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Abstract

Background: Short-read sequencing technologies have made microbial genome sequencing cheap and accessible.

However, closing genomes is often costly and assembling short reads from genomes that are repetitive and/or

have extreme %GC content remains challenging. Long-read, single-molecule sequencing technologies such as

the Oxford Nanopore MinION have the potential to overcome these difficulties, although the best approach for

harnessing their potential remains poorly evaluated.

Results: We sequenced nine bacterial genomes spanning a wide range of GC contents using Illumina MiSeq and

Oxford Nanopore MinION sequencing technologies to determine the advantages of each approach, both individually

and combined. Assemblies using only MiSeq reads were highly accurate but lacked contiguity, a deficiency that was

partially overcome by adding MinION reads to these assemblies. Even more contiguous genome assemblies were

generated by using MinION reads for initial assembly, but these assemblies were more error-prone and required further

polishing. This was especially pronounced when Illumina libraries were biased, as was the case for our strains with both

high and low GC content. Increased genome contiguity dramatically improved the annotation of insertion sequences

and secondary metabolite biosynthetic gene clusters, likely because long-reads can disambiguate these highly

repetitive but biologically important genomic regions.

Conclusions: Genome assembly using short-reads is challenged by repetitive sequences and extreme GC contents.

Our results indicate that these difficulties can be largely overcome by using single-molecule, long-read sequencing

technologies such as the Oxford Nanopore MinION. Using MinION reads for assembly followed by polishing with

Illumina reads generated the most contiguous genomes with sufficient accuracy to enable the accurate annotation of

important but difficult to sequence genomic features such as insertion sequences and secondary metabolite

biosynthetic gene clusters. The combination of Oxford Nanopore and Illumina sequencing can therefore cost-

effectively advance studies of microbial evolution and genome-driven drug discovery.

Keywords: Oxford Nanopore MinION, Genome sequencing, Genome assembly, Secondary metabolites, Insertion

sequences

Background

Microbial genome sequencing has revealed how micro-

organisms adapt, evolve, and contribute to health and

disease [1, 2]. Although these were once enterprise-level

projects, technological advances have now reached the

point where microbial genomes can be sequenced rou-

tinely by small teams for a few hundred dollars [1].

These advances have particularly been driven by the

maturation of short-read sequencing technologies such

as those marketed by Illumina, which generate highly ac-

curate reads (> 99%) with lengths ranging from 75 to

300 bp [1]. Although Illumina technologies currently

dominate the sequencing market [1, 2], difficulties re-

main that require further technological advances to fully

realize the potential of microbial genome sequencing.

By their very nature, short reads alone cannot disam-

biguate repetitive genomic regions that are longer than

their read length. Unfortunately, such repetitive regions
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are common in microbial genomes [3–6], and include

ribosomal genes, transposons, insertion sequences,

CRISPR arrays, rhs toxins, secondary metabolite biosyn-

thetic gene clusters, and many others [5]. Repeats lead

to unresolvable loops in the underlying genome assem-

bly graph that are ultimately fragmented into contigs [5,

7]. Because of this, short reads are theoretically incap-

able of closing most microbial genomes.

Genome assembly using most short-read datasets is

also challenged by biases that occur during library prep-

aration and that cause some genomic regions to be

excluded from the final sequencing library. Common

short-read library preparation methods (e.g., the Illumina

Nextera protocol) include PCR amplification steps that

are biased against regions of the genome with extreme

GC contents [8–12]. Such regions are common In bac-

teria, whose average GC content ranges widely from 25

to 75% [13]. Library preparation protocols that use

transposases to fragment DNA may also non-randomly

shear genomes during library preparation [14], causing

further biases that limit the utility of short-read

sequencing.

De novo genome assembly algorithms struggle to as-

semble genomes when intergenic repeats are present

and GC biases skew sequencing coverage [15, 16]. Frag-

mentation of such genomes prevents the accurate identi-

fication of mobile elements, the detection of horizontal

gene transfers, the determination of gene copy number,

and the discovery of biotechnologically important gene

clusters such as those that encode for the production of

secondary metabolites [16, 17]. These deficiencies sig-

nificantly lower the informational value of draft-quality

genomes [18, 19].

Recently, long-read, single-molecule sequencing has

overcome some of the deficiencies of short-read sequen-

cing. Library preparation protocols for single-molecule se-

quencing typically avoid bias-prone PCR steps, and long

read lengths span genomic repeats to unambiguously re-

solve complex genomic regions. Some Illumina-based

technologies such as mate pair libraries and linked reads

(e.g., as commercialized by 10X Genomics) can also gener-

ate positionally linked sequences that span complex gen-

omic repeats [1], but these technologies still require

library preparation protocols that are subject to the biases

discussed above. Pacific Biosciences (PacBio) currently

markets the most widely used single-molecule sequencing

technology, which can produce > 7 Gb per run with read

lengths averaging > 12 kbp [1]. Although the error rate for

PacBio sequencing is high (~ 13%), these errors are

near-randomly distributed and can largely be corrected

during assembly with adequate sequencing coverage [7].

Unlike some Illumina sequencers (e.g., the MiSeq and

MiniSeq), all PacBio sequencers require considerable cap-

ital investment, limiting general access to these

technologies in individual laboratories. Nevertheless, Pac-

Bio sequencing has shown the enormous potential for

long-read, single-molecule sequencing to routinely pro-

duce high-quality microbial genome assemblies that over-

come many of the deficiencies of short-read sequencing.

The Oxford Nanopore Technologies (ONT) MinION

is a more recently developed long-read, single-molecule

sequencing instrument. The MinION is a small bench-

top device that can plug directly into a laptop via a

USB3 port [20] and requires a relatively small upfront fi-

nancial investment relative to PacBio instruments [1].

This affordability and simplicity has enabled the rapid

uptake of MinION sequencing by individual labs world-

wide and facilitated new applications such as tracking

disease outbreaks in low-resource environments [21].

MinION read lengths have no theoretical limit and reads

> 2 million bp long have been reported [22]. As with

PacBio, MinION read quality is low compared to

short-read sequencing technologies [23, 24]. These er-

rors are less randomly distributed than for PacBio se-

quencing [25], meaning that increased read depth alone

cannot completely overcome this high error rate, at least

currently. However, error rates and bias profiles are ex-

pected to improve as the MinION and its associated

base-calling software continues to develop, e.g., as dem-

onstrated by the increased accuracy of new ONT base

callers [26].

