
Evaluation of Static Analysis Techniques for
Fixed-Point Precision Optimization

Jason Cong1, Karthik Gururaj1, Bin Liu1, Chunyue Liu1,
1Computer Science Department

University of California Los Angeles
Los Angeles, CA 90095, USA

Zhiru Zhang2, Sheng Zhou2, Yi Zou1

2AutoESL Design Technologies
Los Angeles, CA 90064, USA

Abstract—Precision analysis and optimization is very impor-
tant when transforming a floating-point algorithm into fixed-
point hardware implementations. The core analysis techniques
are either based on dynamic analysis or static analysis. We
believe in static error analysis, as it is the only technique that
can guarantee the desired worst-case accuracy. In this paper
we study various underlying arithmetic candidates that can be
used in static error analysis and compare their computed sensi-
tivities. The approaches studied include Affine Arithmetic (AA),
General Interval Arithmetic (GIA) and Automatic Differentiation
(Symbolic Arithmetic). Our study shows that symbolic method
is preferred for expressions with higher order cancelation. For
programs without strong cancelation, any method works fairly
well and GIA slightly outperforms others. We also study the
impact of program transformations on these arithmetics.

I. INTRODUCTION

FPGAs provide the capability to customize the bitwidth
required for an efficient fixed-point computation. In general,
bitwidth optimization for fixed-point design is usually com-
posed of two parts: 1) integer bitwidth (IB) optimization,
2) fractional bitwidth (FB) optimization. IB optimization is
based on range information of values, and FB optimization
typically requires precision analysis. The output error of the
design needs to be smaller than user-specified error tolerance.
The error tolerance can be either a worst-case metric or a
statistical/stochastic metric. Automatic differentiation (AD) is
used in [2] for precision analysis. The approach first obtains
the symbolic expression of the gradient/sensitivity. Then it
relies on user-specified input data or sampling to convert
those symbolic sensitivities into numerical constraints. The
approach is a dynamic analysis, but when the number of the
samples is large, it can serve as a reference for static analysis
techniques. Affine arithmetic (AA) [6], as an improved static
analysis technique over the traditional interval arithmetic (IA)
[7], is used in [3]–[5] for precision analysis. AA can often
achieve tighter bounds than IA with better estimation of error
cancelation. The work in [3] gives statistical interpretations of
affine arithmetic.

While there are multiple work using different kinds of
analysis techniques and heuristics for bitwidth minimization,
usually they do not make head-to-head comparisons. It is not
clear how these different analysis and optimization techniques
differ on common design examples. For example, MiniBit
[4] claims that its results are within 1% of optimal solution.

However, optimizations need accurate sensitivity information
to build up constraints. If the static analysis it has employed
is already too conservative, better solutions may exist.

This paper focuses on quantitative evaluation of various
kinds of static analysis techniques. We also suggest two simple
schemes/extensions (GIA, AD+AA) that have not been applied
in precision analysis previously. Our results show that simple
techniques such as AA and GIA are sufficient for expressions
that do not have higher order cancelations, while they would
still overestimate for higher order expressions.

II. AFFINE ARITHMETIC FOR PRECISION ANALYSIS

A. Affine Arithmetic

In affine arithmetic, the uncertainty of a variable x is
represented as

x̂ = x0 +
n

∑
i=1

xiεi, (1)

where each εi is an interval [−1,1], and each xi is a scalar.
Each term xiεi represents the uncertainty on x caused by
some primordial uncertainty i. Using this form, correlations
between variables can be captured, and symbolic cancelation
of uncertainties are possible.

