quality synthetic speech such as that which we are

using. Instead, we propose a new discrimination feature based

on relative phase shift (RPS) and show that this can be used to

reliably detect synthetic speech. We also show a simple and

effective method for training the classifier using transcoded

human speech as a surrogate for synthetic speech.

This paper is organized as follows. In Sections II and III,

we provide brief overviews of the SV and TTS systems.

In Section IV, we review IFDLL and provide details on

our proposed RPS feature for detecting synthetic speech. In

Section V, we describe the WSJ corpus and explain how

we partitioned the corpus for training and testing of all the

required systems. We note that although the WSJ corpus is

not a standard corpus for SV research, it is one of the few that

provides sufficient speech material from hundreds of speakers

which is required to construct synthetic voices matched to their

human counterparts. Section VI gives the evaluation results

using the WSJ corpus and its synthesized counterpart as well

as the results when using RPS to detect synthetic speech.

Finally, we conclude the article in Section VII.

II. SPEAKER VERIFICATION SYSTEMS

Our SV systems are based on the well-known GMM-UBM

described in [17] and the SVM using GMM supervectors

described in [19]. We briefly review these systems and our

implementation in the following subsections.

A. SV System Training

For both SV systems, T feature vectors X =
{x1,x2, . . . ,xT } are extracted every 10 ms using a 25 ms

hamming window and composed of 15 mel-frequency cepstral

coefficients (MFCCs), 15 delta MFCCs, log energy, and delta-

log energy as elements. We apply feature warping to the

vectors in order to improve robustness [28] which is adequate

given the high-quality recordings in the WSJ corpus.

Training the GMM-UBM system is composed of two stages,

shown in Fig. 1(a) and (b). The SVM using GMM supervectors

system includes these two stages and two additional stages

shown in Fig. 1(c) and (d). In the first stage, a GMM-UBM

consisting of the model parameters λUBM = {wi,ηi,Σi} is

constructed from the collection of speakers’ feature vectors.

Here, we assume M = 512 component densities in the

GMM-UBM and wi, ηi, and Σi represent respectively the

weight, mean vector, and diagonal covariance matrix of the i-

th component density where 1 ≤ i ≤ M . These parameters are

estimated using the expectation maximization (EM) algorithm.

In practice the GMM-UBM is constructed from non-target

speakers.

In the second stage, feature vectors are extracted from target

speakers’ utterances. We assume the availability of several

utterances per speaker recorded (preferably) under different

channel conditions in order to improve the speaker modeling

and robustness of the system. Feature vectors from each

utterance are used to maximum a posteriori (MAP)-adapt only

the mean vectors of the GMM-UBM to form speaker- and

utterance-dependent models λs,u = {wi,µs,u,i,Σi} where

µs,u,i is the MAP-adapted mean vector of the i-th component

density from speaker s and utterance u.

In the third stage (used for the SVM), the mean vectors

µs,u,i are then diagonally-scaled according to

ms,u,i =
√
wiΣ

−1/2
i µs,u,i (1)
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Fig. 1. Stages of training the SV systems. The GMM-UBM SV system is
trained with (a)-(b) and the SVM SV system is trained with (a)-(d). Although
the GMM-UBM is normally derived from non-target speakers, as described
in Section V, we have used target speakers.

and stacked to form a GMM supervector for a speaker’s given

utterance

ms,u =







ms,u,1

...

ms,u,M






. (2)

In the fourth stage (used for the SVM), the target speaker’s

supervectors are labeled as +1 and all other speakers’ super-

vectors as −1. Parameters (weights, an and bias, b) of the

SVM using a linear kernel are computed for each speaker

through an optimization process. As derived in [29], an

appropriately-chosen distance measure between the mean vec-

tors µs,u,i, results in a corresponding linear kernel involving

the supervectors in (2) composed of diagonally-scaled mean

vectors (1).

In conventional GMM-UBM SV systems, we normally

assume a single training signal (or several utterances concate-

nated to form a single training signal) so that the s-th speaker

model is simply λs = {wi, µs,i,Σi}. For the SVM, the speaker

model is denoted νs = {as,n, bs} where as,n is the weight of

the n-th support vector, bs is the bias, and n ∈ S and S is the

set of indices of the support vectors.