Two main strategies have been used to assemble bac-

terial genomes using MinION sequencing [27, 28]. In

the first, MinION reads are used to enhance genome as-

semblies that are generated from short-read Illumina

data. Here, MinION reads can scaffold contigs generated

by Illumina sequencing [29–31] or be directly used in

the assembly process to disambiguate regions of the

assembly graph that cannot be resolved by Illumina se-

quencing alone (e.g., as implemented in the popular

SPAdes and Unicycler software [32, 33]). Alternatively,

MinION reads alone are used to generate an initial gen-

ome assembly [34, 35] that can then be further polished

using either MinION or Illumina reads [34, 36]. Such

polishing is highly recommended for MinION-based

genome assemblies due to their higher error rates rela-

tive to assemblies based on Illumina data [17, 26, 27, 37,

38]. The increasing maturity and throughput of MinION

sequencing is leading to its adoption for routine micro-

bial genome sequencing [39–41].

Both MinION-only [34, 35] and Illumina-hybrid

methods [32, 33] have been validated extensively for bac-

teria with low and average GC contents. However,

whether these approaches offer advantages when assem-

bling bacterial genomes with high GC content remains

unclear [42] (but see [43]). We therefore compared the

ability of Illumina and MinION sequencing technologies

to produce high-quality assemblies of genomes from
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three bacterial genera (Flavobacterium, Aeromonas, and

Pseudonocardia) that range in GC content from 31 to

73% (Table 1). Flavobacterium spp. are gliding bacteria

that can be found in diverse environments and that

include important fish pathogens. Aeromonas spp. are

ubiquitous in aquatic environments and can cause dis-

eases in humans and fish or form beneficial symbioses,

e.g., with fish and leeches [44]. Pseudonocardia sp. are

members of the Actinobacteria and important producers

of antibiotics such as those involved in defensive symbi-

oses with ants (e.g., [45]). Our results validate MinION

sequencing’s ability to generate high-quality assemblies

for all of these genomes, and especially emphasize the

advantages of MinION sequencing when unbiased Illu-

mina sequencing libraries are difficult to generate, e.g.,

for Actinobacteria with high GC content. These im-

proved genome assemblies dramatically improve the

annotation of repetitive genomic regions such as inser-

tion sequences and secondary metabolite biosynthetic

gene clusters (BGCs). MinION sequencing therefore has

strong potential to overcome current limitations of

short-read sequencing technologies and catalyze im-

proved understanding of genome evolution and exploit-

ation of genomic data for drug discovery.

Methods

Description of strains

Three Aeromonas strains were used in this study. Aero-

monas hydrophila str. CA-13-1 (hereafter Ah CA-13-1)

was isolated from the wound of a patient undergoing

post-operative leech therapy in 2013 [46]. Aeromonas

veronii str. CIP107763T (hereafter Av CIP107763T) was

isolated from a mosquito midgut in France in 2015 and

sequenced previously [47]. A. veronii str. JG3 (hereafter

Av JG3) is a derivative of a medicinal leech isolate

Hm21 [48]. All Aeromonas strains were grown either in

LB broth or on LB agar plates for 16 h at 30 °C [49].

The Flavobacterium strains used in this study were all

isolated from necrotic gill tissues of farmed rainbow

trout, Onchorhyncus mykiss, during diagnosis of diseased

fish. Flavobacterium sp. str. ARS-166-14 (hereafter Fs

ARS-166-14) was isolated in October 2014, Flavobacter-

ium columnare str. FC-081215-1 (hereafter Fc

FC-081215-1) was isolated in August 2015, and F.

columnare str. FC-100715-19 (hereafter Fc

FC-100715-19) was isolated in October 2015, all on

TYES agar. Frozen cells were grown on TYES agar, incu-

bated for three days at 20 °C, and then grown in liquid

TYES broth for another 3 days at 15 °C (for Fs

ARS-166-14) and 25 °C (for Fc FC-100715-19 and Fc

FC-08-1215-1) [50].

The Pseudonocardia bacteria sequenced during this

study were isolated from individual Trachymyrmex sep-

tentrionalis ants collected from three locations within

the United States: Paynes Creek Historic State Park, FL

(Pseudonocardia sp. str. JKS002056, hereafter Ps

JKS002056), Magnolia Springs State Park, GA (Pseudo-

nocardia sp. str. JKS002072, hereafter Ps JKS002072),

and Jones Lake State Park, NC (Pseudonocardia sp. str.

Ps JKS002128). Pseudonocardia were visible as white

patches on the ants’ propleural plates, which were

scraped using a sterile needle under a dissecting micro-

scope to isolate Pseudonocardia on Chitin and YMEA

agar media at 20 °C following Marsh et al. [51].

DNA isolation

DNA was extracted from Aeromonas and Flavobacter-

ium isolates following a modified version of a previously

published protocol for large scale genomic DNA isola-

tion [52, 53]. DNA in solution was not micropipetted

during these extractions to minimize DNA fragmenta-

tion. DNA was extracted from single Pseudonocardia

colonies using the Epicentre MasterPure Complete DNA

and RNA kit following the manufacture’s protocol. Each

Pseudonocardia extraction was performed in triplicate

using wide bore tips and taking care to pipette slowly to

prevent DNA shearing.

Table 1 Bacteria used in this study

Strain ID Phylum Genus Species % GC Content Expected Genome Size (Mbps)

Ps JKS002128 Actinobacteria Pseudonocardia sp 73.12 6.60

Ps JKS002072 Actinobacteria Pseudonocardia sp 73.69 6.21

Ps JKS002056 Actinobacteria Pseudonocardia sp 73.31 6.54

Av JG3 Proteobacteria Aeromonas veronii 58.64 4.49

Av CIP107763T Proteobacteria Aeromonas culicicolaa 58.80 4.34

Ah CA-13-1 Proteobacteria Aeromonas hydrophila 61.29 4.76

Fs ARS-166-14 Bacteroidetes Flavobacterium sp 31.61 3.31

Fc FC-100715-19 Bacteroidetes Flavobacterium columnare 31.59 3.32

Fc FC-08-1215-1 Bacteroidetes Flavobacterium columnare 31.56 3.31

aCIP107763T is the type strain for Aeromonas culicicola, which is a later subjective synonym of A. veronii
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Library preparation and sequencing

The quality of all extracted DNA was assessed using an

Agilent TapeStation 2200 protocol for genomic DNA, an

Agilent 2100 Bioanalyzer (High sensitivity DNA chip),

and/or a Nanodrop spectrophotometer. All libraries

were quantified using a Qubit® 2.0 fluorometer. For the

Aeromonas and Flavobacterium strains, NexteraXT Illu-

mina sequencing libraries were constructed by following

the manufacturer’s instructions for genomic tagmenta-

tion, PCR of tagged DNA, and PCR product cleanup.

Libraries were diluted to 4 nM for loading onto an Illu-

mina MiSeq. TruSeq DNA PCR-Free libraries were

created for each Pseudonocardia strain following the

manufacturer’s protocol, shearing the DNA to 550 bp

fragments using a Covaris M22 Focused-ultrasonicator.