Additions and subtractions in affine arithmetic only involves
the addition and substraction of the coefficients of the affine
form.

x̂± ŷ = x0 ± y0 +
n

∑
i=1

(xi ± yi)εi. (2)

However, some operations will generate nonlinear terms. In
order to maintain the the affine form for every variable,
approximations are needed. Take multiplication as an example,
we have the resulting

x̂ŷ = (x0 +
n

∑
i=1

xiεi)(y0 +
n

∑
i=1

yiεi) (3)

= x0y0 +
n

∑
i=1

(x0yi + y0xi)εi +(
n

∑
i=1

xiεi)(
n

∑
i=1

yiεi)

Note that the following relation between the two intervals

(
n

∑
i=1

xiεi)(
n

∑
i=1

yiεi) ⊆ (
n

∑
i=1

|xi|)(
n

∑
i=1

|yi|)ς, (4)

where ς is a new interval [−1,1]. Using this result, we
can conservatively estimate x̂ŷ as x0y0 +∑n

i=1 (x0yi + y0xi)εi +

(∑n
i=1 |xi|)(∑n

i=1 |yi|)ς. This approach can successfully capture
the bound of the quadratic term. However, it adds a new inter-
val variable, so that the number of interval variables will grow
along with the number of non-linear operations performed.
In addition, the new interval variable is independent of any
existing interval variable; this results in loss of correlation
information and probably a looser bound in further analysis.

B. Application of Affine Arithmetic in Precision Analysis

For a floating-point variable x, let x̄ be its finite-precision
representation, and let Ex be the rounding error, so that x =
x̄ + Ex. For addition/subtraction, (x± y)− (x̄± ȳ) = Ex ±Ey.
For multiplication, we have

xy− x̄ȳ = x̄ȳ+ x̄Ey + ȳEx +ExEy − x̄ȳ

≈ x̄Ey + ȳEx. (5)

Note that the term ExEy is discarded because both Ex and Ey

are typically very small.
To use affine arithmetic for precision analysis, we can

express both x̄ and Ex as affine expressions. If p bits are used
to represent the fractional value of x, we can use 2−pε to
represent the possible values of Ex. However, the terms x̄Ey

and ȳEx are not in affine form, and multiplication in affine
arithmetic is needed to convert them into affine form with
additional variables.

Suppose we need to perform precision analysis on a simple
polynomial x2−6x and the range of x is [−1,3]. If we assume
the truncation error of x is 2−pε1, the first order error of x2

due to the truncation of x is 2x×2−pε1. This is not an affine
form, we need to convert x into 1 + 2ε2 and the final error
of x2 in affine form is 21−pε1 + 22−pε3 where ε3 is a new
interval variable (due to ε1ε2) . The final affine error of x2−6x
is −22−pε1 + 22−pε3 (Note, a common mistake is to put the
worst-case bound of |x| into the error expression 2x× 2−pε1

directly and simply claim the worst case error of x2 is 6×
2−pε1. 6× 2−pε1 is indeed a worst case error for x2, but it
can cause incorrect cancelation in later computation stages:
6−pε1 − 6× 2−pε1 = 0. This mistake appears in many AA-
based precision analysis or bitwidth optimization papers in
literature [3]–[5].)

The affine error in this example can be used to generate
a constraint inf(| − 22−pε1 + 22−pε3|) ≤ ErrorBound, or 8×
2−p ≤ ErrorBound. Here the value 8 is the upper bound of the
sensitivity of x2 − 6x upon x. This sensitivity can be used to
decide the number of bits to represent the fractional part of a
value. It is also possible to get the upper bound of sensitivity
using other methods, as discussed in the following sections.

III. GENERAL INTERVAL ARITHMETIC FOR PRECISION

ANALYSIS

A. General Interval Arithmetic

If we allow the coefficients of the affine form to be intervals,
the analysis for the above example can be greatly simplified
and the error is (2x−6)×2−pε1 = (2× [−1,3]−6)×2−pε1 =
[−8,0]×2−pε1.

This type of arithmetic is called general interval arithmetic
(GIA) [8]. This arithmetic is originally developed to reduce
the excessive width generated from regular interval operations
[7]. The representation and the arithmetic are similar to the
affine arithmetic, but the coefficients are intervals rather than
scalars.