B. SV System Testing

In SV system testing we are given an identity claim C and

feature vectors X from a test utterance and must accept or

reject the claim. For the GMM-UBM system, we compute the

log-likelihood ratio

Λ(X) = log p(X|λC)− log p(X|λUBM). (3)

where

log p(X|λ) =
1

R

R
∑

n=1

log p(xn|λ) (4)

and R is the number of test feature vectors. The claimant

speaker is accepted if

Λ(X) ≥ θ (5)

where θ is the decision threshold. In the SVM system, the

supervector mtest is computed from the feature vectors X by

essentially repeating stages 2 and 3 from training. We then

compute

y(X) =
∑

n∈S

aC,nlC,nm
T
testmC,n + bC (6)

where lC,n denotes the labels associated with the support

vectors and accept the claim if y(X) ≥ 0.

III. TEXT-TO-SPEECH SYNTHESIZER

Our TTS systems are based on the well-known statistical

parametric speech synthesis framework described in [21]. The

speaker adaptation techniques of the framework allows us to

generate a personalized synthetic voice using as little as a few

minutes of recorded speech from a target speaker and we use

the techniques for building the personalized synthetic voices

for hundreds of speakers1. In the following subsections, we

briefly review our TTS systems and our implementation.

A. TTS System Training

Our TTS system is built using the framework from the

“HTS-2008” system [22], which was a speaker-adaptive sys-

tem entered for the Blizzard Challenge 2008 [31]. In the

challenge, the system had the equal best naturalness and the

equal best intelligibility on a training data set comprising one

hour of speech. The system was also found to be as intelligible

as human speech [32]. The speech synthesis system consists

of three main components: speech analysis and average voice

training, speaker adaptation, and speech generation.

In the speech analysis and the average voice training

component, three kinds of parameters for the STRAIGHT

(Speech Transformation and Representation by Adaptive

Interpolation of weiGHTed spectrogram [33]) mel-cepstral

vocoder with mixed excitation (i.e., 39-dimensional mel-

cepstral coefficients, logF0 and five-dimensional band-limited

aperiodicity measures) are extracted as feature vectors for

HMMs [34]. Context-dependent, multi-stream, left-to-right,

multi-space distribution (MSD), hidden semi-Markov models

(HSMMs) [35] are trained on multi-speaker databases in order

to simultaneously model the acoustic features and duration. A

set of model parameters (Gaussian mean vectors and diag-

onal covariance matrices) for the speaker-independent MSD-

HSMMs are estimated using the EM algorithm. First, speaker-

independent monophone MSD-HSMMs are trained from an

initial segmentation, converted into context-dependent MSD-

HSMMs, and re-estimated. Then, decision-tree-based context

1We are not considering unit selection and concatenative speech synthesis
which is used in some commercial speech synthesizers [30]. Developing the
unit selection and concatenation synthesizer for a targeted speaker requires a
large amount of speech data, at least one hour, from a carefully prepared
transcript. Therefore, we believe this approach is unlikely to be used, in
practice, for imposture against SV systems in contrast to HMM-based TTS
systems, which requires much smaller amounts of speech. It is possible,
however, to use “voice conversion” techniques to change the speaker in the
unit selection synthesizer and there are reports [8]–[11] of this approach
being used for imposture against SV systems. We note that voice conversion
approaches use similar vocoders to statistical parametric speech synthesis and
we hypothesize that the proposed synthetic speech detection method would
also be effective with voice conversions.
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clustering with the minimum description length (MDL) crite-

rion [36] is applied to the HSMMs and the model param-

eters of the HSMMs are tied at leaf nodes. The clustered

HSMMs are re-estimated again. The clustering processes are

repeated twice and the whole process is further repeated twice

using segmentation labels refined with the trained models

in a bootstrap manner. All re-estimation and re-segmentation

processes utilize speaker-adaptive training (SAT) [37] based on

constrained maximum likelihood linear regression (CMLLR)

[38].