All Illumina libraries were sequenced on an Illumina

MiSeq using the 2x250bp protocol at the University of

Connecticut Microbial Analysis Research and Services

(MARS) facility. Demultiplexing was performed using

Illumina Basespace (https://basespace.illumina.com/

home/index).

All genomes were sequenced on a MK1B MinION de-

vice using R9.4 flow cells. Four genomes (Ah CA-13-1,

Av CIP 107763 T, Fs ARS-166-14, and Fc FC-100715-19)

were also sequenced a second time on an R9.5 flow cell

to increase coverage. Aeromonas and Flavobacterium li-

braries were prepared using the SQK-LSK108 Ligation

Sequencing kit in conjunction with the PCR-Free ONT

EXP-NBD103 Native Barcode Expansion kit following

the ONT “Native Barcoding Genomic DNA Sequencing

for the MinION Device” protocol (downloaded from

https://nanoporetech.com/resource-centre/protocols on

Oct 20, 2017) and performed without optional shearing

steps to select for long reads. These genomes were

sequenced on separate MinION flowcells loaded with ei-

ther: (i) Av JG3 by itself (not barcoded); (ii) all three

Aeromonas genomes, barcoded and sequenced together

with one other Aeromonas genome (not discussed here);

(iii) all three Flavobacterium genomes, barcoded and se-

quenced together on one flow cell; and (iv) Ah CA-13-1,

Av CIP107763T, Fs ARS-166-14 and Fc FC-100715-19,

barcoded and sequenced together. Pseudonocardia

libraries were prepared using the ONT “1D gDNA

Selecting for Long Reads Using SQK-LSK108” protocol

(downloaded from https://nanoporetech.com/resource--

centre/protocols on Dec 20, 2016). Each Pseudonocardia

strain was sequenced on an individual flow cell. All

strains were sequenced using the ONT MinKNOW

NC_48h_Sequencing_Run_FLO-MIN106_SQK-LSK108

protocol. The run duration ranged from 12 to 48 h.

Strains Av JG3, Fc FC-100715-19, and Ps JKS002072

were sequenced using two separate MinION runs that

were combined for all analyses, except for the Av JG3

Canu+Nanopolish assembly where the few MinION

reads (< 3000) from the first run were excluded because

of their being processed using base calling software that

was incompatible with Nanopolish.

Base calling and read preparation

MinION reads for Ps JKS002056 and the first Av JG3

run were base-called using the ONT Metrichor 1D

protocol and locally using MinKNOW (ONT; Oct 20,

2017 release), respectively. All other MinION reads were

based-called using Albacore (v.1.2.4). These software

choices were determined by changes made by ONT to

their cloud-based base calling system. All raw data was

deposited in the NCBI database under the BioProject

number PRJNA477342.

We assessed Illumina read quality using FastQC

(v.0.11.5, available from http://www.bioinformatics.bab-

raham.ac.uk/projects/fastqc/). Trimmomatic (v.0.36) [54]

was used remove Illumina adapters, bases at 3′ end of

each read with an average Phred score < 15 over a 4 bp

window, and reads ≤36 basepairs long. Poretools

(v.0.6.0) [55] was used to assess the quality of each Min-

ION dataset and to generate fastq files from basecalled

fast5 files. Barcodes and reads that contained an internal

barcode adapter sequence were removed using Porechop

(v.0.2.3, available from https://github.com/rrwick/Pore-

chop). Nanofilt (v.1.0.5, available from, https://github.-

com/wdecoster/nanofilt) was used to remove reads

shorter than 500 basepairs or having an average quality

score < 9.

Genome assembly

We used several approaches to construct de novo

assemblies of each genome. First, we constructed

MiSeq-only short-read assemblies using SPAdes

(v.3.11.1) [33] or Unicycler (v.0.4.3) [32], representing

the current state of the art. Second, we added MinION

reads to these MiSeq-based assemblies to disambiguate

ambiguous regions in the MiSeq sequencing graph, cre-

ating SPAdes-hybrid and Unicycler-hybrid assemblies.

Third, we constructed MinION-only long-read assem-

blies using Canu (v.1.5) [35]. These MinION-only Canu

assemblies were polished using the same MinION reads

to create Canu+Nanopolish assemblies by aligning Min-

ION reads to the Canu assembly using BWA (v.0.7.15)

[56] and Samtools (v.1.3.1) [57], and then using Nano-

polish (v.3.2.5) [34] for assembly polishing. A second

iteration of Nanopolish was completed for strain Ps

JKS002128 but did not significantly improve its accuracy

(data not shown) and so this strategy was not pursued

further. The Canu assemblies were alternatively polished

using MiSeq reads to create Canu+Pilon assemblies.

MiSeq reads were aligned to the Canu genome using

BWA (v.0.7.15) and then Pilon (v.1.22) [36] was used for

assembly polishing. In total, we created seven assemblies
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for each genome: four based primarily on MiSeq data

(SPAdes, Unicycler, SPAdes-hybrid, and

Unicycler-hybrid) and three based primarily on MinION

data (Canu, Canu+Nanopolish, Canu+Pilon). All com-

mands used for the computational analyses in this study

are included in Additional file 1.

Depth of coverage

MinION data was subsampled from Av JG3, Fs

ARS-166-14, and Ps JKS002128 to determine the mini-

mum read depth required to create contiguous

MinION-based assemblies. Fast5-formatted reads for

each strain were subsampled in the order that they were

acquired from the MinION sequencer to achieve 10X,

20X, 30X, 40X, 50X, (for Fs ARS-166-14, Av JG3 and Ps

JKS002128), 60X (Fs ARS-166-14 and Ps JKS002128

only), and 70X (Ps JKS002128 only) coverage of the

Canu assembly for each strain, calculated using the

mean MinION read length for that strain (Table 2). This

strategy was used to simulate runs stopped after achiev-

ing each level of coverage. All data was processed and

assembled using Canu as described above.

Quality assessment

The contiguity and quality of each genome assembly

was assessed using Quast (v.4.6.3) [58]. Because we

lacked reference genomes for comparison, we instead

assessed the quality of our genomes using several

strategies. First, we compared all Pseudonocardia gen-

ome assemblies to each other based on their shared

k-mer composition using Mash (v2.0) [59]. These

Mash distances were used to construct a phylogeny

using Mashtree (v.0.33, available at https://github.-

com/lskatz/mashtree). We also aligned all assemblies

to their respective Canu+Pilon assembly using MUM-

mer (v3.1) [60] to identify SNPs and indels relative to

the Canu+Pilon assembly. We selected the Canu

+Pilon assemblies as references because of their high

contiguity and error profiles that were similar to the

MiSeq assemblies. However, we stress that the relative

nature of these comparisons does not comprise a per-

fect “gold standard” reference.

