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Abstract In numerical weather prediction and climate models, planetary boundary-layer

(PBL) clouds are linked to subgrid-scale processes such as shallow convection. A compre-

hensive statistical analysis of large-eddy simulations (LES), obtained for warm PBL cloud

cases, is carried out in order to characterize the distributions of the horizontal subgrid cloud

variability. The production of subgrid clouds is mainly associated with the variability of the

total water content. Nevertheless, in the case of PBL clouds, the temperature variability can-

not be completely discarded and the saturation deficit, which summarizes both temperature

and total water fluctuations, provides a better representation of the cloud variability than

the total water content. The probability density functions (PDFs) of LES saturation deficit

generally have the shape of a main asymmetric bell-shaped curve with a more or less distinct

secondary maximum specific to each type of PBL clouds. Unimodal theoretical PDFs, even

those with a flexible skewness, are not sufficient to correctly fit the LES distributions, espe-

cially the long tail that appears for cumulus clouds. They do not provide a unified approach

for all cloud types. The cloud fraction and the mean cloud water content, diagnosed from

these unimodal PDFs, are largely underestimated. The use of a double Gaussian distribution

allows correction of these errors on cloud fields and provides a better estimation of the cloud-

base and cloud-top heights. Eventually, insights for the design of a subgrid statistical cloud

scheme are provided, in particular a new formulation for the weight of the two Gaussian

distributions and for the standard deviation of the convective distribution.
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1 Introduction

Numerical weather prediction (NWP) models with resolutions of a few kilometres are now

running operationally in a number of Meteorological Centres. Some of them are actually run-

ning without deep convection parametrization. However, in these models, planetary bound-

ary-layer (PBL) clouds, e.g. sparse cumuli, are still linked to subgrid-scale processes. Shallow

convection needs to be parametrized. Of course, this also applies to climate models. In both

model types, the description of the PBL clouds is still not accurate suggesting a need for

improving their representation. The challenge to correctly represent cloud life cycles and

transitions between PBL cloud regimes is an additional motivation.

A method widely used in the GEWEX (for Global Energy and Water Cycle Experiment)

Cloud System Study (GCSS) community for the development of cloud schemes starts with the

statistical analysis of fine scale cloud data. Observational data resulting from in situ aircraft

measurements or from satellite data (A-Train, Stephens et al. 2002) are collected. However,

they usually do not give a broad cover of the cloud organization at fine enough resolution.

Three-dimensional cloud simulations performed by large-eddy simulations (LES) provide

complete cloud information with high resolution and regular sampling of PBL clouds. PBL

case studies such as BOMEX (for Barbados Oceanographic Meteorological EXperiment),

ARM/Cumulus (for Atmospheric Radiation Measurement) for shallow cumulus development

or ACE-2 (for Second Aerosol Characterization Experiment) and DYCOMS (for DYnamics

and Chemistry Of Marine Stratocumulus) for stratocumulus clouds are now well documented.

They are already widely used as a basis for the validation of cloud parametrization. This study

is based on such simulations. These cases are benchmark simulations. Even though they can-

not cover all the PBL cloud types, in particular, more complex cases such as cumulus under

stratocumulus or rapidly evolving cloud types, they form a first sample of cases to evaluate

the variability of total water content in cloudy boundary layers.

Sommeria and Deardorff (1977) and Mellor (1977) illustrated the necessity for a statisti-

cal approach to describe the subgrid warm PBL clouds even with a relatively fine horizontal

resolution. The computation of the mean cloud parameters is based on a unimodal Gauss-

ian distribution and uses the conservative variables, total water content and liquid potential

temperature, as predictors needed to compute the saturation deficit. Bougeault (1981) high-

lighted the interest of a skewed distribution and pointed out the drawbacks of the simple

Gaussian distribution in case of low cloud fractions. For shallow cumulus clouds, the pos-

itively skewed distribution presents a long flat tail, closely related to shallow convection

effects. In Bougeault (1982), for cumulus cases with a positive skewness, the unimodal and

flexible gamma distribution is used. For quasi-resolved stratocumulus cases with a zero or

negative skewness, the simple Gaussian distribution is retained. To adapt to the various cloud

regimes, Cuijpers and Bechtold (1995) considered a unimodal distribution computed as a

linear combination of a Gaussian distribution (for stratiform clouds) and an exponential dis-

tribution (for cumulus clouds). Chaboureau and Bechtold (2002, 2005) considered the effects

of deep convection in the parametrization of the standard deviation of the saturation deficit.

The combination of these three last studies was an attempt to take into account the variety of

cloud regimes in NWP models. However, such a combination of distributions still frequently

underestimates the cloud fields, especially in the case of sparse subgrid clouds.
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In the case of resolved clouds, subgrid cloud schemes are based on a current binary scheme

(Dirac distribution) considering only two values for the cloud fraction, 0 or 100%. This very

simple assumption is the basis of the “All or Nothing” method, which is mainly used for

cloud-resolving model simulations when the clouds are resolved at fine grid scales.

For larger scale models, simpler distributions are proposed and often used in NWP models.

For example, Smith (1990) developed a statistical scheme based on a triangular distribution

with the relative humidity as the predictor instead of the conservative variables. Other authors

have proposed more sophisticated methods for global circulation models (GCMs), such as

the Bony and Emanuel (2001) and Tompkins (2002) schemes based, respectively, on the

unimodal log-normal distribution and the unimodal beta distribution coupled with a deep

convection scheme. In both, the temperature variability is neglected and the total water con-

tent is the only predictor. The scheme of Tompkins (2002) takes into account, in particular,

the effects of deep convection on the cloud life cycle by considering prognostic evolutions for

the standard deviation and the skewness. It gives a better representation of the cloud evolution

in time than do diagnostic statistical schemes for which the cloud formation is diagnosed at

each timestep.

Some of the previous studies showed that a non-zero skewness of the total water content

or the saturation deficit distribution is very often associated with the appearance of a second

mode. Such a mode, often located on the cloudy side of the distribution, is not reproduced

with the assumption of simple modality. To represent this second mode, several studies used

a bimodal distribution inducing two local maxima. Lappen (1999) considered a double delta

distribution equal to a linear combination of two Dirac delta functions, one for the updraft

and one for the downdraft. The main drawback of such a scheme is to not allow subplume

variability, leading to large errors in the cloud field estimations. Lewellen and Yoh (1993)

established a subgrid scheme based on a joint double Gaussian distribution for the total

water content, the liquid potential temperature and the vertical velocity. They considered (i)

a bimodal distribution, and (ii) a supplementary predictor, the vertical velocity. This double

Gaussian distribution is equal to a linear combination of two simple Gaussian distributions.

The bimodal distribution relies on the first three moments of these three prognostic vari-

ables and assumes the same weight coefficient to compute the double Gaussian for all three

variables. It was subsequently used by Golaz et al. (2002a,b) and Larson et al. (2002). The

bimodality increases the number of free parameters to be computed, leading to a sophisti-

cation of the scheme. However, it also gives a gain in generality for the representation of

cloud evolutions and transitions. Lewellen and Yoh (1993) showed that it is necessary to

use a distribution with two modes, such as the double Gaussian distribution, and proposed

assumptions to reduce the number of parameters without degrading the results by consid-

ering the same weight coefficient for all three double Gaussian distributions. Larson et al.