B. TTS System Adaptation

In the speaker adaptation component, the speaker-

independent MSD-HSMMs are transformed by using con-

strained structural maximum a posteriori linear regression

(CSMAPLR) [39]. Note that not only output pdfs for the

acoustic features but also duration models are transformed in

the speaker adaptation. This adaptation requires as little as a

few minutes of recorded speech from a target speaker in order

to generate a personalized synthetic voice.

C. TTS System Synthesis

In the speech generation component, acoustic feature pa-

rameters are generated from the adapted MSD-HSMMs using

a parameter generation algorithm that considers both the

global variance of a trajectory to be generated and trajectory

likelihood [40]. Finally an excitation signal is generated using

mixed excitation (pulse plus band-filtered noise components)

and pitch-synchronous overlap and add (PSOLA) [41]. This

signal is used to excite a mel-logarithmic spectrum approxima-

tion (MLSA) filter [42] corresponding to the STRAIGHT mel-

cepstral coefficients to generate the synthetic speech wave-

form.

IV. DETECTION OF SYNTHETIC SPEECH

In this section, we begin by evaluating the average IFDLL,

previously proposed in [27] to detect synthetic speech. As

we demonstrate, average IFDLL is no longer a viable dis-

criminator for state-of-the-art HMM-based synthetic speech

such as that which we are using. Based on these results, we

then propose a more accurate GMM-based classifier based on

the RPS feature. The use of a phase-based feature extracted

directly from the speech signal is a novel application in the

detection of synthetic speech.

A. Average inter-frame difference of log-likelihood

The IFDLL is defined as [27]

∆n = | log p(xn|λC)− log p(xn−1|λC)| (7)

and the average IFDLL is given by

∆̄ =
1

R

R
∑

n=1

∆n. (8)

The authors in [27] observed that for synthetic speech, average

IFDLL is significantly lower than that for human speech and

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6
0

0.5

1

1.5

2

2.5

3

Average Inter−Frame Difference of Log−Likelihood

p
d

f

Average Inter−Frame Difference of Log−Likelihood (IFDLL) Distributions

 

 

Human Speech

Synthetic Speech

Fig. 2. Approximate distributions of average interframe-difference of log-
likelihood for human and synthetic speech. Due to the overlapping distribu-
tions, the average IFDLL cannot be used to detect synthetic speech.

can be used as a discriminator. This difference was explained

as a result of the HMM-based synthesizer, used in the work,

generating a speech parameter sequence so as to maximize

the output probability. This maximization normally leads to a

time variation of the speech parameters of synthetic speech

becoming smaller than that for human speech.

In Fig. 2 we show the approximate distributions of aver-

age IFDLL for human and synthetic speech using the 283

speaker WSJ corpus (subsets HS-B and TTS-B as described

in Section V). Using the state-of-the-art HMM-based speech

synthesizer described in Section III, this measure no longer

appears to be robust enough to detect synthetic speech, since

the distributions of average IFDLL for human and synthetic

speech have significant overlap. In [25], we also showed

that dynamic-time-warping of MFCC features and automatic

speech recognition (ASR) word-error-rate are also not robust

measures to detect synthetic speech.

B. Relative Phase Shift

Since the human auditory system is known to be relatively

insensitive to the speech signal’s phase [43], the vocoder used

in TTS is normally based on a minimum-phase vocal tract

model for simplicity. This simplification leads to differences in

the phase spectra between human and synthetic speech which

are not usually audible. However, these differences can be used

to construct a new feature which allows detection of synthetic

speech.

We propose using the RPS representation of the harmonic

phase as a discriminating feature for detecting synthetic

speech. The RPS is described in [44], [45] and is based on the

harmonic modeling of the speech signal [46]. In these models,

the harmonic part of the speech signal may be represented as

h(t) =
∑

k

Ak(t) cos [Φk (t)] (9)

where Ak(t) is the amplitude and

Φk(t) = 2πF0kt+ θk (10)
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is the instantaneous phase of the k-th harmonic. Here we

denote the initial phase of the k-th harmonic as θk. The

RPS values for every harmonic are then calculated from the

instantaneous phase Φk(t) at each analysis instant ta using

RPSk = Φk(ta)− kΦ1(ta). (11)

More specifically, this transformation removes the linear phase

contribution due to the frequency of every harmonic from the

instantaneous phase and allows a clear phase structure to arise,

as shown in Fig. 3. The RPS values for voiced segments are

illustrated in Fig. 3(b) and show a structured pattern along

frequency as the signal evolves.