The BLAST Ring Image Generator (BRIG v.0.95) [61]

software was used to compare all seven assemblies of

strain Ps JKS002128 and determine the genomic con-

texts in which breaks in these assemblies occurred. The

Canu+Pilon assembly was used as the reference for all

alignments and the BRIG analysis was completed follow-

ing the developer’s protocol. All assemblies were loaded

into BRIG in FASTA format as a single concatenated

sequence.

The local sequence context surrounding each SNP and

indel detected in the nucmer analyses was assessed to

detect systematic biases in our MinION sequencing data.

The 5 base k-mer surrounding each SNP and indel pos-

ition was tabulated, along with the length of any homo-

polymer in which these SNPs and indels were imbedded.

Analyses were calculated separately for both the nucmer

query and reference genome to accommodate our lack

of a true “gold-standard” reference that would allow se-

quencing errors to be unequivocally identified. In prac-

tice, all results were consistent regardless of the

direction in which comparisons were performed. The

frequency of k-mers and homopolymers that surrounded

SNPs and indels were compared to their corresponding

assembly-wide frequencies to identify k-mers and homo-

polymers that were overrepresented among positions

containing SNPs and indels relative to the rest of the

genome. The scripts used to conduct these analyses are

included in the Supplementary Materials.

SNPs and indels can introduce stop codons that create

errors during gene annotation. We therefore compared

Table 2 Summary of MinION sequencing

Strain ID Total Raw
Reads

Total bases
(Mbps)

Mean Length
(bps)

Median Length
(bps)

Max Length
(bps)

N50
(bps)

Coverage
(fold)

Total Reads After
Filtering

Ps JKS002128 119,358 499 9665 2510 244,268 7797 80 87,836

Ps JKS002072 135,898 311 2289 729 678,379 7142 50 70,035

Ps JKS002056 41,096 397 4184 6207 105,595 16,572 64 21,874

Av JG3 (run1) 2718 25 7232 5710 85,387 17,143 5 34,473*

Av JG3 (run2) 42,301 306 9176 4807 90,470 11,741 63

Av CIP107763T 200,362 645 1629 1299 98,351 7545 135 110,391

Ah CA-13-1 136,486 222 1629 808 62,567 2840 46 65,195

Fs ARS-166-14 53,171 289 5442 1583 1,149,252 18,107 90 36,648

Fc FC-100715-19 (run1) 39,376 146 3709 836 84,881 17,593 45 45,194*

Fc FC-100715-19 (run2) 31,121 187 5996 1137 157,214 26,227 58

Fc FC-08-1215-1 39,938 236 5908 1252 106,525 22,063 74 26,486

* indicates the combined total of both runs for that strain
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the effect of genome assembly method on gene annota-

tion using the Anvi’o (v5.2) pangenome pipeline [62,

63] (http://merenlab.org/2016/11/08/pangenomics-v2/).

All genome assemblies were annotated using Prokka

(v1.11) [64] and imported into separate Anvi’o data-

bases for each strain using the gff_parser.py script

(http://merenlab.org/2017/05/18/working-with-prokka/

). HMM models were computed using the

anvi-run-hmms command as described in the Anvi’o

Metagenomics workflow (http://merenlab.org/2016/06/

22/anvio-tutorial-v2//#anvi-gen-contigs-database) to

calculate gene completion and redundancy, which are

measures of gene fragmentation. Similarly, we calcu-

lated the average gene length, the number of genes an-

notated per kb, and the number of singleton gene

clusters that contain genes that are unique to a single

assembly method. Together these metrics show how er-

rors in genome assembly can affect genome annotation.

Biosynthetic gene cluster prediction

Secondary metabolite biosynthetic gene clusters (BGCs)

were annotated in each Ps JKS002128 assembly using anti-

SMASH (v.4.1.0) [65]. Fragmented BGCs were annotated

by their occurring at contig ends. This likely overestimates

the number of fragmented BGCs due to antiSMASH’s ten-

dency to conservatively extend BGCs past their true bound-

aries. Identical BGCs were identified using the

ClustCompare pipeline (available from, https://github.com/

klassen-lab/ClustCompare). Briefly, PfamScan (v.1.6) [66]

was used to annotate protein domains encoded by each

BGC and these domains were compared to each other using

BLASTp [67]. BGCs were considered to be homologous

based on their sharing a minimum ClustCompare similarity

score of 0.3, calculated using a 70% similarity threshold be-

tween domains in different BGCs, a minimum of two hom-

ologous domains shared between BGCs, and a minimum of

50% of the domains in the smaller BGC being homologous

to domains in the larger BGC. The resulting homology net-

works were visualized using Cytoscape (v.3.6.1) [68] to iden-

tify clusters of homologous BGCs. Singleton clusters were

also aligned to the Canu+Pilon genome and individual

Canu+Pilon antiSMASH BGCs using MUMmer v3.1 [60]

to identify homologies that occurred at the nucleotide level

but not at the protein level (e.g., due to high error rates that

might confound gene prediction). Nucleotide-level BGC

comparisons were also conducted using Mash (v.2.0) [59].

Insertion sequence identification

Insertion sequences (ISs) were annotated in the Fs

ARS-166-14 Canu, Canu+Pilon, SPAdes, and Unicycler

assemblies using ISSaga2 [69]. Full and partial IS se-

quences were identified by comparing each assembly

genome sequence to the ISfinder database. The default

detection algorithm and parameters were used for all as-

semblies in this experiment, and both the total number

of hits and those with > 70% amino acid similarity to ISs

in the ISfinder database were recorded.

Results
Sequencing

We sequenced the genomes of nine bacterial strains

using both Oxford Nanopore MinION and Illumina

MiSeq technologies, together spanning a wide range of

GC content (Flavobacterium: 31%; Aeromonas: 59–61%;

Pseudonocardia: 74%). MinION sequencing coverage

ranged from 40-135X and generated median read

lengths of 1629–9665 bps (Table 2). Median MinION

read lengths for Ah CA-13-1 and Av CIP107763T were

considerably shorter than for the other MinION libraries

due to difficulties in extracting high molecular weight

DNA from these strains. Illumina Nextera libraries were

sequenced for all Aeromonas and Flavobacterium strains

with coverage ranging from 30-169X (Table 3). Prelimin-

ary Nextera libraries were also constructed for the Pseu-

donocardia strains, but these were highly biased and

generated extremely fragmented assemblies (1000s of

contigs; Additional file 2: Figure S1). We therefore

instead generated Illumina TruSeq PCR-free libraries for

these strains, with coverage ranging from 71-246X

(Table 3).

