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Abstract: In the present work, graphene oxide (GO)–polyvinyl alcohol (PVA) composites thin film
has been successfully synthesized and prepared by spin coating techniques. Then, the properties and
morphology of the samples were characterized using Fourier transform infrared spectroscopy (FTIR),
ultraviolet-visible spectroscopy (UV-Vis), and atomic force microscopy (AFM). Experimental FTIR
results for GO–PVA thin film demonstrated the existence of important functional groups such as
-CH2 stretching, C=O stretching, and O–H stretching. Furthermore, UV-Vis analysis indicated that the
GO–PVA thin film had the highest absorbance that can be observed at wavelengths ranging from 200
to 500 nm with a band gap of 4.082 eV. The surface morphology of the GO–PVA thin film indicated
the thickness increased when in contact with carbaryl. The incorporation of the GO–PVA thin film
with an optical method based on the surface plasmon resonance (SPR) phenomenon demonstrated a
positive response for the detection of carbaryl pesticide as low as 0.02 ppb. This study has successfully
proposed that the GO–PVA thin film has high potential as a polymer nanomaterial-based SPR sensor
for pesticide detection.

Keywords: graphene oxide; polyvinyl alcohol; structural properties; optical properties; surface
plasmon resonance

1. Introduction

Sensors are becoming increasingly vital and have already dominated in everyday life.
This is due to the fact that sensors provide numerous advantages such as improved medical
diagnostics, health and safety, environmental monitoring, security for people, and the
performance of energy sources [1–10]. Therefore, the selective identification of materials
and methods is an important issue in the development of sensor technology to ensure that
the sensor is adequately sensitive. In the past few decades, graphene oxide (GO) is one of the
suitable nanoparticles that have received copious attention as a modish class of substance
owing to its promising features in sensor application. GO contains functional groups such
as carboxyl, epoxy, carbonyl, and hydroxyl [11–20], which possess special features such
as the ability to disperse well in a wide range of polymers and organic solvents [21–30].
These properties mean that GO can be applied in nanoelectronics [31,32], catalysis [33–39],
nanocomposites [40,41], sensor technology [42–44], water purification [45–53], and drug
delivery [54–61]. However, to improve the properties of GO and increase its effectiveness in
the field of sensor applications, GO needs to be modified with other materials. According
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to prior research, the composite materials employed for GO modification are metal, metal
oxide, polymer, organic matter, and bio-composite materials (enzyme and antibody) [62–74].
This combination has been demonstrated to have a positive interaction within the various
applications [75–77].

Recently, graphene oxide-based polymer composites have been shown to be the most
interesting research area. The polymer which is composed of macromolecules has been
reported to be used in a wide variety of sensor designs and applications due to its promising
potential [78–91]. Additionally, this combination has been reported as an effective approach
for achieving extraordinary performance and creating new functionalities in diverse applica-
tions due to its distinct shape, high surface area, and tiny size [92–94]. One of the polymers
that are widely employed in a variety of applications is polyvinyl alcohol (PVA). This is
due to its availability, dielectric strength, promising optical properties, being water-soluble,
hydroxyl-rich, and bio-degradable [95–102]. Typically, polymer-graphene composites con-
taining graphene oxide (GO) or graphene platelets were synthesized through exfoliation in
the organic solvent [103–108]. In the matter of water-soluble polymers like PVA, GO would
be the best choice due to its high amount of oxygenated groups making it hydrophilic
and easily dispersed in water [31]. Another advantage is because of its high aspect ratio,
meaning the large lateral size of sheets and minimal thicknesses [109]. Homogenous dis-
persion of GO in the PVA matrix at the molecule level can also enhance the properties of
the mechanical characteristics, electrical conductivity, and thermal stability of the nanocom-
posites [110–115]. Inspired by preceding work, GO–PVA has been extensively reported
to be an excellent material for memory devices, radiofrequency, bone tissue engineering
applications, and humidity sensors [116–127]. Importantly, GO–PVA also offers simple
implementation, it is economical, harmless, non-toxic, and easily degradable.