(2002) also proposed different assumptions such as assuming a zero skewness of the liquid

potential temperature and a skewness of the total water proportional to the skewness of the

vertical velocity. In Golaz et al. (2002a), in addition to the previous assumption, the variances

of the vertical velocity for the two Gaussian distributions are assumed equal to a fraction

of the total variance. It is noted that these distributions rely on the first three moments that

should be provided by a high-order turbulence scheme. For PBL convection cases, Neggers

(2009) used a double Gaussian distribution for conservative variables, assigning each simple

Gaussian probability density function (PDF) to a transport component of an eddy-diffusivity

mass-flux scheme: the main mode is assigned to the eddy-diffusivity part and the second

mode to the mass-flux part. The closure of its scheme relies on the determination of the total

water variance and its updraft variance. This scheme has been validated for several PBL cloud

cases, including a complex scenario of cloud transition between stratocumulus and cumulus.
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In this study, we revisit the possibility of using most of the different distributions pro-

posed in the literature for a statistical description of PBL clouds. Hence, this study is largely

inspired by that of Larson et al. (2002). Nevertheless, instead of relying on the first three

moments of three variables, we seek a PDF based only on the liquid potential temperature and

the total water mixing ratio, therefore focusing on two variables. This reduces significantly

the number of free parameters of the distribution. In addition, no ad-hoc assumptions on the

values of the variances and of the skewness are made. Eventually, some guidance for the

development of a cloud scheme are deduced from this study. The proposition is to determine

the different parameters of the PDF based on information from a turbulence scheme and a

shallow convection mass-flux scheme. This ensures coherences between the thermodynam-

ical tendencies provided by those schemes and the cloud characteristics. A brief description

of the distributions selected to fit the LES distributions is given in Sect. 2.3. We selected

four cases of warm PBL cloud cases obtained with the Meso-NH model (Lafore et al. 1998)

with a resolution of 50–100 m. These simulations were validated with the results of GCSS

intercomparisons for the shallow cumulus cases, and the stratocumulus cases were validated

in Chosson et al. (2007). These cases are presented in Sect. 2.1. Section 3 contains the results

of the statistical analysis of the LES distributions, and also presents a study of sensitivity to

the horizontal domain size to confirm the robustness of the results of the statistical analysis

for 1–3 km resolutions. In Sect. 4, the different theoretical distributions are evaluated with

respect to their ability to fit the LES distributions and to give the correct cloud fraction and

cloud mean water content. This study has the advantage of being simpler than most previ-

ous study on bimodal distributions because it only considers a single statistical variable, the

saturation deficit, which facilitates its use in NWP models.

2 Statistical Definitions and Data

2.1 Large-Eddy Simulations

Four cases were run with the LES version of the non-hydrostatic anelastic research model

Meso-NH (Lafore et al. 1998) with a horizontal resolution varying from 50 to 100 m depend-

ing on cloud cases (see Table 1). The turbulent scheme was a three-dimensional (3D) turbu-

lent kinetic energy (TKE) scheme (Cuxart et al. 2000) with a Deardorff mixing length. PBL

clouds were assumed to be resolved at the LES resolution and we used an “All or Nothing”

method for a one- or two- moment warm cloud microphysical scheme. The four warm PBL

cloud cases were classic intercomparison cases that we selected for the variety of their cloud

formations and time evolutions. Ice clouds are not considered.

1. ARM case: diurnal cycle of shallow cumulus over land. An idealized shallow cumulus

convection case over land was derived from the Atmospheric Radiation Measurement

(ARM) program carried out on 21 June 1997 in the Southern Great Plains. Details of this

case are given in Brown et al. (2002).

2. BOMEX case: shallow cumulus over ocean. The BOMEX case study is a well-doc-

umented idealized stationary case of shallow cumulus convection over ocean derived

from the Barbados Oceanographic Meteorological Experiment (BOMEX) which took

place during 22–30 June 1969 (see Holland and Rasmusson 1973). Undisturbed trade

wind cumulus convection under steady-state conditions is considered. Details of the case

are given in Siebesma et al. (2003).

For those two cases, an intercomparison of LES models was carried out. The MESO-NH

simulations have been compared to the intercomparison results and lie in the range of

123



Evaluation of Statistical Distributions for the Parametrization 267

Table 1 Configuration of LES simulations

Cu Homogeneous Sc Fractional Sc

BOMEX ARM ACEhomog ACEheterog

Length of the simulation 6 h 15 h 3 h 3 h

�t 1 s 1 s 1 s 1 s

Horizontal Domain Nx = Ny = 128 Nx = Ny = 64 Nx = Ny = 100 Nx = Ny = 100

�x = �y 50 m 100 m 50 m 50 m

Vertical levels Nz = 75 Nz = 100 Nz = 66 Nz = 66

�z in cloud 40 m 40 m 10 m 10 m

�z otherwise 40 m 40 m 30 m 30 m

Domain size (x × y × z) 6.4 × 6.4 × 3km3 6.4 × 6.4 × 4km3 5 × 5 × 1.5km3 5 × 5 × 1.5km3

the different model results. It is noted that the dispersion among the different models of

the intercomparison is relatively small (see Siebesma et al. 2003, and Brown et al. 2002).

Sensitivity tests to the resolution show that the results are unchanged when considering

a 50-m or a 100-m horizontal resolution.

3. ACEheterog case: heterogeneous stratocumulus. The ACEheterog case is a fractional

stratocumulus case, based on the Second Aerosol Characterization Experiment (ACE-

2) program which took place during 16–24 July 1997 on the Canary Islands and

which had the objective of improving the description of the role of aerosols in GCMs

(see Raes et al. 2000). This simulation has been validated against observations in

Chosson et al. (2007).

4. ACEhomog case: homogeneous stratocumulus. This stationary case, called ACEhomog,

is derived from the reference case ACEheterog for which the total water content in the

free troposphere is modified. The initial value is increased from 0.005 to 0.007 kg kg−1 at

the beginning of the simulation to humidify the free troposphere and to obtain a stationary

stratocumulus that does not disappear during the simulation.

Figure 1 shows instantaneous 3D views of the cloud water content for the four cases

used for describing qualitatively the various cloud layers. It is noted that, in this article,

two simulation times are considered for the ARM case: 6 h for cloud formation and 9 h for

the end of cloud growth. BOMEX, ACEheterog and ACEhomog are quasi-stationary cases

studied after 5 h of simulation for the cumulus case and after 3 h for the two stratocumulus

cases.

In the following, the horizontal subgrid cloud variability is estimated by the cloud variabil-

ity in the entire LES domain as its domain is of the same order of magnitude than a grid size

of a NWP model. At a given time for each vertical level, a statistical analysis is performed

over the corresponding horizontal LES domain to provide the distribution (referred to LES

distributions hereafter) and the different moments of the conservative variables as well as

the cloud characteristics, in particular, the cloud fraction and the mean cloud liquid content.

Those LES moments are used for defining the theoretical PDF described later. In this study,

because we used LES moments to compute parametrized PDF and therefore parametrized

cloud fraction and mean cloud liquid water content, we do not test errors in the host model’s

prediction of moments (due to errors in parametrization schemes, such as the turbulence and

the shallow-convection parametrizations).
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(a) (b)

(c) (d)

Fig. 1 3D views of the cloud water content for each PBL cloud case: the cumulus ARM case after 9 h of

simulation, the cumulus BOMEX case after 5 h of simulation, and the ACEhomog and ACEheterog cases both

after 3 h of simulation. In the ARM case, 6 h corresponds to the cloud formation and 9 h to the end of the cloud

growth. BOMEX, ACEhomog and ACEheterog are quasi-stationary cases

2.2 Assumed PDF Method

One of our goals is to determine which statistical distribution should be chosen to mimic

the LES distributions. For this selection, most of the studies, such as those of Sommeria and

Deardorff (1977) or Bougeault (1981) use the Assumed PDF method, described by Golaz

et al. (2002a), to compute the parameters of the different distributions. In this method, the

first statistical moments (mean, standard deviation, skewness...) are obtained from the LES

and used in the different theoretical distributions. Then, those theoretical distributions are

compared to the LES distributions. For unimodal distributions, parameters may be estimated

with the Method of moments (see details in Appendix) using expressions relating them to

theoretical moments. For the double Gaussian distribution, an analytical iterative method

(described in the Appendix) is used for computing the larger number of necessary parame-

ters. In this article, we evaluate five families of unimodal statistical laws and one family of

bimodal statistical laws, all of which are commonly used in the literature. They are described

in the next subsection.