Table 3 Summary of Illumina sequencing

Total Raw Reads Total Bases (Mbps) Coverage (fold) Total Reads After Filtering

Ps JKS002128 6,120,982 1536 246 5,475,000

Ps JKS002072 1,766,572 443 71 1,638,060

Ps JKS002056 5,038,846 1265 203 4,736,206

Av JG3 1,488,761 372 79 942,391

Av CIP107763T 566,606 142 30 536,504

Ah CA-13-1 950,886 238 51 873,417

Fs ARS-166-14 2,164,975 541 169 890,703

Fc FC-100715-19 2,072,592 518 162 1,130,797

Fc FC-08-1215-1 1,145,425 286 89 987,428
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Genome assembly

Seven assemblies were generated for each strain, four

based on MiSeq data either alone (SPAdes, Unicycler) or

with MinION data to deconvolute the MiSeq assembly

graph (SPAdes-hybrid, Unicycler-hybrid), and three

based on MinION data either alone (Canu), polished

using the same MinION data (Canu+Nanopolish), or

polished using MiSeq data (Canu+Pilon). Both the

SPAdes and Unicycler assemblies had the largest

number of contigs out of all assemblies generated for

each strain (Fig. 1). These assemblies also typically had

the lowest N50 values compared to the other assemblies.

Ah CA-13-1 and Av CIP107763T were exceptions to this

trend, likely due to their lower quality MinION libraries.

The addition of MinION reads to deconvolute the

SPAdes and Unicycler assembly graphs lowered the

number of contigs and increased the N50 for all assem-

blies (Fig. 1). This highlights the ability of long MinION

Fig. 1 MinION reads improve assembly contiguity. The number of contigs (left), N50 (in Mbp, center), and assembly length (in Mbp, right) are

shown for each of the MiSeq-based (SPAdes, Unicycler, SPAdes-hybrid, and Unicycler-hybrid) and MinION-based (Canu, Canu+Nanopolish, Canu

+Pilon) genome assemblies. Results for Pseudonocardia, Aeromonas, and Flavobacterium are shown in blue, red, and green, respectively
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reads to resolve genomic repeats that otherwise stymied

assembly of these genomes from short reads. Unicycler

consistently outperformed SPAdes during hybrid assem-

bly (the only exception being Av CIP107763T) but not

when assembling MiSeq reads only.

Canu assemblies were more contiguous and had higher

N50 values than all MiSeq-based assemblies, except for Av

CIP107763T Unicycler-hybrid and SPAdes-hybrid assem-

blies and the Ah CA-13-1 Unicycler-hybrid assembly (Fig.

1a, b). These two strains had lower quality MinION librar-

ies (Table 2) that likely compromised the Canu assemblies,

even if they were still more contiguous than the

MiSeq-only SPAdes and Unicycler assemblies. Canu

assemblies were used as the reference for polishing with

either Nanopolish or Pilon, and so the number of contigs

was the same for the Canu, Canu+Nanopolish, and Canu

+Pilon assemblies (Fig. 1). The Canu assembly sizes were

greater than those of any MiSeq-based assembly for all

Flavobacterium and Pseudonocardia strains (up for ~ 14%

for Ps JKS002128; Fig. 1), likely reflecting the MinION’s

ability to overcome biases in the Illumina libraries for

these genomes with low (31%) and high (74%) GC con-

tent, respectively (Additional file 2: Figure S2). This was

not true for the Aeromonas assemblies, likely reflecting

fewer biases in the Illumina libraries for these strains with

more moderate GC content (59–61%). Taken together,

these assemblies demonstrate that MinION sequencing

improves assembly contiguity, especially where Illumina

sequencing libraries are the most biased.

Assembly accuracy

Because we lacked high-quality reference genomes for

our strains, we instead used several comparative analyses

to assess the accuracy of our assemblies. We used Mash

[59] to compare all of our Pseudonocardia assemblies to

each other according to their shared k-mer content and

to construct a distance-based phylogeny (Fig. 2). Canu

assemblies were the least similar to the MiSeq-based as-

semblies, followed by the Canu+Nanopolish assemblies.

This suggests that MinION data alone cannot produce

accurate Pseudonocardia assemblies using current tech-

nologies. These data might alternatively be interpreted

to mean that the MiSeq-based assemblies have lower ac-

curacy compared to the Canu and Canu+Nanopolish as-

semblies, but we consider this unlikely based on

previous research that argues against this interpretation

[17, 27, 37, 38]. Canu+Pilon assemblies were more simi-

lar to the MiSeq-based assemblies, suggesting that pol-

ishing MinION-based assemblies with MiSeq reads is an

effective strategy to generate microbial genome assem-

blies that are both accurate and contiguous. However,

some divergence was observed between the Canu+Pilon

and MiSeq-based genome assemblies. This was espe-

cially true for Ps JKS002128, which appeared to have the

most biased MiSeq library in our study based on differ-

ences in the sizes of the MiSeq-based and

MinION-based assemblies for this strain (Fig. 1). These

differences are consistent with the existence of regions

in the Canu assembly that lacked mapping MiSeq reads,

leaving these regions uncorrected [70]. All genome as-

semblies for the same strain clustered together in the

Mashtree analysis (Fig. 2), indicating that even the high

error rates of the Canu and Canu+Nanopolish assem-

blies did not obscure strain-level phylogenetic

differences.

The Canu+Pilon assemblies were used as a reference

against which to compare all other assemblies based on

their higher contiguity and substantial accuracy. The

high accuracy of MiSeq sequencing meant that all

MiSeq-based assemblies had few SNPs and Indels rela-

tive to the Canu+Pilon assembly (Fig. 3). In contrast, the

Canu assemblies had many more SNPs and indels rela-

tive to the Canu+Pilon assembly, especially for Ps

JKS002056 (Fig. 3). Polishing these Canu assemblies

using Nanopolish reduced the number of indels, and the

number of SNPs to a lesser extent (Fig. 3). However, the

numbers of SNPs and indels were still much higher than

for the MiSeq-based assemblies. In all assemblies, both

SNPs and indels were overrepresented at homopolymers

relative to the distributions expected from the compos-

ition of each genome (Additional file 2: Figure S3). Simi-

lar error profiles have been reported previously [17, 26,

27, 37, 38].