In order to use RPS values as features for classification and

detection of synthetic speech, several important steps must be

carried out. These steps were initially developed for an ASR

task [45] and are listed below:

1) Due to the variable number of harmonics found in

a predefined frequency range, the dimensionality of

the vector of RPS values varies from frame to frame.

We transform the variable-dimension vectors into fixed-

dimension vectors by applying a Mel-scale filter bank

with 32 filters.

2) The dimensionality of the RPS vector is very high,

if the usual analysis bandwidth is considered. This is

problematic for training any statistical model, therefore

RPS values are computed over a frequency range from

0 to 4 kHz and the Discrete Cosine Transform (DCT) is

used at the end of the process to decorrelate and reduce

the dimensionality.

3) The RPS values in (11) are wrapped phase values

and therefore may create discontinuities as shown in

Fig. 4(a)-(b). This is also problematic for parameteri-

zation. Therefore we unwrap the phase in order to avoid

the discontinuities in the RPS envelope.

4) Due to its accumulative, non-linear nature, the unwrap-

ping process leads to very different RPS envelopes even

if they derive from similar initial data as shown in

Fig. 4(c)-(d). If we differentiate the unwrapped RPS

envelope the accumulative effect is eliminated, the range

of the curve is limited to [−π, π] , and thus similarities

between envelopes are more properly perceived. This

can be seen in Fig. 4(e)-(f).

In order to develop a classifier for synthetic speech, we

compute 20 coefficients per speech frame according to steps

1-4. The mean of the differentiated unwrapped RPS (i.e. the

mean slope of the unwrapped RPS) has been removed before

calculating the DCT and added as a parameter, resulting in

a total of 21 coefficients per frame which are used as a

feature vector, yt for the classifier. Here only voiced segments

of the signals have been used, because there is no useful

phase information in unvoiced frames. The voiced/unvoiced

decision is made using the cepstrum-based pitch detection

(CDP) algorithm [47]. The RPS values are then extracted using

a 10 ms frame-rate.

For the SSD, we use a 32-component density GMM in the

classifier trained on RPS feature vectors extracted from human

and synthetic speech signals. Detection of synthetic speech

Test

signal RPS

likelihood ratio

for speaker C 

ΛRPS(Y)

SV system
s ΛRPS(Y) > 0 

Synthetic speech

Reject

A
c
c
e
p
t 

YES

NO

Claimed

speaker

C

Human speech from speaker C

RPS feature

extraction

s, C Y

Fig. 5. Proposed system for detection of synthesized speech after speaker
verification using phase-based detection.

occurs once the speaker verification system has accepted the

identity (see Fig. 5)–currently, we see no need to apply the

SSD if the SV system has rejected the identity. If an identity

claim, C is accepted, we compute the log-likelihood ratio

ΛRPS(Y) = log p(Y|λC,human)− log p(Y|λC,synth) (12)

where Y = {y1,y2, . . . ,yT } is the sequence of RPS feature

vectors and λC,human and λC,synth represent GMMs of the

RPS feature vectors for human and synthetic speech associated

with claimant C, respectively. The speaker is then classified as

human if ΛRPS(Y) > 0, otherwise it is classified as synthetic.

V. DATA SETS

For this research, we use the WSJ corpus from the Linguistic

Data Consortium (LDC) [48]. Although the WSJ corpus is

not a standard corpus for SV research, it is one of the few

corpora that provides several hundred speakers and sufficiently

long signals required for constructing each of the components

within the TTS, SV, and SSD systems [49]. From the corpus,

we chose the pre-defined official training data set, SI-284, that

includes both WSJ0 and WSJ1 as material data. The SI-284 set

has a total of 81 hours of speech data uttered by 283 speakers

and was partitioned into three disjoint “human speech” subsets

HS-A, HS-B, and HS-C, as shown in Table I. Subset HS-A was

used to train the TTS system described in Section III, subset

HS-B was used to train the SV and SSD systems described

in Sections II and IV-B, and subset HS-C was used to test

the SV and SSD systems. Once trained, the TTS system was

used to generate the synthetic speech subsets TTS-B and TTS-

C as shown in Table I which are used to train the SSD and

test the SV and SSD systems, respectively. These different

subsets were used to avoid any overlapping of data sets and

associated cross-corpus negative effects while attempting to

simulate realistic imposture scenarios2.