The addition/subtraction of the GIA also invokes addi-
tion/subtraction of the coefficients, but we need to use interval
addition/subtraction rather than scalar addition/subtraction.
Multiplication will also generate higher-order terms which can
be handled as follows.

x̂ŷ = x̃0ỹ0 +(x̃0 +
n

∑
i=1

x̃iεi)(ỹ0 +
n

∑
i=1

ỹiεi)

= x̃0ỹ0 +
n

∑
i=1

(x̃0ỹi + ỹ0x̃i)εi +(
n

∑
i=1

x̃iεi)(
n

∑
i=1

ỹiεi)

= x̃0ỹ0 +
n

∑
i=1

(x̃0ỹi + ỹ0x̃i +
n

∑
i=1

x̃i[−1,1]ỹi)εi (6)

Here the coefficients x̃i, ỹi including x̃0,ỹ0 are all intervals. The
resulting expression is still in a GIA form (affine form with
interval coefficients). Interval arithmetic is used to compute
coefficients such as x̃0ỹi etc.

B. Application of General Interval Arithmetic in Precision
Analysis

In precision analysis, we can throw away the cross terms
and use the following equation.

x̂ŷ− x̃0ỹ0 = (x̃0 +
n

∑
i=1

x̃iεi)(ỹ0 +
n

∑
i=1

ỹiεi)− x̃0ỹ0

=
n

∑
i=1

(x̃0ỹi + ỹ0x̃i)εi +(
n

∑
i=1

x̃iεi)(
n

∑
i=1

ỹiεi)

≈
n

∑
i=1

(x̃0ỹi + ỹ0x̃i)εi (7)

x̃0 and ỹ0 are known after range analysis. Interval multiplica-
tion and interval addition/subtraction are needed in the com-
putation. In GIA-based precision analysis, the cross terms that
we throw away are the multiplication of two rounding errors
(which are typically very small); but in AA-based precision
analysis, terms coming from x̄Ey and ȳEx (multiplication of
value terms and error terms) are also second order. These terms
may not be so small. We throw away the cross term ExEy in
AA-based analysis, but keep x̄Ey and ȳEx terms .

Note it is also straightforward to include an additional error
interval to accommodate the cross terms that we throw away
in both AA and GIA. Eq.(6) is one way to accommodate
the cross terms in a pessimistic fashion. We throw away the
multiplication of two error terms in AA and GIA, because first-
order Taylor approximation used in automatic differentiation
(in next section) also does not have those terms. We have to
throw away the terms in order to have a fair comparison. In
practice, the approximation (first-order Taylor approximation)
works if the error terms are relatively small.

It is also very easy to handle enclosure (min and max)
operation in GIA. When the program contains some control

flow and one variable may take multiple paths, enclosure
operation can be used to estimate the maximum error from all
the paths. We only need to perform the enclosure operation
on each interval coefficient. But in AA, this operation is again
non-linear and generates additional interval variables.

Because GIA does not produce additional interval variable
for each non-linear operation, it is more scalable for code
fragments containing many nonlinear operations. However,
affine arithmetic allows cancelations for the additional interval
variables generated from non-linear operations. GIA may not
get as tighter bound as AA for these cases.

We are not aware of any previous bitwidth optimization
work that claims to use GIA directly; however, the work [9]
uses two affine error expressions: positive error and negative
error. It also designs the error propagation arithmetic for them.
Mathematically it is very close to the GIA we have described
here (if not exactly the same).

IV. AUTOMATIC DIFFERENTIATION FOR STATIC

PRECISION ANALYSIS

The methods we described in the previous sections can get
the bound of the sensitivity numerically. Automatic differen-
tiation can get the exact form of the sensitivity symbolically.

Although automatic differentiation is used by [2] as a
dynamic analysis technique, we can also bring this into static
analysis. After the symbolic sensitivities are obtained, we can
use IA or AA to obtain the bound of the sensitivity, and
further use these numerical ranges to feed the constraints for
the optimization. If we use IA to compute the bound of each
sensitivity, it actually is the same as the GIA approach we
presented in the previous section. We can also use AA to
obtain a possible tighter bound on these sensitivities. For the
example we described in Section II, the symbolic sensitivity
is 2x−6. Applying either IA or AA on this sensitivity will get
the same bound [-8,0], whose worst case absolute value is 8.

Applying AA on the symbolic sensitivity (we term this as
AD with AA) is a second-order method, which keeps track of
cancelations up to second order. It can also be viewed as an
arithmetic with an affine expression as coefficients. In contrast,
GIA uses intervals for coefficients while pure AA uses scalars.