To determine the effect of assembly method on gene

annotation, we used Avni’o to compare annotated assem-

blies for each strain. Illumina-only and Illumina-hybrid

annotations all had similar assembly metrics. Conversely,

the number of genes predicted per kb, singleton gene

clusters, and the percent of redundant genes (Fig. 4) were

higher for the Canu and Canu+Nanopolish assemblies

compared to the Illumina-only and Illumina-hybrid as-

semblies. These high numbers of genes per kb and low

average gene lengths suggest that sequencing errors in-

troduced stop codons that truncated genes and artificially

increased gene counts in these assemblies. Many single-

ton gene clusters annotated in the Canu assemblies were

not present in the Canu+Nanopolish assemblies and vice

versa (Fig. 4, Additional file 2: Figure S4A-C). This sug-

gests that although Nanopolish reduced the number of

annotated singleton gene clusters, such polishing was not

sufficient to correct all sequencing errors and may have

itself introduced other annotation errors. Canu+Pilon an-

notations were most similar to annotations for

Illumina-only and Illumina-hybrid assemblies. However,

the average gene length and number of genes per kb for

both Ps JKS002128 and Ps JKS002056 were smaller and

larger, respectively, than for the Illumina-only and

Illumina-hybrid annotations. This indicates that there is a
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tradeoff between assembly contiguity and annotation

accuracy.

MinION sequencing depth

Canu assemblies were performed using 5–7 different

levels of coverage for strains Av JG3, Fs ARS-166-14,

and Ps JKS002128. These assemblies suggest that the

amount of coverage needed for a high-quality

MinION-based genome assembly is relatively low, but

also depends somewhat on the complexity of each gen-

ome. The contiguity of assemblies for strains Av JG3 and

Fs ARS-166-14 did not improve substantially above 30X

coverage, consistent with previous findings [71]. How-

ever, assemblies for strain Ps JKS002128 improved incre-

mentally up to 70X coverage (Fig. 5), suggesting that

higher coverage may be necessary for genomes with high

GC content. The single 50X Av JG3 assembly also lacked

a plasmid that was present in assemblies for the lower

coverage datasets (data not known). Even though they

were assembled into a few contigs, these assemblies were

not error-free based on the different genome sizes and

N50 values obtained for assemblies using different

high-coverage datasets. The number of SNPs and indels

detected also decreased with increased coverage. How-

ever, Ps JKS002128 required 20X more data to be com-

parable to Av JG3 and Fs-ARS-166-14, again indicating

that high GC organisms may require additional coverage

(Fig. 5). Researchers should therefore assess their goals

for MinION sequencing before progressing with a run

and consider stopping data collection at a certain thresh-

old to conserve flow cells and to decrease sequencing

time and cost.

Biosynthetic gene cluster prediction

One expected benefit of high quality genome assemblies

is that they will substantially improve the annotation of

repetitive genomic regions relative to lower quality as-

semblies. To test this, we compared antiSMASH [65]

secondary metabolite biosynthetic gene cluster (BGC)

annotations for all of our Ps JKS002128 assemblies. Acti-

nobacteria such as Pseudonocardia typically possess

many BGCs, although they are often difficult to assem-

ble correctly [16]. AntiSMASH consistently predicted 12

and 13 BGCs for the SPAdes and Unicycler assembles,

respectively, and 12 BGCs for both the SPAdes-hybrid

and Unicycler-hybrid assemblies (Fig. 6). The extra BGC

in the Unicycler assembly is due to there being two sep-

arate fragments of BGC 1 annotated in this assembly.

More BGCs were predicted for the Canu (17), Canu

+Nanopolish (19), and Canu+Pilon (18) assemblies, in-

cluding 4 BGCs that were found in at least two of these

genomes but not in any of the MiSeq-based genomes

A B

Fig. 2 Comparison of Pseudonocardia assemblies generated during this study. (A): Heatmaps depicting Mash distances between the assemblies of

each Pseudonocardia strain based on their shared k-mer content. Whiter colors indicate greater Mash distances between assemblies. (B): Mashtree

analysis showing the relationships of all Pseudonocardia assemblies to each other, based on Mash distances. The scale bar represents a Mash distance

of 0.003
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(Fig. 6a). These BGCs may lie at particularly repetitive

or bias-prone regions of the Ps JKS002128 genome such

that they are omitted from MiSeq-based assemblies but

present in MinION-based assemblies that are much less

sensitive to these issues. Despite their greater contiguity,

the Canu, Canu+Nanopolish, and Canu+Pilon assem-

blies lacked some combination of BGCs 1, 9, 12, and 13,

all of which were found in all of the MiSeq-based assem-

blies (Fig. 6a). The Canu assembly lacked all 4 of these

BGCs, the Canu+Nanopolish assembly lacked BGCs 9,

12, and 13, and the Canu+Pilon assembly only lacked

BGC 13. These omissions are likely due to gene predic-

tion errors that decreased the ability of antiSMASH to

detect these BGCs (Additional file 2: Figure S5). Such er-

rors may have also been responsible for the prediction of

BGCs 18–21 solely in the Canu or Canu+Nanopolish as-

semblies (Fig. 6a), which are likely false positive annota-

tions based on these BGCs only appearing in individual

error-prone assemblies. MinION-based genome assem-

blies therefore substantially increase the sensitivity of

Fig. 3 Quantification of insertion/deletions (indels, left) and single nucleotide polymorphisms (SNPs, right) in all strains sequenced during this

study, as determined by aligning each assembly to the Canu+Pilon assembly for that strain as a reference
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BGC annotation, but require polishing to limit annota-

tion errors.

Improved genome assembly also reduced the number

of BGCs that were fragmented, i.e., that overlapped with

a contig end (Fig. 6b). Approximately half of all BGCs in

the SPAdes and Unicycler assemblies were fragmented,

reflecting the inability of short-read Illumina data to re-

solve these repetitive genomic regions. The Unicycler

hybrid, and to a lesser extent the SPAdes hybrid, assem-

blies had fewer fragmented BGCs, reflecting the

increased contiguity of these assemblies. The Canu,

Canu+Nanopolish, and Canu+Pilon assemblies all had

very few fragmented BGCs. MinION-based genome as-

semblies therefore do not only increase the frequency of

BGC detection, but also more completely assemble these

BGCs and thus increase their value for genome-guided

drug discovery. The Canu, Canu+Nanopolish, and Canu

+Pilon assemblies did have several annotated gene clus-

ters that were aggregated into a single BGC in other as-

semblies (Fig. 6a). Whether these represent single BGCs

that were fragmented in the MinION-based assemblies

or multiple BGCs that were located adjacent to each

other on the Ps JKS002128 genome is difficult to predict

computationally.

Insertion sequence prediction

To further investigate the effect of genome assembly on

the annotation of repetitive genomic regions, insertion

sequences were predicted in the Fs ARS-166-14 Canu,

Canu+Pilon, SPAdes, and Unicycler assemblies using

ISSaga2 and the ISfinder database [69]. The total num-

ber of full or partial hits to the ISfinder database and the

number of hits with amino acid sequence similarities >

70% are reported in Fig. 7. The Canu+Pilon assembly

had 20 unique insertion sequences with 70% or greater

sequence similarity to the ISfinder database, followed by

the Canu assembly with 15, and then the Unicycler and

SPAdes assemblies with 4 and 3, respectively. Interest-

ingly, the Canu+Pilon assembly also had the greatest

total number of hits, but these likely contain many false

positive results that require further curation.