Training the SSD with synthetic speech has a practical

disadvantage, that is, a TTS synthesizer has to be trained

for each speaker in the SV system. Therefore, we have also

evaluated a more practical method that uses the STRAIGHT

vocoder to transcode the human speech signal as a surrogate

for TTS-generated (synthesized) speech. By transcoding, the

human speech signal is parametrized using a vocoder and

from this parameterization, the speech signal is reconstructed

in a process similar to that in the TTS speech generation

2In future work, the average voice model of the TTS should be derived
from a different corpus.
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Fig. 3. Phasegrams of a voiced speech segment for five continuous vowels. a) Intantaneous phases b) Relative phase shift c) Signal waveform
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Fig. 4. RPS information for two sustained —i— speech segments of 200ms (20 frames) by two male speakers: (a-b) RPS, (c-d) unwrapped RPS, (e-f)
differentiation of the unwrapped RPS

component. The transcoded human speech signal has artifacts

similar to those in the synthetic speech signal which can be

useful for simplifying the training of the SSD. In order to

evaluate this approach, we transcoded subset HS-B and created

the CS-B “coded speech” subset as shown in Table I. By

using CS-B instead of TTS-B to train the SSD, all system

components (TTS, SV, SSD) can be trained using only human

speech.

Since each speaker included in the SI-284 set has different

speech durations, we used varying lengths (73 sec to 27 min)

of training signals from subset HS-A to construct and adapt

the TTS system to each speaker. Some speakers have larger

amounts of data than those we can practically collect for the

imposture against the SV system.

VI. EXPERIMENTS AND RESULTS

A. Evaluation of Speaker Verification Systems

For the two SV systems, we have trained using ≈90s speech

signals from subset HS-B and tested using ≈30s signals from

subsets HS-C and TTS-C. Training signals for the SVM SV

system were segmented into eight utterances per speaker and
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TABLE I
WALL STREET JOURNAL (WSJ) CORPUS PARTITIONS USED FOR TRAINING

AND TESTING OF TEXT-TO-SPEECH (TTS), SPEAKER VERIFICATION (SV),
AND SYNTHETIC SPEECH DETECTOR (SSD) SYSTEMS.

Human speech HS-A HS-B HS-C

(HS) train TTS train SV test SV

train SSD test SSD

Synthetic speech TTS-B TTS-C

(TTS) train SSD test SV

test SSD

transCoded speech CS-B

(CS) train SSD

used to construct GMM supervectors as described in Section

II-A. The evaluation for human speech was designed so that

each test utterance has an associated true claim and 282 false

claims yielding a total of 2832 tests. The EERs are 0.284%,

0.002% for the GMM-UBM, SVM system respectively. The

low EERs (< 0.3% for both SV systems) are due to the ideal

nature of the recordings in the WSJ corpus and the accuracy of

the SV systems. Table II row 2 shows the acceptance rates of

the SV systems under human speech for true claims as 99.7%,

100% for the GMM-UBM, SVM system respectively.

The evaluation for synthetic speech was designed so that

each test utterance has an associated matched claim yielding

283 tests for imposture. (In a realistic imposture scenario,

a speech signal targeted at a specific speaker will be syn-

thesized and a claim only for that speaker will be submit-

ted, i.e. matched claim.) For both SV systems, the decision

thresholds are chosen for EER under human speech signal

tests. Table II row 3 shows the results where we see over

81% of synthetic speech signals with an associated matched

claim will be accepted by the SV systems. As described in

an earlier paper, this result is due to significant overlap in the

score distributions for human and synthetic speech, as shown

in Fig. 6 [24]. Thus, adjustments in decision thresholding or

standard score normalization techniques cannot differentiate

between true and matched claims originating from human and

synthesized speech [50], [51]. For completeness in Fig. 6,

we show the score distributions for synthesized speech, false

claim (imposter) even though in the imposture scenario, only

matched claims would be submitted.