The comparison of the cloud fraction (CF) and the mean non-precipitating cloud water con-

tent computed from the LES data CF(LES) and rc(LES)
1 and from the theoretical distributions

1 With the “All or nothing” method, for each point of the LES domain, rc = rt − rsat(T ). rsat is the saturation

mixing ratio depending on the temperature T . Then, for each vertical level, rc(LES) is deduced from horizontal

averaging of rc. We assume a cloudy point (CF = 1) if rc > 10−12 kg kg−1. Then, CF(LES) is equal to the

proportion of cloudy points relative to the total number of points at a given vertical level.
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CF and rc given by Eqs. 1 and 2, provide a practical way to evaluate these distributions (see

Sect. 4)

CF =
+∞∫

α

G(x) dx (1)

rc =
+∞∫

α

(x − α) G(x) dx (2)

where α is the liquid saturation threshold according to the chosen statistical variable X and

G is the theoretical PDF. For warm cloud cases, the liquid condensation process leading to

cloud formation begins if the air reaches a liquid saturation corresponding to 100% relative

humidity.

The two statistical variables X often used in cloud statistical schemes are

– the non-precipitating total water content rt = rv + rc where rv is the water vapor content

and rc is the cloud water content. In this case, the liquid saturation threshold is a func-

tion of the mean temperature in the grid box: rsat = rsat(T ). This neglects the role of

temperature variability for the cloud formation;

– the saturation deficit which quantifies the local difference to saturation inside the grid

box. It depends on a combination of rt and the liquid potential temperature θl and sum-

marizes both the total water and the temperature variability inside the grid. This variable

is denoted s deliberately, regardless of the usual formulations of the literature, and is

expressed as follows:

s = al (rt − rsat(θl)) (3)

where al is a coefficient obtained by combining the definition of saturation and the Clau-

sius-Clapeyron relation, as shown in Chaboureau and Bechtold (2002). This variable

accounts for the linearized temperature fluctuations on saturation. Note that Q1, often

used in the literature, corresponds to s/σs . In a subgrid condensation scheme, conserva-

tive variables such as rt and θl are commonly used as prognostic variables because they

are conserved under evaporation/condensation processes (see Sommeria and Deardorff

(1977) and Mellor (1977)). Supersaturation occurs when s becomes greater than 0. In this

case, considering temperature fluctuations implies a variable saturation threshold rsat(θl)

inside the grid box.

The relevance of using these two variables in a statistical subgrid cloud scheme is discussed

in Sect. 3.1.

2.3 Theoretical Distributions

This section briefly describes the different theoretical distributions for fitting the LES dis-

tributions with the Assumed PDF method. A full description of this method is given in the

Appendix and uses the first two or three statistical moments and the bounds of the LES

distributions.

1. The unimodal simple Gaussian distribution has an unbounded symmetric bell-shaped

curve that is centred on its mean value. The two distribution parameters are also its first

two statistical moments. It has been used by Sommeria and Deardorff (1977), Mellor

(1977) and Bougeault (1981).
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2. The unimodal triangular distribution is a simple symmetric triangle centred on its mean

value. The two distribution parameters are again the first two statistical moments. It

has been used by Smith (1990). It has the advantage of being easily implemented in a

numerical model because the PDF shape facilitates the integral computations.

3. The unimodal gamma distribution is valid only for positive variables and defined by a

shape parameter, which determines the skewness, and a scale parameter, which stretches

or squeezes the PDF curve. It is a flexible distribution that is bounded on the left by zero

and is positively skewed. It has been used by Bougeault (1982).

4. The unimodal log-normal distribution is valid only for positive variables and is defined

by two parameters: the mean and the standard deviation of the logarithm of the statistical

variable. It is flexible and can vary from a normal distribution to a positively skewed

distribution according to the cloud type. It has been used by Bony and Emanuel (2001).

5. The unimodal beta distribution is defined by four parameters: two bound parameters and

two positive shape parameters. The beta PDF is very flexible because it takes J-, U- or

bell-shapes with a variable skewness. It was proposed by Tompkins (2002). Two differ-

ent beta distributions are considered in this article (see Appendix): the first, called β1, is

constrained by the first two statistical moments and the second, called β2, is constrained

by the first three statistical moments.

6. The bimodal double Gaussian distribution is a linear combination of two individual sim-

ple Gaussian distributions. The distribution is defined by five parameters, which are a

relative weight and the mean and standard deviation for each simple Gaussian distribu-

tion. The double Gaussian distribution may drift into a symmetric distribution if the two

distributions overlap, or into a skewed distribution. It has been used by Lewellen and

Yoh (1993) and Larson et al. (2001a, 2002) as a joint distribution for several statistical

variables.

3 Statistical Analysis of the LES Data

3.1 Choice of the Statistical Variable

In this section, the sensitivity to the choice of the statistical variable using rt or s for

the cloud field computation is tested. Figure 2 shows vertical profiles of the cloud frac-

tion (left column) and the mean cloud water content (right column), values deduced di-

rectly from LES data in red (CF(LES) and rc(LES)), and diagnosed from LES distributions

of s (in blue) and rt (in green), using Eqs. 1 and 2. For the ARM and BOMEX cumu-

lus cases, the cloud fraction computed with rt is always underestimated compared with

the LES cloud fraction CFLES. The computation from s significantly improves the estima-

tion of the cloud fraction. This is in agreement with Tompkins (2003) that showed with

data that the temperature variability could not be neglected. The differences in the com-

putation of rc are less obvious but rc is usually slightly overestimated with rt . Table 2

gives the errors averaged over all vertical levels for the computation of CF and rc for

the four LES. Using rt leads to averaged errors greater than 50% while using s gener-

ates averaged errors lower than 7%. Although errors are smaller (10–20%) for the stra-

tocumulus cases than for cumulus cases, the use of rt does not correctly estimate the

cloud fields. Although errors for the mean cloud water content are less important than

for the cloud fraction, the underestimation of CF with rt impacts negatively the com-

putation of the local cloud water content rc = rc/CF and this can lead to significant
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Fig. 2 Vertical profiles of the

cloud fraction (left column) and

the mean cloud water content

(right column) for a the ARM

case, b the BOMEX case, c the

ACEhomog case and d the

ACEheterog case. The red profile

is for LES data, the blue dashed

profile is computed from the LES

distributions of s and the green

dashed profile from the LES

distributions of rt

(a)

(b)

(c)

(d)

–

–

–

–
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Table 2 Mean CF and rc errors over all vertical levels in the cases where s and rt are used as predictors in

expressions 1 and 2

Cases ARM BOMEX ACEhomog ACEheterog

Hours of simulation 6 h 9 h 5 h 3 h 3 h

Mean of

∣∣∣ CF(LES)−CF(s)
CF(LES)

∣∣∣ (%) 4 1.21 2.2 3.18 3.05

Mean of

∣∣∣∣
CF(LES)−CF(rt )

CF(LES)

∣∣∣∣ (%) 58.74 47 54.13 9.38 20.38

Mean of

∣∣∣ rc(LES)−rc(s)

rc(LES)

∣∣∣ (%) 0.36 6.15 0.81 1.87 2.02

Mean of

∣∣∣∣
rc(LES)−rc(rt )

rc(LES)

∣∣∣∣ (%) 42.07 12.13 4.66 0.97 11.49

errors in the radiative transfer. In conclusion, using the total water content as a predic-

tor gives significant errors in the estimation of the cloud fields. In the later sections,

the cloud fraction and the mean cloud water content are computed using the saturation

deficit s.

3.2 Study of the Shape of the LES Distributions

The shapes of the LES distributions deduced from LES are illustrated in Fig. 3 for various

levels from the cloud base (e) to the cloud top (a) for the ARM case (left column) and the

two stratocumulus cases (middle and right columns). The LES PDFs are non-symmetric

bell-shaped curves with a positive or negative skewness. In most examples shown in Fig. 3,

most values of the saturation deficit are concentrated in a main mode around the mean value.