Discussion
Single-molecule, long-read sequencing technologies such

as the Oxford Nanopore MinION have strong potential

to revolutionize the sequencing and de novo assembly of

bacterial genomes. Existing short-read sequencing

technologies frequently produce genome assemblies that

are broken into 10s–100s of contigs, such as in our as-

semblies generated using only short-read MiSeq data

(Fig. 1). Fragmented genome assemblies prevent accur-

ate annotation of important genome features such as in-

sertion sequences and secondary metabolite biosynthetic

gene clusters (Figs. 6 and 7). Technological improve-

ments are therefore necessary to fully understand and

exploit these genomic features to cure disease and foster

biotechnology.

Fig. 4 Anvi’o analysis of annotation quality. Strains are grouped by species with Pseudonocardia shown in blue, Aeromonas shown in red,

and Flavobacterium shown in green. Each heatmap row corresponds to an individual strain and each column corresponds to a unique

assembly method
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One key reason for poor genome assembly is the in-

herently limited length of short-reads. By increasing the

read length, long-read sequencing technologies such as

the MinION disambiguate genomic repeats and generate

fewer contig breaks (e.g., [38]). This was clearly evident

from our SPAdes- and Unicycler-hybrid assemblies,

where the long MinION reads were able to deconvolute

the assembly graph produced from the MiSeq data and

yielded fewer and longer contigs compared to the

MiSeq-only assemblies (Fig. 1). Such improvements are

likely to continue as MinION-compatible extraction

methods for high-molecular weight DNA are refined.

However, the deconvolution of Illumina-based assem-

blies using long reads assumes that the entire genome is

represented in the Illumina sequencing graph, which

may not be true because of biases in short-read sequen-

cing library preparation. As a result, some regions of the

genome are sequenced to low coverage or excluded en-

tirely, resulting in assembly fragmentation due to miss-

ing data. These problems include PCR biases against

extreme %GC sequences [8–12] and biased insertion of

transposases during library preparation [14]. Reflecting

such biases, our initial Pseudonocardia sequencing ex-

periments that used the Illumina Nextera library prepar-

ation method (which includes both transposases and

PCR) produced genome assemblies with 1000 s of con-

tigs (Additional file 2: Figure S1), compared to the 10 s–

100 s of Pseudonocardia contigs produced using Illumina

TruSeq PCR-free libraries (Fig. 1). Single-molecule se-

quencing methods such as the MinION avoid many of

these biases by sequencing individual template DNA

molecules without using PCR. This is reflected by the

higher contiguity of our Pseudonocardia Canu genome

assemblies compared to the SPAdes- and

Unicycler-hybrid assemblies that used MinION reads to

deconvolute the potentially biased Illumina assembly

graphs (Fig. 1). All of our Flavobacterium and Pseudo-

nocardia Canu assemblies are also larger than those

based on Illumina reads, reflecting the inclusion of

sequences that were missing from the Illumina se-

quencing libraries (Additional file 2: Figure S2). For

Pseudonocardia, these differences were sometimes
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Fig. 5 The effect of coverage on Canu genome assembly contiguity. The number of contigs (top left), N50 (in Mbp, top center), assembly length

(in Mbp, top right), SNPs per 1000 bp (bottom right), and indels per 1000 bp (bottom left) are shown for subsets of the Ps JKS002128 (blue), Av

JG3 (red), and Fs ARS-166-14 (green) MinION reads used in Fig. 1
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substantial (up to a ~ 14% increase in genome size).

These results point to library preparation bias as a

second source of error common to short-read sequen-

cing that can be overcome by long-read,

single-molecule sequencing technologies such as the

MinION, in addition to the ability of MinION reads

to span long genomic repeats.

Our results also highlight the importance of efficient

high molecular weight DNA extraction methods for

MinION sequencing. Of the 9 genomes that we se-

quenced during this study, the two with the lowest

A

B

Fig. 6 Ps JKS002128 genome assembly quality affects secondary

metabolite biosynthetic gene cluster annotation. (A) Homologies

between BGCs predicted for each Ps JKS002128 assembly, with each

row representing a unique BGC in the Ps JKS002128 genome. Filled

boxes indicate the BGCs found in each assembly, colored according

to the type of secondary metabolite that it is predicted to encode.

White boxes indicate BGCs that were not found in that assembly.

Some BGCs occur on multiple contigs or are separated into multiple

gene clusters on the same assembly, indicated by either two or

three polygons within a single box. BGCs may still be fragmented

even if represented by a single box. (B) The total number of complete

and fragmented BGCs predicted in each Ps JKS002128 genome assembly

Fig. 7 Fs ARS-166-14 genome assembly quality affects insertion

sequences annotation. Both the total number of hits and hits

with > 70% amino acid identity to insertion sequences in the

ISfinder database are shown. The former likely includes false-

positive annotations while the latter is more conservative
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median read length (Ah CA-13-1 and Av CIP107763T)

produced the least contiguous Canu assemblies (14 and

32 contigs, respectively). However, this is still more con-

tiguous than the MiSeq-only SPAdes and Unicycler

assemblies for these strains. MinION reads also im-

proved these SPAdes and Unicycler assemblies when run

in hybrid mode, demonstrating the utility of long reads

even if DNA extraction remains suboptimal. There is a

current need for reliable protocols to produce high mo-

lecular weight genomic DNA that is compatible with the

MinION sequencer, and the Oxford Nanopore Voltrax

and Ubik devices (https://nanoporetech.com/about-us/

news/clive-g-brown-cto-plenary-london-calling) show

strong potential to overcome these issues. The degree to

which such devices are compatible with diverse cell wall

chemistries remains to be validated.

Although most of our MinION-based assemblies were

more contiguous than the MiSeq-based assemblies, they

were less accurate. Assemblies generated using Canu

contained a large number of SNPs and indels relative to

our Illumina-based assemblies (Figs. 2 and 3) and lower

quality gene annotations (Fig. 4). These differences were

reduced by using Nanopolish to correct the Canu assem-

bly using MinION reads, and even better results were

obtained using Pilon to correct the Canu assembly using

MiSeq reads (Figs. 2 and 3). However, differences still

existed between these polished assemblies and the Illu-

mina assemblies in some cases (most obviously for Pseu-

donocardia sp. JKS002128). Gene annotation in the

Canu+Pilon assemblies also had a slightly lower quality

relative to the Illumina-only and Illumina hybrid assem-

blies, likely due to frameshifts introduced during the as-

sembly of error prone MinION reads (Fig. 4). Although

it is possible that the MiSeq assemblies contained errors

relative to the MinION assemblies, this would be incon-

sistent with previous work comparing MinION assem-

blies to high-quality reference genomes [17, 27, 37, 38].