B. Evaluation of Synthetic Speech Detector

We trained the SSD, described in Section IV-B, on human

speech using HS-B and synthetic speech using TTS-B as in

Table I and evaluated classifier accuracy with human speech

from HS-C and synthetic speech from TTS-C. These results

are shown in Table III row 1 where we find 100% accuracy

in classifying a speech signal as either human or synthetic.

As mentioned earlier, constructing synthetic voices for each

human registered in the SV system is not very practical, so

we trained the SSD using transcoded human speech CS-B

as a surrogate for synthetic speech. These results are shown

in Table III where we find that with the decision threshold

set to zero, human speech signals are classified with 100%

TABLE II
ACCEPTANCE RATES FOR HUMAN SPEECH (TRUE CLAIMANT) AND

SYNTHETIC SPEECH (MATCHED CLAIM) FOR OVERALL SYSTEM

CONSISTING OF SPEAKER VERIFICATION (SV) AND SYNTHETIC SPEECH

DETECTOR (SSD). IDEALLY THE SYSTEM HAS 100% ACCEPTANCE RATE

FOR HUMAN SPEECH, TRUE CLAIM AND 0% FOR SYNTHETIC SPEECH,
MATCHED CLAIM.

GMM-UBM SVM

Without SSD

Acceptance rate for human, true claim 99.7% 100%

Acceptance rate for synth, matched claim 85.5% 81.3%

With SSD trained on TTS-B

Acceptance rate for human, true claim 99.6% 100%

Acceptance rate for synth, matched claim 0.0% 0.0%

With SSD trained on CS-B

Acceptance rate for human, true claim 99.6% 100%

Acceptance rate for synth, matched claim 8.8% 8.8%

With SSD (set for EER) trained on CS-B

Acceptance rate for human, true claim 96.8% 97.2%

Acceptance rate for synth, matched claim 2.5% 2.5%

TABLE III
ACCURACY RATES FOR CLASSIFICATION OF HUMAN AND SYNTHETIC

SPEECH. CLASSIFIER IS TRAINED WITH HUMAN SPEECH HS-B AND

EITHER TTS-B OR CS-B FOR SYNTHETIC SPEECH. CLASSIFIER IS TESTED

USING HS-C AND TTS-C. RESULTS ARE BASED ON A ZERO THRESHOLD

FOR LOG-LIKELIHOOD RATIO (12) AND INCLUDE AN ADDITIONAL RESULT

FOR CS-B WHERE THRESHOLD IS ADJUSTED FOR EER.

Human Speech Synthetic Speech

Training Data (HS-C) (TTS-C)

HS-B/TTS-B 100% 100%

HS-B/CS-B 100% 90.10%

HS-B/CS-B (EER) 97.17% 97.17%

accuracy and synthetic speech signals are classified with

90.10% accuracy. With the decision threshold set at 1.65 for

EER, we find 97.17% accuracy in classifying a speech signal

as either human or synthetic. Approximate distributions for

the classifier scores, ΛRPS(Y) are shown in Fig. 7 where we

see that with transcoded speech (CS-B models) it is necessary

to adjust the decision threshold slightly upward for EER.

C. Evaluation of Sensitivity of Synthetic Speech Detector

In the evaluation of the SSD in Section VI-B, we have

assumed that the same vocoder (STRAIGHT) and phase model

(minimum phase) have been used in both training and test

stages. Although STRAIGHT is the most popular approach

to vocoding and the minimum phase model is normally used,

in a real scenario, a different type of vocoder (e.g. [52]) and

phase model could be used for imposture. Therefore we have

investigated sensitivity to vocoder mismatch by experimenting

with a simple vocoder which uses pulse/white noise excitation

and the MLSA filter [42], [53]. We have also investigated

sensitivity to phase model mismatch by experimenting with

group delay modification [54].