Nevertheless, the non-zero skewness, which appears for low or high values of s depending

on the cloud type, is often associated with a second mode, which may evolve into a long tail

for cumulus and stratocumulus cases. Note that the BOMEX case is not shown here as it is

very similar to the ARM case.

For the ARM cumulus case, a second mode is clearly seen for high values of supersatu-

ration in the lower part of the cloud layer (Fig. 3d), where the mean cloud water content is

maximum. Higher in the cloud layer, the second mode vanishes into a long flat tail in the

distribution of s. Inside the cloud layer, the skewness (not shown) is positive near the cloud

base and increases up to the cloud top, where it reaches its maximum value. It is noted that

the appearance of the second mode inside the cloud layer coincides with an increase of the

distribution spread with height.

For the stratocumulus cases, the shapes of the LES distributions strongly vary with height

and sometimes, a second mode appears. The skewness (not shown) is weakly positive in

the lower part of the cloud layer and decreases upwards until it becomes zero or negative.

Figure 3 shows an increase of the distribution spread with height. The PDFs of the two stra-

tocumulus cases gradually shift towards high positive values of s. For the “quasi-resolved”

homogeneous stratocumulus layer, the PDF moves totally beyond saturation with CF=100%

above the middle of the cloud except at cloud top. For the fractional stratocumulus layer, the

model grid is very often unsaturated on average (s < 0) inside the cloud layer, and the cloud

fraction never reaches 100%.
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Fig. 3 LES distributions of s inside the cloud layer for the ARM case (left column) and the ACEhomog and

ACEheterog cases (middle and right columns). The top panels a correspond to the top of the cloud layer and

the panel e to the base of the cloud layer. The panels b–d correspond approximatively to the three quarters,

the half and the first quarter of the thickness of the cloud layer (see Fig. 2). The vertical dashed line represents

saturation (s = 0), and the star on the x-axis represents the mean value of s. Note that the y-axis is different

for each panel to highlight the distribution characteristics

123



274 E. Perraud et al.

For cumulus and stratocumulus clouds, the distribution of the saturation deficit consid-

erably varies with height, and is often bimodal. PBL cloud parametrizations have to take

this evolution into account, particularly for the second mode, which generally covers the

saturated part of the distribution.

3.3 PDF Shape and Cloud Type

This section explores the link between the evolution of the PDF shape and the atmospheric

processes leading to the cloud evolution.

3.3.1 Cumulus Cloud

For shallow cumulus clouds, the first mode of the distribution of s is on the dry side of the

distribution. The second mode, which may take the shape of a long flat tail, is essential for the

description of shallow cumuli because it corresponds to the cloudy values of s. This particular

shape of the PDF produces the low cloud fraction and is characteristic of shallow convec-

tive situations. Figure 4b–e shows horizontal cross-sections of s, rt , θl and w, for the ARM

case inside the cloud layer at the level of maximum mean cloud fraction. The high values

of supersaturation corresponding to the second mode (red zone on the cross-section 4b), are

clearly correlated with high values of rt, negative anomalies of θl and positive anomalies of

w. They are the signatures of cloudy shallow convective thermals bringing relatively cooler

and moister air above the inversion. In the upper part of the cloud, where the second mode

becomes more flattened, the effects of the shallow convection are still visible but sparser.

Investigation of other times for the ARM and BOMEX cases leads to the same conclusions:

the second mode is related to convective processes. The cloud fraction and the mean cloud

water content are fully related to the description of the tail of the distribution of the saturation

deficit for shallow cumulus cases.

3.3.2 Stratocumulus Cloud

A conditional sampling of LES data for the two stratocumulus cases is carried on in order to

characterize the processes of the two modes of the LES distributions. Results are shown in

Fig. 5. The LES horizontal domain at a given level is partitioned into three classes: clear sky

(rc = 0) on the dry part of the distribution, subsiding cloudy zones (rc > 0 and w < 0) and

ascending cloudy zones (rc > 0 and w > 0). Figure 5 shows the distributions of s at various

levels for the entire domain in black and for each of the three classes in colours. For the

two stratocumulus cases, the ascending cloudy zones are moister and correspond to higher

values of supersaturation than the subsiding cloudy zones. Near the cloud base (Fig. 5c), the

ascending zones predominate over the subsiding zones. The subsiding cloudy zones appear

at increasingly greater heights than the ascending cloudy zones. In the heterogeneous stra-

tocumulus cloud, the ascending cloud zones always predominate over the subsiding cloudy

zones whereas in the homogeneous cases both cloudy zones are more equally distributed.

The contrast between the two stratocumulus cases is due to the characteristic of the free

troposphere, which is drier for the fractional stratocumulus cases. As shown in Fig. 1d, large

variability of the cloud base exist in this case, a consequence of the intrusion of drier air at

cloud top. This also leads to a smaller fraction of subsiding cloudy zones. For the moister

homogeneous stratocumulus cloud, CF equals 100%, and the effects of the intrusion of dry air

are much less visible. The parametrization of fractional stratocumuli clouds in NWP models
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–

Fig. 4 ARM cumulus case: a LES distribution of s at the level of maximum mean cloud water content (cor-

responding to the quarter of the thickness of the cloud layer in Fig. 3d for the ARM case); the dashed line

represents saturation (s = 0). Horizontal cross-sections of s b, rt c, θl d and w e at the same level. In b and e,

the black line corresponds to the 0-isocontour
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Fig. 5 LES distributions of s inside the cloud layer for the ACEhomog and ACEheterog cases a at cloud top,

b at the half of the thickness of the cloud layer and c at cloud base. The distribution of the whole horizontal

domain is in black. The red dashed distribution corresponds to the clear sky, the azure dashed distribution to

the ascending cloudy zones and the dark blue dashed distribution to the subsiding cloudy zones. The vertical

dashed line represents saturation (s = 0)

may require a subgrid cloud scheme because an “All or Nothing” method, which could be

used for resolved clouds such as stationary stratocumuli, does not consider the irregularities

of the cloud layer when CF < 100%.
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3.4 Sensitivity to the Horizontal Domain Size

The horizontal resolution used in NWP models is constantly evolving and will be more fine

in the future. For instance, the representation of cumulus clouds as subgrid processes is ques-

tionable with decreasing grid size, because of their size being a few hundreds of metres. In

this section, the sensitivity to the horizontal domain size of the LES is evaluated. The pre-

vious statistical analysis was performed for the entire horizontal LES domain with a size of

6.4 × 6.4 km2 for cumulus cases and 5 × 5 km2 for stratocumulus cases. Here, we tackle the

question of the robustness of previous results with respect to the horizontal subgrid variabil-

ity for potentially finer model grids. For this, the initial LES domain is divided into 4 or 16

identical sub-domains (�x = 3.2 or 2.5 km for four sub-domains and �x = 1.6 or 1.25 km

for 16 sub-domains) and the same statistical analysis is carried out for each sub-domain.

For the ARM and BOMEX cases, the results hold for smaller horizontal domain sizes (not

shown here). The horizontal cloud fluctuations are important for shallow cumulus clouds and

they are still subgrid clouds for horizontal resolutions of 3.2 and 1.6 km. As for the entire

LES domain, using s as the statistical variable to consider the variability of both temperature

and total water content (Sect. 3.1) provides better results according to the cloud fraction and

the mean cloud water content. For these finer resolutions, the LES distributions also show

two local maxima and the second, less marked, can evolve into a long flat tail.

For the ACEhomog case, the horizontal fluctuations inside a model grid are weak. The

stratocumulus cloud is completely resolved horizontally in terms of the condensation/evapo-

ration processes for resolutions of 2.5 and 1.25 km in the sense that the horizontal size of the

cloud is larger than the grid mesh. Nevertheless, no assumption is made about the moisture

transport such as eddy circulation, which is still partly subgrid. The choice of the theoretical

distribution for the subgrid cloud scheme is arbitrary since the PDF is totally beyond satura-

tion with CF=100%. However, the description of the fractional ACEheterog case requires

use of a subgrid cloud scheme as the cloudy cells are smaller due to the alteration of the

cloud layer from its base. As for cumulus cases, the LES distributions also show two local

maxima for finer resolutions. A subgrid scheme based on the saturation deficit and a bimodal

distribution also provides better results at 2.5 and 1.25 km.