Illumina reads are also unable to correct repetitive gen-

ome sequences that cannot be unambiguously mapped

using short reads and so these regions will be uncor-

rected even in Canu+Pilon assemblies [70]. A tradeoff

therefore exists between the higher contiguity of

MinION-based assemblies relative to their higher num-

ber of SNP and indel errors. Minimizing such errors is a

current technological focus of ONT (https://nanopore-

tech.com/about-us/news/clive-g-brown-cto-plenary-lon-

don-calling) and so this tradeoff may lessen in the near

future.

The importance of these assembly trade-offs is

highlighted by our analysis of repetitive genomic regions.

For example, antiSMASH annotated ~ 1/3 more second-

ary metabolite biosynthetic gene clusters (BGC) in the

MinION-based assemblies of Pseudonocardia sp.

JKS002128 compared to the MiSeq-based assemblies

(Fig. 6), confirming our previous observations that BGCs

are poorly resolved by Illumina sequencing [16]. Similar

results were obtained when annotating insertion se-

quences in Flavobacterium sp. Fs ARS-166-14, as ex-

pected due to the highly repetitive nature of these

genomic regions (Fig. 6). The BGCs that were annotated

in the Illumina-only assemblies were highly fragmented,

highlighting the challenge of sequencing these complex

genomic regions (Fig. 7) [16]. Interestingly, the genome

assemblies that contained the highest number of SNP

and indel errors (Fig. 3) contained several BGCs that

were unique to those particular genomes (Fig. 6) and

lacked several BGCs that were annotated in the

MiSeq-based assemblies. These differences are likely due

to the difficulty in accurately predicting gene structures

in highly error-prone genomes due to gene truncation

and misplaced start sites (Additional file 2: Figure S5).

Indeed, our initial ClustCompare analysis to compare

BGCs based on their protein sequences did not detect

many true homologies between BGCs annotated in the

Canu and Canu+Nanopolish assemblies to those anno-

tated in assemblies that were generated or polished

using MiSeq data due to the large number of misanno-

tated gene structures in the Canu and Canu+Nanopolish

assemblies (Additional file 2: Figure S5). These homolo-

gies only became clear using comparisons between nu-

cleotide sequences. High numbers of SNP and indel

errors can therefore prevent accurate genome annota-

tion due to errors in gene structure prediction (Fig. 4).

Several homologous BGCs were also annotated as

belonging to different biosynthetic classes in different

genomes (represented by the different colors in Fig. 6).

Together, these analyses highlight the importance of

contiguous and accurate genome assemblies for the pre-

diction of repetitive elements such as BGCs and high-

light the utility of MinION sequencing in this

application, especially when polished using accurate Illu-

mina reads.

In summary, our data highlights the ability of long-read,

single-molecule MinION sequencing to overcome current

limitations of short-read sequencing, particularly its

inability to disambiguate repetitive genome regions and

avoid biases introduced during library preparation. Over-

coming these limitations greatly improves the annotation

of many clinically- and biotechnologically-important

genomic regions such as insertion sequences and BGCs

(Figs. 6 and 7). However, SNP and indel errors remain

problematic in de novo assemblies generated from Min-

ION data (Fig. 3). This is likely to improve in the near fu-

ture given the extensive research underway in this area.

Because multiplexed genomes can currently be sequenced

to sufficient coverage (40-50X; Fig. 5) on a single MinION

or MiSeq flowcell, combining these data currently requires

~$100–$200 for the MinION and ~$150 for Illumina
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sequencing in reagent and consumable costs per genome.

Combining these two data types is therefore an affordable

means to dramatically increase the quality of any bacterial

de novo genome assembly, regardless of their genome

complexity or %GC content, and compares favorably to

the cost of PacBio sequencing. Future technical advances

will likely decrease these costs further, and we anticipate

that highly contiguous and accurate de novo assembly of

bacterial genomes will become standard in the field in the

very near future.

Conclusions
Short read genome assemblies struggle to disambiguate

genomic repeats and are subject to technical biases. These

biases are especially pronounced for genomes with ex-

treme GC content. Our study validates a framework to

overcome these biases by combining Oxford Nanopore

MinION long reads with high-accuracy Illumina short

reads. Genome assembly using long reads followed by pol-

ishing using short reads typically generated assemblies

that were both contiguous and that facilitated accurate an-

notation. This includes improved annotation of complex

genomic features such as secondary metabolite biosyn-

thetic gene clusters and insertion sequences. An increase

in frame shift errors was observed in some assemblies

constructed from long reads, but anticipated improve-

ments in base calling are likely to reduce these errors.

These advances, coupled with the increasing

cost-effectiveness of genome sequencing, will significantly

improve studies of microbial evolution and genome-based

drug discovery.

Additional files

Additional file 1: Commands used for the analyses in this study. Note

that the original file paths have been retained here, even though

analyses were conducted on different servers. (DOCX 95 kb)

Additional file 2: Figure S1. Summary of Illumina Nextera-based assem-

blies for Pseudonocardia strains JKS002056, JKS002072, and JKS002128.

Figure S2. BRIG analysis for Pseudonocardia strain JKS002128. The Canu

+Pilon assembly was used as the reference strain. Each ring represents a

different assembly type, Canu+Nanopolish (dark blue), Canu (pink),

Unicycler Hybrid (green), Spades Hybrid (teal), Unicycler (orange), and

Spades (purple). The inner rings describe GC content (black) and GC skew

(purple/green). Figure S3. Analysis showing the ratio of SNPs and Indels

present in homopolymeric regions ranging from 1 to 8 basepairs long for

each Ps JKS002128, Av JG3, and Fs ARS-166-14 assembly relative to the

Canu+Pilon assembly. Results for Ps JKS002128 did not detect SNPs

present in homopolymeric regions 7 or 8 basepairs long in either the

SPAdes, Unicycler, SPAdes-hybrid, or Unicycler-hybrid assemblies; these

data points are therefore missing in this panel. Figure S4. Anvi’o

Pangenome display for all strains. The Anvi’o (v.5.2) pangenome pipeline

was used following the developer’s pipelines for importing Prokka gene

annotations and for performing HMM analyses. Assembly methods are

abbreviated as follows: S (SPAdes), U (Unicycler), SH (SPAdes-hybrid), UH

(Unicycler-hybrid), P (Canu+Pilon), N (Canu+Nanopolish), and C (Canu). A.

Pseudonocardia strains. B. Aeromonas strains. C. Flavobacterium strains.

Figure S5. Alignments of Biosynthetic Gene Cluster family 6 (see Fig. 6a).

Some Canu-based BGCs were shorter than the less error-prone BGCs

annotated on the Illumina-based genomes. (DOCX 2669 kb)
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