However, the characterization of this composite material-based thin film is rarely
investigated, and the integration of PVA with low-concentration GO is not reported. There-
fore, it is of interest to investigate further the structural and optical properties of this
excellent composite thin film. To the best of our knowledge, the use of this material as a
sensing element in an optical method for pesticide detection has not yet been reported.
Surface plasmon resonance (SPR) spectroscopy is one of the powerful and label-free optical
methods with high sensitivity [128–134]. This SPR approach is gaining interest among sci-
entists in a wide range of analytical tools for tracing hazardous chemicals [135–142]. Prism
coupler and a gold film are normally used to excite surface plasmon. To further increase
the sensitivity of SPR, various active layers have been developed on the gold film [143–148].
In this study, the properties of GO–PVA thin film have been investigated and incorporation
with SPR attempted for a potential sensing application in pesticide detection.

2. Experimental
2.1. Chemicals

PVA (87–89% hydrolyzed) and carbaryl stock solution 100 mg/mL (98%) were pur-
chased from 3050 Spruce Street Saint Louis, MO 63103 USA. Graphene oxide (4.0 wt%) was
purchased from Graphanea in Spain.

2.2. Preparation of GO–PVA and Pesticide Solution

PVA solution was prepared by dissolving 2.0 g of medium molecular weight PVA
powder in 36 mL of deionized water and was stirred by a magnetic stirrer at 90 ◦C for 1 h.
After that, GO (0.5 wt%) 5.0 mL was produced by diluting the stock solution (4.0 wt%) with
deionized water. To produce the GO–PVA solution, 1.0 mL GO was added with 0.9 mL PVA
and ultrasonicated for 30 min at room temperature. A series of standard solutions of 0.02
to 0.06 ppb of carbaryl pesticide were prepared by diluting the stock solution (100 mg/mL)
with deionized water. In this preparation, the dilution formula M1V1 = M2V2 was used
where M1 is the concentration of the starting solution and V1 is the volume of the starting
solution. Meanwhile, M2 is the concentration of the final solution, and V2 is the volume of
the final solution.
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2.3. Deposition of Thin Films

Firstly, a thin layer of gold was deposited on a glass slip (24 mm × 24 mm × 0.1 mm,
Menzel-Glaser, Braunschweig, Germany) using a SC7640 sputter coater. The coating process
was continued by dropping 0.5 mL of GO–PVA solution on a gold-coated glass slip. To
produce GO–PVA composite thin film, a specialty coating system, P-6708D (Inc. Medical
Devices, Indianapolis, IN, USA) was used. In this process, the glass slip was spun for 30 s
at 3000 rev min. Figure 1 shows the schematic of preparing gold and sensing layer on
thin film.
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Figure 1. Schematic of preparing gold and sensing layer on thin film.

2.4. Characterization and Potential Sensing

To identify the chemical properties of GO–PVA thin film, Fourier transform infrared
spectroscopy (FTIR) was performed using a FTIR spectrophotometerALPHA Bruker with a
wavelength range of 580–4000 cm−1. To determine the absorbance of the sample, UV–Vis-
NIR spectroscopy (UV-3600 Shimadzu) was used and measured in the range of 230–500 nm.
Then the optical band gap energy can be calculated using the absorption peak or maximum
wavelength recorded. Bruker AFM multimode 8 (Quesant, CA, USA) was used to measure
and observe the high topography of GO–PVA thin film in the range of 2 µm × 2 µm.
To evaluate the potential sensing of the thin film, an optical instrument based on an
SPR Kretschmann configuration was developed, as depicted in Figure 2 [149–154]. In
this system, p-polarized light from the source of the He-Ne laser was directly focused
on the prism that was attached to the GO–PVA thin film. Then, carbaryl pesticides at
concentrations ranging from 0.02 ppb to 0.06 ppb were introduced into the SPR hollow
under optimized experimental conditions. After that, the reflected beam was detected
by a large area photodiode and subsequently processed by the lock-amplifier (SR 530) to
produce the reflectance data.
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3. Results
3.1. Structural Properties