The previous results obtained with the statistical analysis of the LES data are robust for

sub-domains of the initial LES domain.

4 Evaluation of the Theoretical Distributions

This section evaluates how the theoretical unimodal and bimodal distributions described in

Sect. 2.3 are able to fit the LES distributions of the saturation deficit. The PDF shapes studied

in Sect. 3.3 for shallow cumulus and stratocumulus cases are not easily fitted by most of the

classical distributions, which are essentially constrained by the main mode. It is noted that the

results obtained in this study are also valid for the total water content for which the gamma

and the lognormal laws were also tested.

4.1 The Unimodal Distributions

The unimodal distributions commonly used in the literature (Sect. 2.3) are evaluated against

the LES distributions (Sect. 3). Figure 6 presents the vertical profiles of the cloud fraction

and the mean cloud water content computed from the LES distributions and the various

unimodal distributions. Figure 7 shows scatter plots of these two cloud fields for various
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Fig. 6 Vertical profiles of the cloud fraction (left column) and the mean cloud water content (right column)

for a the ARM case, b the BOMEX case, c the ACEhomog case and d the ACEheterog case, deduced from

the LES distributions (black), from the simple Gaussian distribution (green), from the triangular distribution

(purple), from the β1 distribution (blue), from the β2 distribution (orange) and from the double Gaussian

distribution (red)
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Fig. 7 Scatter plots of the cloud

fraction (left column) and the

mean cloud water content (right

column) for a the ARM case, b

the BOMEX case, c the

ACEhomog case and d the

ACEheterog case. The simple

Gaussian distribution (green), the

triangular distribution (purple),

the β1 distribution (blue), the β2
distribution (orange) and the

double Gaussian distribution

(red) are compared to the LES

distributions. Each squared

symbol represents a vertical level

in the cloud layer at various times

of simulation: between 5 and 12 h

of simulation for ARM, 3 and 6 h

of simulation for BOMEX and

2 h 10 min and 3 h of simulation

for the two stratocumulus cases

r
c
 (g kg

–1
)

r
c
 (g kg

–1
)

(a)

(b)

(c)

(d)

r
c
 (g kg

–1
)

r
c
 (g kg

–1
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times and levels for the different cumulus and stratocumulus cases (each point of the scatter

plots represents an instantaneous value of the cloud field for a given hour of simulation and

a given vertical level). Table 3 quantifies the errors obtained with the different theoretical

distributions for each case.
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For ARM and BOMEX (Fig. 6a, b), all the unimodal distributions clearly underestimate

the cloud fraction and the mean cloud water content. Symmetric distributions, such as the

simple Gaussian (in green), the triangular (in purple) and the β1 (in blue) distributions are

not flexible enough and therefore not able to reproduce the tail of the skewed distribution.

The β2 distribution (in orange) improves the computation of the cloud fraction for the ARM

case because it conserves the skewness of the LES data and the variation of the PDF shape

with height (not shown), but it still gives large errors for BOMEX (Fig. 7a, b). Errors on rc

are often greater than 50% in the ARM case and 90% in the BOMEX case with all unimodal

distributions. Thus, none of the unimodal distributions, including the skewed β2 distribution,

are able to provide correct values of cloud fraction and mean cloud water content in the case

of sparse subgrid clouds like shallow cumuli. All the unimodal distributions also systemati-

cally underestimate the height of the cloud top (Fig. 6). This is mainly explained by the fact

that the shape of a unimodal PDF is constrained by the main mode in the dry part of the

domain in shallow cumulus cases.

For the two stratocumulus cases, errors on the computation of cloud fields from unimodal

distributions rarely exceed 5% (Table 3). In Fig. 6c and d, the heights of the cloud base and the

cloud top are correctly estimated. Considering the shapes of the previous LES distributions

(see Fig. 3), the unimodal distributions may be adequate for the description of stratocumulus

clouds, except for values of cloud fields associated with a PDF showing two modes with

comparable amplitudes (Fig. 3b for the ACEheterog case). As for the ARM case, it seems

that the β2 distribution gives the best estimate of cloud fields (Fig. 7c, d).

A unimodal distribution seems sufficient to describe the stratocumulus clouds but not the

cumulus clouds. A more independent representation of the second mode would provide a

better description of the cloudy part of the distribution, particularly in the case of a long flat

distribution tail for cumulus clouds.

4.2 The Double Gaussian Distribution

To improve the representation of the second mode, the double Gaussian distribution is now

evaluated and the vertical profiles of the cloud fraction and the mean cloud water content

computed from this bimodal distribution are given in red in Fig. 6 for the four cases. In all

cases, the heights of the cloud base and the cloud top are correctly estimated with the double

Gaussian distribution. The cloud field estimates are obviously improved in cumulus cases

with the double Gaussian distribution (Fig. 7a–d), and the errors are significantly reduced

(Table 3) compared to those generated by unimodal distributions. They do not exceed 4%,

except for the BOMEX case where the cloud fraction and mean liquid water content are

small leading to large relative errors in% even though the difference between this distribu-

tion and the LES distribution are never larger than respectively 1% and 3×10−6 kg kg−1

for the cloud fraction and the mean liquid water content (Fig. 7). The benefits of the double

Gaussian distribution are less evident (Fig. 6c, d) in stratocumulus cases but it still provides

the best estimates of cloud fields. Errors are globally lower than 1%.

The comparison of the simple and the double Gaussian distributions for the four cases (not

shown here) highlights that the double Gaussian distribution is able to correctly approach

more or less skewed distributions, as in Fig. 3b the ACEhomog cases, or distributions with

two marked second modes as in Fig. 3c for the ARM case and in Fig. 3b for the ACEheterog

cases. The second mode of the double Gaussian distribution is very often well positioned

with the correct amplitude. For cumulus cases, it evolves in a long flat tail in the upper part of

the cloud layer. The main mode of the bimodal PDF is also in better agreement with the LES

distributions. The independent computation of the parameters (mean and standard deviation)
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Table 3 Mean errors for CF and rc over all vertical levels for each theoretical distribution

Cases ARM BOMEX ACEhomog ACEheterog

Hours of simulation 6 h 9 h 5 h 3 h 3 h

Mean of

∣∣∣ rc(REF)−rc(THEOR)

rc(REF)

∣∣∣ (%) Simple Gaussian 9.69 23.7 70.72 0.79 1.95

Triangular 68.42 36.01 22.92 6.59 9.03

β1 4.71 15.32 69.43 0.28 2.22

β2 0.55 15.32 66.16 0.26 2.55

Double Gaussian 0.42 0.95 15.02 0.41 0.25

Mean of

∣∣∣ CF(REF)−CF(THEOR)
CF(REF)

∣∣∣ (%) Simple Gaussian 34.68 68.56 92.14 5.07 7.05

Triangular 11.06 58.31 89.90 2.68 2.31

β1 32.60 64.27 92.85 1.48 3.20

β2 28.86 64.27 90.74 1.48 2.83

Double Gaussian 3.65 1.77 13.91 0.70 1.07

for each simple Gaussian law allows the choice of two more or less narrow modes with the

right amplitudes. Nevertheless, it is noted here that the better behaviour of this distribution

is expected due to more free parameters (two for the simple Gaussian and five for the double

Gaussian distribution). Nevertheless, according to the shape of the LES distribution, a uni-

modal distribution even with more free parameters will never allow the reproducion of the

bimodality. The double Gaussian law is the simplest law that allows taking into account this

characteristic. It is therefore a trade-off between complexity and efficiency.