As the symbolic expression of the sensitivity may not be
convex, the exact bound may involve global optimization tech-
niques, such as branch and bound or Monte Carlo sampling.

Automatic differentiation cannot handle non-differential op-
erations e.g., the enclosure operation we talk about earlier.
Thus it is difficult to get a symbolic sensitivity when control
flows present. This paper limits the discussion to DFGs only.

V. FORM OF EXPRESSIONS

Different forms of the same expression can generate com-
pletely different analysis results. Affine arithmetic and general
interval arithmetic can handle first order cancelations very
well. For example, they can detect the cancelation effects in
expression such as 100x−99x. However, they are not able to
detect higher order cancelations, e.g., 100x2 −99x2.

Even if the computation does not contain these trivial
cancelations, expressions such as polynomials can still be
written in different forms such as monomial form, horner
expansion [10] and expanded form. These different forms can
also generate different analysis results. We study these effects
and compare the results in the next section.

VI. EXPERIMENTAL RESULTS

We implement the static analysis techniques discussed in
Sections II-IV in C/C++ langauge as passes in LLVM [1].
These analysis passes are part of our bitwidth optimiza-
tion engine for floating-point to fixed-point conversion. Four
static analysis method are compared: (1) AA-based precision
analysis, (2) GIA-based precision analysis, (3) Automatic
differentiation with AA for the range analysis of the symbolic
sensitivities, (4) Exact bounds of the symbolic expression
obtained by automatic differentiation.

A. Effect of Cancelations

First, we compare the effects of cancelations. The computed
sensitivities are listed in Table I. For simple low-order polyno-
mial such as x2 −6x, all the four methods generate the same
sensitivity. The first order cancelation effect in 100x − 99x
can be detected by AA and GIA, and they can get the
exact sensitivity. AA and GIA can not detect higher order
cancelation and they generate a very pessimistic estimation for
100x2−99x2 and 100x3−99x3. If we reuse x2 or x3 rather than
recompute them, AA can detect the cancelation and generate
exact result, but GIA cannot because the interval operation on
the interval coefficients does not cancel very well. Automatic
differentiation with AA as range analysis for the symbolic
sensitivity can detect up to second order cancelation. Note
we do not perform symbolic expression simplification for the
symbolic sensitivity obtained from automatic differentiation.

One may argue that these cancelations are trivial and
compilers may detect them automatically. Furthermore, no one
would write the code that does a computation like 100x3−99x3

as we all know this is equal to x3. This may be true for these
simple examples. However, high order cancelations still exist
in expressions such as 100x3 −99(x+0.0001)3 and symbolic
cancelation or expression simplification is nontrivial. Similar
experiment results like Table I can still be obtained and AA
and GIA will still be far away from optimal for these cases.

The number of fractional bits for the variable is related to
the logarithm of sensitivity, and a 150X overestimation of
sensitivity can be translated to a possible 7-bit difference.
Static analysis need to be used with care if the program
contains potential higher order cancelations.

B. Form of Expressions

We then study some expressions which do not contain
the trivial cancelations. Two examples here are the Taylor
expansion of sin(x) and ln(1+ y). We use sin(x) ≈ x− 1

6 x3 +
1

120 x5 − 1
5040 x7 + 1

362880 x9 and ln(1+y)≈ y− 1
2 y2 + 1

3 y3 − 1
4 y4.

The data flow graph of the two schemes (Monomial or Horner)
are shown in Fig. 1. The computed sensitivity (on x or y) is

TABLE I
SENSITIVITY COMPARISON—EFFECTS OF CANCELATIONS: x ∈ [−1,3]

Expression AA GIA AD with AA Exact
x2 −6x 8 8 8 8

100x−99x 1 1 1 1
100x2 −99x2 798 798 6 6

y = x2;100y−99y 6 798 6 6
100x3 −99x3 4779 3294 2403 27

y = x3;100y−99y 27 3294 27 27

TABLE II
SENSITIVITY COMPARISON—FORM OF EXPRESSIONS: x ∈ [0,π/2],y ∈ [0,1]