Because the SSD features are entirely phased-based, any

mismatch between vocoder and phase model which produces
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Fig. 6. Approximate score distributions for (a) GMM-UBM and (b) SVM
using GMM supervectors SV systems with human and synthesized speech.
Distributions for human speech, true claimant (green lines, o) and synthesized
speech, matched claimant (black lines, x) have significant overlap leading to
a 81% acceptance rate for synthetic speech with matched claims.

different phase characteristics, may render the classifier’s

ability to detect synthetic speech unreliable. We have ob-

served this effect in informal tests. When we train the SSD

using the aforementioned vocoders, the accuracy of synthetic

speech detection falls from 90.1% obtained with the orig-

inal STRAIGHT vocoder, to 6.3% when training with the

pulse/white noise excitation vocoder, and to 50% when train-

ing with the group delay modification vocoder. In all cases,

the tests were done using TTS-C. On the other hand, classifier

accuracy for the human speech remains at 100%. In order to

address this issue, future research of a vocoder-independent

and phase-adaptive approach such as MAP adaptation of

the RPS-GMMs used for the SSD system, will have to be

undertaken.
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trained with HS-B. Blue and red curves show the classifier performance when
the models for synthetic speech are trained using TTS-B. Cyan and magenta
curves show the classifier performance when the models for synthetic speech
are trained using coded speech CS-B. Both classifiers were tested with human
speech HS-C and synthetic speech TTS-C.

D. Evaluation of Overall System

Next, we evaluated the overall system which includes the

SV and SSD systems as illustrated in Fig. 5. Using the

proposed SSD trained on TTS-B, we see in Table II rows 5-6,

there is only a slight 0.1% drop to 99.6% in the acceptance rate

for human speech for the GMM-UBM system and no change

with the SVM system while the acceptance rate for synthetic

speech is now reduced to 0% from over 81% thus clearly

illustrating the effectiveness of the SSD using RPS features.

Training the SSD on CS-B, we see in Table II no change

in the acceptance rate for human speech compared to training

with TTS-B and an acceptance rate for synthetic speech of

8.8% for both SV systems. Finally, adjusting the decision

threshold in the SSD for EER, we see in Table II a reduction

in acceptance rate for synthetic speech to 2.5% with a slight

decrease in acceptance rate for human speech (around 97%).

From these results, we conclude that the SSD trained on

transcoded speech can drastically reduce the number of ac-

cepted matched claims associated with synthetic speech, with

only a slight loss in SV accuracy for human speech. Thus the

proposed SSD using RPS features is an accurate and effective

method for securing the SV systems against imposture using

synthetic speech.

E. Evaluation of an Integrated System

Essentially Fig. 5 represents a system consisting of two

separate classifiers: SV using MFCC features and SSD us-

ing RPS features. These classifiers can be integrated into a

single classifier which uses vectors composed of both MFCC

and RPS features. We extracted 53-D feature vectors by

concatenating the MFCC feature vector (32-D) described in

Section II-A with the RPS feature vector (21-D) described

in Section IV-B. In the first simulation, the GMM-UBM and

SVM classifiers based on the MFCC-RPS feature vectors were

trained using HS-B only and in the second simulation, were
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trained using both HS-B and TTS-B datasets. When using HS-

B and TTS-B, synthetic speakers were treated as imposters in

the training stage. The systems were evaluated using HS-C

and TTS-C datasets and the results are shown in Table IV.

To begin the evaluation of the integrated system, we first

must establish whether the addition of RPS features compro-

mises SV accuracy when the system is trained and tested

only with human speech. For this case, the addition of the

RPS features slightly raises the EER to 0.35%, 0.02% for the

GMM-UBM, SVM system, respectively as compared to the

SV system which uses MFCC features only. The acceptance

rates for true claims (99.7% for GMM-UBM, 100.0% for

SVM) remain the same as compared to the SV system which

uses MFCC features only. These results thus demonstrate that

the addition of the RPS features does not appreciably change

SV accuracy under human speech.

Earlier, we illustrated the imposture problem by demon-

strating that when the SV systems using MFCC features were

trained on human speech and tested with synthetic speech,

the acceptance rates for matched claims were high (85.5%,

81.3% for the GMM-UBM, SVM systems, respectively). With

the integrated system (GMM-UBM classifier), the acceptance

rate for matched claims increases to 88.7% from 85.5%. On

the other hand, the SVM system shows a notable drop in

the acceptance rate to 56.2% from 81.3%. Unfortunately, both

acceptance rates for synthetic speech with matched claims are

still unacceptably high.