The double Gaussian distribution improves the description of sparse subgrid clouds such

as shallow cumuli and fractional stratocumuli. The construction of a statistical cloud scheme

based on the double Gaussian distribution seems the best alternative to obtain a unified

approach for the treatment of PBL clouds. If necessary, the double Gaussian distribution

correctly switches over to a simple distribution showing a single maximum. Some guidance

for the development of a cloud scheme, based on those results, are given in Sect. 5.

4.3 Sensitivity to the Vertical Grid

In the previous section, the statistical analysis was performed for each level of the LES ver-

tical grid. The vertical resolutions of the four LES used as reference (Table 1) are much finer

than the resolution generally used in a NWP model. In order to test the sensitivity of the

previous results to the number of levels in the cloud layer, several layers of the LES were

averaged to obtain a new sample of data with a vertical resolution similar to the one used for

the operational models. The new vertical grid contains 40 levels with a vertical resolution

ranging from 40 m near the ground to 500 m above 2 km. Figure 8 shows vertical profiles

of the cloud fraction and the mean cloud water content averaged on the new vertical grid

deduced from LES data (in black) and computed from the simple Gaussian distribution (in

green) and from the double Gaussian distribution (in red) for the two cumulus cases and for

the ACEheterog case.

For ARM and BOMEX (Fig. 8a, b), cloud fields are correctly diagnosed (Table 4) and

the height of the cloud top is better estimated with the double Gaussian distribution than

with the simple one. As for cumulus cases, the use of a bimodal distribution improves the

horizontal description of stratocumulus clouds, especially for the fractional stratocumulus
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Fig. 8 Vertical profiles of the cloud fraction (left column) and the mean cloud water content (right column)

for a the ARM case, b the BOMEX case, c the ACEhomog case and d the ACEheterog case and deduced from

the LES distributions (black), the simple Gaussian distribution (green) and the double Gaussian distribution

(red) for a vertical grid typical of NWP models
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Table 4 As in Table 3 for the simple Gaussian distribution and the double Gaussian distribution for a vertical

grid typical of NWP models

Cases ARM BOMEX ACEhomog ACEheterog

Hours of simulation 6 h 9 h 5 h 3 h 3 h

Mean of

∣∣∣ CF(REF)−CF(THEOR)
CF(REF)

∣∣∣ (%) Simple Gaussian 26.99 43.93 69.21 0.08 5.66

Double Gaussian 6.72 4.01 14.01 0.57 1.39

Mean of

∣∣∣ rc(REF)−rc(THEOR)

rc(REF)

∣∣∣ (%) Simple Gaussian 40.48 67.97 90.88 0.64 13.88

Double Gaussian 20 16.87 26.56 0.35 6.24

case (see errors on Table 4). All the conclusions drawn for the statistical analysis with the

fine resolution of the LES are still valid for a coarser description of the cloud layer for the

four cases.

Nevertheless, Fig. 8c and d raises the problem of the treatment of subgrid clouds in the

vertical dimension. The change to a coarser vertical grid causes a smoothing of the vertical

profiles of the cloud fraction and the mean cloud water content, leading to a loss of informa-

tion. It is particularly problematic in the case of shallow stratocumulus clouds, which have a

smaller vertical extent than cumulus clouds. This is evidenced by comparing the maximum

values of cloud fraction on vertical profiles obtained for the LES vertical grid (red profile in

Fig. 2) and for the coarser vertical grid (black profile in Fig. 8): an underestimation of about

50% appears. This large error is due to the lack of information about the vertical extent of the

cloud layer between two successive vertical levels. In this article, we focus on the description

of the horizontal subgrid cloud variability, but this sensitivity study to the vertical grid shows

the need to also consider the vertical subgrid cloud variability in cloud schemes in future

studies, to improve the representation of stratocumulus clouds.

5 Keys for the Improvement of Statistical Cloud Schemes

This section provides some guidance for the implementation of a double Gaussian statistical

cloud scheme. First, it is shown that the grid cell can be decomposed into an environmental

(non-convective) and convective fraction, with a single Gaussian fitted for each sub-domain

as suggested in Sect. 3.3.1. Such hypothesis has been also recently used in Neggers (2009) and

Jam et al. (2010). Then, it is shown that when splitting the grid cell into those two domains,

rt instead of s can be the statistical variable, reducing the number of prognostic variables

from 2 to 1. Eventually, a parametrization for the standard deviation of the convective single

Gaussian is provided as well as a formulation for the coverage fraction of the convective

domain. This proposition of cloud scheme is built to only require the convective mass flux

M and thermodynamical characteristics (θup and r
up
t ) in the parametrized cloudy updraft.

This way, it can be usable by any model having a shallow-convection parametrization (either

classical or EDMF ones).

5.1 Determination of the Two Single Gaussian Distributions

In this section, only cumulus cases (ARM and BOMEX) are considered. First, as shown in

Sect. 3.3.1, the second mode in cases of cumulus corresponds to the signature of shallow
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convective thermals. This has been confirmed by Jam et al. (2010) using a conditional sam-

pling defined by Couvreux et al. (2010) to distinguish the thermals and the environment

fraction. Therefore, to implement the double Gaussian distribution, GPDF, as a statistical

cloud scheme, one would need the definition of five parameters: the convective area, α, the

mean m and standard deviation σ of the variable for each Gaussian distribution:

GPDF = αGconvective + (1 − α)Gnonconvective (4)

where Gconvective and Gnonconvective are simple Gaussian distribution. As the cloud frac-

tion and the liquid water content are determined linearly from the Gaussian distributions,

the total liquid water content and total cloud fraction can be computed separately by each

Gaussian distributions independently. A physically based proposition is adopted to deter-

mine the mean and the standard deviation of the non-convective domain via the turbu-

lence parametrization and the mean and the standard deviation of the convective domain

with the shallow-convection parametrization. The non-convective mean can be assumed

equal to the entire domain mean if the convective fraction remains relatively small. We

further assume that the turbulence scheme provides the standard deviation for the non-con-

vective zone. Therefore, a formulation for only three remaining parameters must be pro-

posed: the convective fraction, the mean and standard deviation for the convective distribu-

tion.

5.2 s or rt?

In Sect. 3, we have shown that the temperature variability cannot be neglected relatively

to the humidity variability when considering the whole domain. Nevertheless, once we

separate the domain into two sub-domains considered independently, the use of the satu-

ration deficit s is not anymore necessary (the differences are significantly reduced com-

pared to Fig. 2, not shown). This is illustrated in Fig. 9 that compares the s distribution

(upper panel) and the rt distribution (lower panel) for the entire domain, the convective

and non-convective domains. The saturation threshold in the convective domain is much

smaller than the saturation threshold in the other two domains ensuring selection of the

whole convective fraction even when using rt . In other words, the temperature variabil-

ity is mainly accounted for by a top-hat representation between environment and thermals,

and therefore the temperature variability in each sub-domain can be neglected. It is noted

that, as a consequence, saturation vapour ratio needed to evaluate cloud cover and cloud

water content from the PDF of rt must be computed using the average temperature in the

sub-domain corresponding to the convective part alone (red vertical line in lower panel in

Fig. 9).

5.3 Cloud and Cloud Core

We focus here more deeply on the analysis of the cumulus cloud itself. In cumulus, the

dynamics is well known to be driven by vertical updrafts often called “core” of the cloud:

this core, more buoyant than the environment, transports vertically the water from the

boundary layer upper in the atmosphere. To determine the characteristics of the cloud

from the LES, we refine the sampling proposed by Couvreux et al. (2010). The first

variable we focus on is the buoyancy mass flux, as it is the first key process in the

cloud.