Expression AA GIA AD with AA Exact
sin(x) (Monomial) 1.81563 1.25459 1.70877 1

sin(x) (Horner) 1.76637 1.10667 1.63827 1
ln(1+ y) (Monomial) 1.97917 2 1.5 1

ln(1+ y) (Horner) 1.45833 1.16667 1.29167 1

shown in Table II. We can see the sensitivity can be more
accurately computed by any method if the expressions are
written in horner scheme, because there are fewer cancelations
in the scheme. From the comparative data in the first three
columns, it is hard to say which method is the best. GIA
slightly outperforms other methods but not consistently. The
data in the column AD with AA is often worse than the column
GIA, because AA does not always generate tighter bound than
IA if no strong cancelation occurs. All the methods can obtain
a sensitivity which is not far away from optimal, because there
are no strong cancelations in the expressions.

As the static sensitivity computation is sensitive to the form
of expressions, it is useful to have certain compiler transform
which can make use of this fact and generate a form that is
more friendly to the analysis. Note in practice, designer shall
prefer a horner scheme as it uses fewer multiplications.

VII. FURTHER DISCUSSIONS AND CONCLUSIONS

This paper so far focuses on the error coming from the
truncations of one input variable. Similar techniques can be
used to capture the propagation of errors from truncation of
constants and intermediate variables. Their sensitivities on the
final error can also be computed in a similar fashion. However,
even if we can get the exact sensitivities, the correlation
between the sensitivities is still not captured in the static
analysis.

AA and GIA can support the enclosure operation, which can
be used to analyze the code with control flow. However, it is
not easy to get an exact symbolic expression through automatic
differentiation and thus it is difficult to get an optimal static
analysis.

This paper presents a comparative study for three static
analysis arithmetics and their use in precision analysis. For
programs with higher order cancelations, a symbolic or higher
order method is preferred. For programs without strong can-
celations, any method can estimate the sensitivity relatively
well and GIA slightly outperforms others. Also, our limited
experiments show that Horner scheme is a preferred form over
the monomial form for sensitivity computation using these
static analysis arithmetics.

(a) Monomial form of sin(x) (b) Horner form of sin(x)

(c) Monomial form of log(1+y) (d) Horner form of log(1+y)

Fig. 1. DFG of polynomials

ACKNOWLEDGMENT

This work is partially funded by Natural Science Foundation
grant 0306682 and also a grant from Altera Corporation
and Magma Design Automation under the California MICRO
program.

REFERENCES

[1] http://www.llvm.org
[2] A. A. Gaffar, O. Mencer, W. Luk, and P. Cheung, “Unifying bit-width

optimisation for fixed-point and floating-point designs,” In Proc. FCCM,
pages 79–88, 2004.

[3] C. F. Fang, R. A. Rutenbar and T. Chen, “Fast, accurate static analysis
for fixed-point finite-precision effects in DSP designs,” In Proc. ICCAD,
pages 275–282, 2003.

[4] D-U. Lee, A. A. Gaffar, O. Mencer and W. Luk, “MiniBit: bitwidth
optimization via affine arithmetic,” In Proc. DAC, pages 837–840, 2005.

[5] Y. Pu and Y. Ha, “An automated, efficient and static bit-width optimization
methodology towards maximum bit-width-to-error tradeoff with affine
arithmetic model,” In Proc. ASPDAC, pages 886–891, 2006.

[6] J. Stolfi and L. H. de Figueiredo, “Self-validated numerical nethods and
applications,” Brazilian Mathematics Colloquium Monograph, IMPA, Rio
De Janeiro, Brazil, 1997.

[7] R. E. Moore, “Methods and applications of interval analysis,” SIAM,
1979.

[8] E. R. Hansen, “A generalized interval arithmetic,” Interval mathematics
(K. Nickel, ed.): LNCS 29, 7–18 (Springer-Verlag, 1975).

[9] N. Doi, T. Horiyama, M. Nakanishi, and S. Kimura, “An optimization
method in floating-point to fixed-point conversion using positive and
negative error analysis and sharing of operations,” In Proc. SASIMI, pages
466–471, 2004.

[10] R.Seroul, “Evaluation of Polynomials: Horner’s Method,” In Program-
ming for Mathematicians. Berlin: Springer-Verlag, pp. 216-262, 2000.