Next, we compare the integrated system trained with human

and synthetic speech to the system composed of separate

SV and SSD stages in Fig. 5. When the integrated system

is tested with human speech, the acceptance rates for true

claims drops slightly to 99.3% for the GMM-UBM system and

remains the same 100% for the SVM system. When the GMM-

UBM integrated system is evaluated with synthetic speech, the

acceptance rate for matched claims is 40.6%. Not surprisingly,

the GMM-UBM integrated system appears to have an average

performance with synthetic speech between the stand-alone

rates of the SV using MFCCs (85.5%) and the SSD using

RPS (0.0%). When the SVM integrated system is evaluated

with synthetic speech, the acceptance rate for matched claims

is 3.5% which is still higher than for the system composed

of separate SV and SSD stages which is also 0.0% (Table II,

row 6). For both GMM-UBM and SVM integrated systems,

inclusion of synthetic speech signals in training lowers the

acceptance rates for synthetic speech, matched claims by

around 50% (from 88.7% to 40.6% for GMM-UBM and from

56.2% to 3.5% for SVM). However, these results demonstrate

that the proposed system composed of separate SV and SSD

classifiers (Fig. 5) performs better than the integrated system.

Nevertheless, the performance of the integrated SVM system

is notable in that it does not use a separate synthetic impostor

model for each speaker as the separate SSD does. Since

training with CS-B leads to a less accurate model for synthetic

speech than with TTS-B (see Table II, rows 6, 9, and 12) and

results for the integrated system trained with TTS-B are worse

than with the separate system, the integrated system is not

trained with CS-B and evaluated.

TABLE IV
ACCEPTANCE RATES FOR HUMAN SPEECH (TRUE CLAIMANT) AND

SYNTHETIC SPEECH (MATCHED CLAIM) FOR THE INTEGRATED SYSTEM

(SINGLE CLASSIFIER) WHICH USES VECTORS COMPOSED OF BOTH MFCC
AND RPS FEATURES. IDEALLY THE SYSTEM HAS 100% ACCEPTANCE

RATE FOR HUMAN SPEECH, TRUE CLAIM AND 0% FOR SYNTHETIC

SPEECH, MATCHED CLAIM.

GMM-UBM SVM

Integrated System Trained on HS-B

Acceptance rate for human, true claim 99.7% 100%

Acceptance rate for synthetic, matched claim 88.7% 56.2%

Integrated System Trained on HS-B and TTS-B

Acceptance rate for human, true claim 99.3% 100%

Acceptance rate for synthetic, matched claim 40.6% 3.5%

VII. CONCLUSIONS

In this paper, we have evaluated the vulnerability of speaker

verification (SV) to imposture using synthetic speech. Using

the Wall Street Journal (WSJ) corpus and two different SV

systems (GMM-UBM and SVM using GMM supervectors),

we have shown that with state-of-the-art speech synthesis,

over 81% of matched claims, i.e. a synthetic speech signal

matched to a targeted speaker and an identity claim of that

same speaker, are accepted. Thus despite the excellent perfor-

mance of the SV systems under human speech, the quality of

synthesized speech is high enough to allow these synthesized

voices to pass for true human claimants and hence poses a

potential security problem.

We have proposed a novel synthetic speech detector (SSD)

based on relative phase shift (RPS) features. Although the SSD

can detect human and synthetic speech with 100% accuracy,

training requires that a TTS synthesizer be constructed for each

speaker in the SV system which is not practical. Therefore,

we have proposed using transcoded speech as a surrogate

for synthetic speech in training the SSD. Our results show

that we can reduce the acceptance rate of synthetic speech,

matched claims from over 81% to 2.5%, with a less than 3%

drop in the acceptance rate for human speech, true claimants.

However, the system is sensitive to the vocoder used: the same

vocoder used by the impostor must be used to train the system.

The investigation of vocoder independent techniques is left for

future work.
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