In fact, as shown in Fig. 10a, the distribution of the buoyancy flux over the convective part

selected by this sampling (extracting mostly all cloudy points) shows bimodality. There is a
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Fig. 9 Distribution of the saturation deficit (upper panel) and the total water mixing ratio (lower panel) in

the lower part of the cloud for ARM case at 9 h. The total distribution is in black, the distribution over the

convective part in red and over the non-convective part in green. the convective and non-convective fractions

are determined using the conditional sampling proposed by Couvreux et al. (2010). In the upper panel, the

vertical line corresponds to the saturation threshold (s = 0). In the lower panel, the vertical lines correspond

to the saturation mixing ratio for the whole domain (black), the convective part (red) and the non-convective

part (green)

Gaussian distribution centred over 0 and a long flat tail of buoyant parcels. The buoyant core

can then be defined as the points selected by the sampling that in addition have a buoyancy

greater than 0.5 K kg s−1 m−2. The remaining points are the edges of the cloud. In Fig. 10b

and c, the distributions of total water mixing ratio and liquid potential temperature is shown

for the total cloud and the cloud core. The core set has the moister and cooler (in term of

liquid potential temperature) points, with a relatively small dispersion.

As we see the core is not the total cloud that we seek to parametrize in our cloud scheme.

However, as it is the active part of the cumulus, all the mass flux transport occurs in this

core. As such, it is this core that is parametrized in shallow convection schemes (particularly

in mass-flux approaches). One can therefore consider that the outputs of these schemes are

representative of the core of the cloud. From these outputs, one will have to define a cloud

scheme representing all the cumulus (core and edges).

To describe the first required variable, the mean of the (Gaussian) distribution associated

to the convective part, one can use the mean value of the total water content provided by

the shallow-convection parametrization in the core (r
up
t ). This value may overestimate the

mean cloud content (as core is the moister part of the cloud), but this first approximation of

the cloud water content allows to discriminate the cloud from the environment in the free

troposphere (the latter being much dryer by a large margin in the case of shallow cumulus).

It gives a base for the localization of the second Gaussian distribution. It could be improved

by setting an offset depending on the standard deviation of the distribution. Nevertheless,

determining this offset is not trivial as it depends with height in the cloud, being smaller near

cloud base and larger near cloud top. This will be pursued in future studies. Hence, in the

following, we assume that rtconvective = r
up
t .
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Fig. 10 Distribution of a buoyancy, b total water content and c liquid potential temperature at the level of

maximum cloud fraction for ARM at 9 h. The dashed black lines for b and c correspond to the distribution

obtained from the updraught core. The core is defined according to a

5.4 Formulation for the Thermal Standard Deviation

Several definitions of the standard deviation for the distribution of rt due to the convec-

tion have already been proposed. Lenderink and Siebesma (2000) have proposed a standard

deviation of the total water mixing ratio that takes into account the convective impact. Nev-

ertheless, they do not use a bimodal distribution; this standard deviation is then made use of

to derive directly the cloud fraction:
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σ 2 =
M(r

up
t − 〈rt〉)lcloud

w
up
∗

(
∂rt

∂z

)
(5)

where lcloud is the cloud depth, M is the mass flux diagnosed in the shallow convection

scheme (it is noted that here M = αwup), and w
up
∗ is a vertical velocity scale defined as

w
up
∗ =

⎛
⎝

∫

cloud

g

θ
M�θv dz

⎞
⎠

1/3

(6)

where �θv is the difference in virtual potential temperature between the convective part and

the environment. Similarly to Lenderink and Siebesma (2000) and due to the underestimation

of the moisture fluctuations, Chaboureau and Bechtold (2005) proposed to take into account

the effect of convection on the moisture variability through (but again for a simple Gaussian

distribution for the whole grid):

σ = cM f (z) (7)

with c, a tuned constant equal to 3 × 10−3 and f (z) = 1/a with a = (1 +
L∂rsat(Tl)/Cpm∂T )−1 a thermodynamic function arising from a linearization of the function

for the water saturation mixing ratio.

Jam et al. (2010) proposed a formulation for the standard deviation of the second mode

of a double Gaussian parametrization as

σ 2
convective = max

(
0.015
√

α

(
r

up
t − 〈rt〉

)2
,

(
r

up
t

100

)2
)

. (8)

Inspired by the study of Lenderink and Siebesma (2000), here we propose, but for the

second mode of the distribution only, the following definition for the standard deviation of

rt:

σ 2
convective =

M
(
r

up
t − 〈rt〉

)
lcloud

20w
up
∗

(
∂rt

∂z

)
. (9)

This formulation has the advantage of depending only on parameters provided by any type

of shallow convection scheme. It takes into account not only local updraft quantities, but also

integrated quantities such as the cloud depth and the vertical velocity scale. This is a way

to take into account the whole physical structure of the shallow cumulus. It is validated for

ARM 9 h in Fig. 11b against the standard deviation of the second mode derived from LES.

5.5 Formulation for the Area Coverage of the Thermals

In many shallow convection schemes (Bechtold et al. 1995), the area coverage of the up-

draughts is not a diagnostic parameter. Nevertheless, to define the double Gaussian distribu-

tion, this parameter is needed to determine the weight in-between the two single Gaussian

distributions. The following formulation is proposed:

αconvective =
M

2w
up
∗

. (10)

It is evaluated against LES results and the fraction used in Pergaud et al. (2009) in Fig. 11a.

In Fig. 12, the cloud fields are evaluated for ARM (two different hours) and BOMEX. The

different formulations of the literature are also plotted for comparisons. Cloud fraction and
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Fig. 11 Vertical profiles of a the updraught fraction and b the standard deviation of rt in the updraughts:

deduced from LES in black, used in Pergaud et al. (2009) in blue and proposed in the new formulation in red

cloud water content are greatly variable from case to case, and the cloud scheme from for-

mulation to formulation. However, some patterns seem to emerge. Cloud cover is naturally

better represented by the cloud schemes than cloud water content (which is a moment of

higher order). In the lower part of the cloud, the new formulation is in the range of previous

schemes. It tends to underestimate the cloud cover (especially for the BOMEX case), and

this should be looked into in the future studies. In the middle part of the cloud, the shape

of cloud cover and cloud fraction profiles are better for the schemes describing the second

mode. The single Gaussian cloud schemes (Lenderink and Siebesma 2000, Chaboureau and

Bechtold 2005) present a spiky shape, with too rapid a decrease above the maximum for both

quantities.

The vertical extension of the clouds is underestimated by the single Gaussian cloud

schemes. For the cloud scheme, Pergaud et al. (2009), while supposing to describe only

the convective part, also underestimate the cloud height. Only Jam et al. (2010) and this

study allow for reproducing correctly the upper part of the cloud. This new scheme is based

on the convective processes themselves, and is general enough to be used by any model.

6 Conclusions

In both NWP models (even those with kilometre resolutions) and climate models, it is still

necessary to correctly parametrize the horizontal subgrid variability of PBL clouds. This study

provides a preliminary step in developing a new cloud scheme to improve the representation

of PBL clouds.

The search for the best distribution to use in a statistical cloud scheme is based on the

statistical analysis of four LES of classical warm PBL cases (cumulus and stratocumulus)

123



Evaluation of Statistical Distributions for the Parametrization 289

ARM case -9 h

 BOMEX case -5 h

 ARM case -6 h

r
c
 (g kg–1)

LES
Lend. & Sieb.

Chab. & Becht.
Jam et al.
Pergaud et al.

new formulation

(c)

(b)

(a)

r
c
 (g kg–1)

r
c
 (g kg–1)

Fig. 12 Vertical profiles of the cloud fraction (left column) and the mean cloud water content (right column)

for a the ARM case at 9 h, b the BOMEX case, c the ARM case at 6 h, the time of formation of cumulus

clouds. The reference values obtained from the LES distributions are in black, the new formulation is in light

blue and other distributions from the literature (see text) are in different colours (see legend)
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performed with the research model Meso–NH. The simulated horizontal cloud variability

inside the LES domain is summarized by a LES distribution, which may be fitted to theoret-

ical distributions constrained by the first statistical moments of the LES distribution.

Our analysis shows that, for PBL clouds, the total water variability alone is not the best

predictor to correctly diagnose the cloud fraction and the mean cloud water content. The sat-

uration deficit, which combines the temperature variability and the total water variability, has

to be taken into account. Nevertheless, when considering a convective and a non-convective

domains separately, it is sufficient to consider only the total water variability as most of the

temperature variability is mainly accounted for by the top-hat representation (convective and

non-convective distinction).