To further observe the chemical structural properties of GO–PVA thin film, Fourier
transform infrared spectroscopy (FTIR) appeared to be the preferred technique for studying
the chemical structure. As shown in Figure 3, the FTIR characterizations for GO, PVA, and
GO–PVA thin films were carried out at wavenumber ranging from 4000 to 560 cm−1.
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According to the FTIR spectra, GO shows the structure can be simplistically assumed
in the form of O–H stretching at 3673.81 cm−1, C=O carboxyl stretching at 1750.02 cm−1,
C=C stretching at 1664.93 cm−1, C–O epoxy group stretching at 1664.93 cm−1, C–O alkoxy
group stretching at 1249.39 cm−1, and C–H bending at 901.22 cm−1, respectively. This
analysis is in good correlation with previous studies of GO [155]. Upon examining the
PVA spectra, the width at 3771.67 cm−1 corresponded to the O–H stretching vibration, the
peaks at 1591.18 cm−1 and 1194.79 cm−1 were due to -CH2 rocking symmetrical stretching,
and the crystalline sequence of PVA on C–O stretching vibration. This finding is in good
agreement with the result reported by Lizu et al. (2021) [111]. With the incorporation of
GO with PVA, the FTIR spectra indicated the formation of common properties such as
O–H, C=O, C=C, -CH2, C–O stretching, and C–H bending at 3741.18 cm−1, 1774.84 cm−1,
1689.04 cm−1, 1511.76 cm−1, 1182.03 cm−1, and 882.79 cm−1, respectively. It can be seen
that the peak became more clear at C=O stretching and C=C stretching compared to the GO
single element. The same goes for the -CH2 stretching, C–O stretching, and O–H stretching
compared to the PVA single element. Therefore, these results have proved the existence of
chemical interactions on GO and PVA.

3.2. Optical Properties

The optical properties of GO, PVA, and GO–PVA thin films can be evaluated through
the UV-Vis results obtained in Figure 4. It can be seen that all thin films have different
absorption values at a wavelength of 200 to 500 nm. Clearly, the absorption value on
GO–PVA composites thin film is high compared to GO and PVA in single layers. The
highest absorption wavelength was between 260 and 300 nm. The absorption peak of
approximately 300 nm corresponded to π→π* transitions of C=O.
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The absorbance data can be used to interpret information relating to the optical energy
band gap of polymer nanocomposites. Then, Beer Lambert’s formula is used to calculate
the absorbance coefficient [156]:

α = 2.303
A
t

(1)

where t is the sample’s thickness in m and A is the absorbance value. Followed by the Tauc
equation to evaluate the absorbance coefficient and optical band gap [156]:

α =
k
(
hv− Eg

) 1
2

hv
(2)

where hv represents the photon energy, h is the Plank’s constant, Eg is the optical band gap,
and k = constant value. A rearrangement of Equation (2) becomes:

(αhv)2 = k
(
hv− Eg

)
(3)

Then the band gap Eg of the GO, PVA, and GO–PVA thin films, was estimated by
plotting the (αhv)2 against hv as presented in Figures 5–7.
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It is shown that the data produced for the optical band gap was different for each
component. The highest band gap of 4.090 eV was obtained for GO thin film and the lowest
of 4.039 eV was obtained for PVA thin film. The incorporation of GO and PVA gave the
band gap value of 4.083 eV.