LES distributions of the saturation deficit often show an asymmetric bell-shaped curve

with varying skewness depending on the cloud type and also the level and the phase of the

cloud life cycle. Most distributions show a primary main mode and a second mode, which

may evolve into a long flat tail. This second mode plays an important role in the cloud field

computation. In the cases of sparse cumuli, the main mode corresponds to non-cloudy points

in the LES. The narrow cloud updrafts are described by the tail on the cloudy side of the dis-

tribution. For a fractional stratocumulus cloud, the first mode is often located on the dry side

of the distribution and the cloudy second mode depends on the updraft/downdraft activity

inside the cloud layer. It reflects, in particular, the intrusion of dry air from the cloud layer

top. For a stationary stratocumulus, the model grid is saturated on average and the cloud

fraction is nearly 100%.

Several theoretical distributions commonly used in the literature have been tested to find

the best fit for the LES distributions. The “Assumed PDF method” was used for determining

the parameters of each distribution constrained by the first two or three statistical moments

predicted from LES data. All unimodal distributions, even the beta law with a controlled

skewness, are unable to correctly represent both the primary mode and the important second

mode, especially for cumulus clouds. They would not give a unified approach valid for all

PBL cloud types. A double Gaussian distribution with two modes and based on a linear

combination of two simple Gaussian laws provides a much better description for all types of

PBL clouds. It corrects the large underestimation of the cloud fraction and the mean cloud

water content given by unimodal distributions in the case of sparse cumuli and always gives

a better estimate of the heights of the base and the top of the cloud layer. The second mode

is well positioned with correct amplitude and can become a long flat tail. This study is sim-

plified compared to Lewellen and Yoh (1993) or Golaz et al. (2002a) as we only consider

a single statistical variable, the saturation deficit, and only five parameters are necessary to

define the double Gaussian distribution. Moreover, it has been verified that all conclusions

based on the statistical analysis for LES configuration are still valid for a coarser vertical

description of the cloud layer. Eventually, it appears that the use of a bimodal distribution is

not essential for the horizontal description of homogeneous stratocumulus clouds but their

correct representation would require to take into account the vertical subgrid variability.

In the previous section, the results have been discussed, and some guidance has been indi-

cated for the development of a cloud scheme usable by any shallow-convection model. The

proposition is to use a combination of two single independent Gaussian distributions, one

describing the convective domain and the other the non-convective domain. A formulation

for the standard deviation of the thermals and their coverage has been proposed using outputs

from shallow convection schemes (see Eqs. 9 and 10).

The next step in the development of a PBL cloud scheme is to confirm those results

on other cases. The case of RICO on which an intercomparison has been carried out by

van Zanten et al. (2011) could be considered to validate the new formulations. Then, more
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complicated cases could be analyzed such as transition from stratocumulus to shallow cumu-

lus, the dissipation of clouds and the transition from shallow to deep convection. Nevertheless,

in the framework of NWP resolving more and more deep convection, the extension of this

study to deep convection will not be considered. For all these transitions, it should also be

investigated whether a diagnostic scheme can handle those situations or whether a prognostic

scheme Tompkins (2002) is mandatory.

A Appendix: Computation of the Theoretical Distributions

In order to fit to the five unimodal distributions, estimators (noted with .̂) of their parameters

are computed with the “Method of moments”. It consists of resolving an equation system

built from the empirical expressions of statistical moments as a function of the distribution

parameters. It is more or less complex according to the number of unknown parameters

and to the PDF family considered. For this appendix, the first three statistical moments are,

respectively, noted as µ, σ and ζ .

A.1 The Simple Gaussian Distribution

The two distribution parameters are easily computed to fit the LES PDFs because they are

equal to the first two predicted statistical moments: µ̂ = µ and σ̂ = σ .

A.2 The Triangular Distribution

As for the Gaussian law, the two distribution parameters of the triangular distribution are

deduced directly from the first two statistical moments : µ̂ = µ and σ̂ = σ .

A.3 The Gamma Distribution

If k and δ are, respectively, the positive shape parameter and the positive scale parameter of

a gamma distribution, the parameter estimators are deduced from the expressions of µ and

σ by: k̂ = µ2/σ 2 and δ̂ = µ/σ 2.

A.4 The Log-normal Distribution

A positive statistical variable X follows a log-normal distribution if ln(X) follows a Gaussian

law. In order to fit to the log-normal distribution, we obtain the two parameter estimators η̂

and δ̂ from the expressions of µ and σ :

η̂ = ln(µ) −
1

2
ln

(
1 +

σ 2

µ2

)
= ln X , (11)

δ̂ =
(

ln

(
1 +

σ 2

µ2

)) 1
2

=
√

(ln X)′2. (12)

A.5 The Beta Distribution

If a and b are the bounds and p and q are the positive shape parameters of a beta distribution,

then two methods are available to compute them to fit the LES distributions. Note that, in

this study, a bell-shaped curve is considered so p ≥ 2 and q ≥ 2 are imposed.
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– If the parameters are constrained by µ and σ, then â and b̂ are respectively, equal to the

minimum and maximum values of the statistical variable, and the shape parameters are

computed from their expressions (distribution called β1):

p̂ =
µ2 (1 − µ)

σ 2
− µ, (13)

q̂ =
µ (1 − µ)2

σ 2
− (1 − µ), (14)

– If the parameters are constrained by µ, σ and ζ, and â is equal to the minimum value

of the statistical variable and b̂, and the two shape parameters are computed from their

expressions (distribution called β2):

p̂ =
2(µ − â) [σ 2 − (µ − â)2 − ζσ (µ − â)]

ζσ [(µ − â)2 − σ 2] − 4(µ − â)σ 2
, (15)

q̂ =
p̂( p̂ + 1) σ 2

(µ − â)2 − p̂σ 2
, (16)

b̂ = â +
p̂ + q̂

p̂
(µ − â). (17)

It is noted that, in a few cases, there is no mathematical solution for this computation

which is compatible with the physical constraints imposed by this study. In that case, the

β2 PDF cannot be drawn and is taken equal to the previous β1 PDF that keeps only µ

and σ .

A.6 The Double Gaussian Distribution

The double Gaussian distribution is equal to a linear combination of two individual Gaussian

distributions G = aG1 + (1 − a)G2 where G1 and G2 are the simple Gaussian PDFs, a

and (1 − a) are the relative weights of each distribution and µ1, µ2, σ1 and σ2 are the means

and the standard deviations of G1 and G2. The computation of these parameters is based on

the “Expectation-Maximization method” (EM hereafter) (see Dempster et al. 1997; Hogg

and Craig 2005 and McLachlan and Krishnan 1997). It is an analytical iterative method that

consists of maximizing the likelihood of having the desired bimodal distribution correspond-

ing to the known sample of LES data. It requires the knowledge of first-guess values for the

distribution parameters to start the iterative computations, built as follows:

– We suppose that a = 0.5, i.e. the two simple Gaussian distributions have the same weight.

– the two means µ1 and µ2 are approximately equal to the two values of s corresponding

to the local maxima

– we use the definition of a Gaussian standard deviation to determine the value of σ1 and

σ2 for each mode: it is proportional to the width, H , of the curve at a height equal to the

half the maximum of the mode considered (H = 2.3548 σs).

To obtain a successful EM algorithm, assumptions are made to ensure its convergence and

adapt it to the irregularity of the LES distributions, e.g. minimal values for standard devia-

tions. Then, after some sensitivity tests for the number of iterations, it seems that 12 iterations

are enough to correctly fit the LES distributions. The five parameters so computed verify the

following expressions:

µ = aµ1 + (1 − a)µ2, (18)

σ 2 = aσ 2
1 + (1 − a)σ 2

2 + a(1 − a)(µ2 − µ1)
2. (19)
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