3.3. Surface Morphology

The microscopic characteristics of GO, PVA, and GO–PVA thin films were visualized
well using atomic force microscopy (AFM) in tapping mode. These topographic parameters
are measured using the root mean square (RMS) of surface roughness, which shows the
relative roughness and the standard deviation of the surface height. In this investiga-
tion, the AFM images depict the topography of the composite materials on the gold thin
film at a scan size of 2 µm × 2 µm in two-dimensional (2D) and three-dimensional (3D).
Figures 8a–c and 9a–c illustrated the 2D and 3D images of GO, PVA, and GO–PVA thin
films, respectively. Meanwhile, the AFM result of GO–PVA thin film after being in contact
with the carbaryl solution is demonstrated in Figures 8d and 9d.
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Based on the results obtained in Figure 8a,b, the RMS roughness for GO and PVA thin
films were 6.7 nm and 7.9 nm, respectively. The 2D view of the AFM image of the GO thin
film was relatively rough with the 3D view showing a lot of sharp peaks as compared to
PVA thin film which displays a smoother appearance. The magnitude of immobilization of
GO and PVA thin film increased in RMS roughness which was 8.5 nm as shown in Figure 8c.
The presence of small white rod particles in the 2D image in Figure 8c was attributed
to the GO immobilization of PVA. Subsequently, the RMS values of GO–PVA thin films
were obtained at 9.7 nm when in contact with carbaryl, and the appearance displayed a
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homogenous lattice and grid surface as shown in Figure 8d. The significant increase in
RMS roughness of GO–PVA thin film after being in contact with carbaryl proved to be
attributed to the interaction of GO–PVA with carbaryl.

3.4. Potential Sensing of Pesticide

In this study, an optical sensor based on SPR spectroscopy with Kretschmann con-
figuration was performed. Firstly, the SPR angle for deionized water was determined at
53.5624◦. The angle obtained was used as a reference to compare with the SPR angle for
the various concentration of carbaryl solution ranging from 0.02 to 0.06 ppb. As shown
in Figure 10, the SPR curves of carbaryl solution shifted from 0.02 to 0.06 ppb when com-
pared to the SPR curve of deionized water. The SPR angle for 0.02, 0.04, and 0.06 ppb
of carbaryl solution were 54.3988◦, 54.6750◦, and 54.9501◦, respectively. Overall, the SPR
shifted to the right as the concentration of carbaryl solution increased. Therefore, this ex-
perimental data indicates that gold-GO–PVA thin film has high sensitivity in the detection
of carbaryl pesticides.
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4. Discussion

In the FTIR spectrum of GO–PVA thin film, the main functional group in GO and PVA
elements such as C=O stretching, C=C stretching, -CH2 stretching, C–O stretching, and
O–H stretching were obtained, which indicated the interaction for both elements. To further
reinforce this point, the formation of hydrogen bonding in the GO–PVA thin film will be
emphasized. Basically, O–H stretching bands are sensitive to hydrogen bonds [157,158].
Therefore, the results of this study can conclude that the presence of hydrogen bond inter-
action with oxygen-containing GO and hydroxyl groups on the PVA chain is detrimental to
the hydrogen bond between the PVA chains. It can be seen in Figure 3, the peak for O–H
stretching shifts from 3771.67 cm−1 in pure PVA to lower wavenumbers of 3741.18 cm−1,
showing a decrease in hydrogen bonding among the hydroxyl groups in PVA chains.

In the following study, the UV-Vis spectroscopy result showed a high absorbance
spectrum on the GO–PVA thin film in the range of 260 to 300 nm. It may be due to the
homogeneous dispersion of GO in PVA, which allows for optimal UV light absorption. It
could possibly be attributed to UV light scattered from the interface formed by hydrogen
bonding between the GO and PVA on the gold thin film [159]. When GO was added to
PVA, the band gap was reduced compared to the GO band gap. This could be related to
the integration of GO’s new energy levels that form between the conduction and valance
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bands [160,161]. It also could interrupt the packing of polymer chains by GO resulting in a
decrement of the crystallinity of the nanocomposites-polymer [162].

In order to visualize the GO, PVA, and GO–PVA thin films before and after contact
with carbaryl, the AFM has been employed. Clearly, the thickness of immobilization GO
and PVA thin film increased in RMS roughness which is 8.5 nm compared to a single
element. This is attributed to the association of those two materials via hydrogen bonds
formed between the oxygen-containing groups in GO and the hydroxyl groups in PVA [163].
This finding also shows that GO is well incorporated and dispersed in the PVA matrix
and that it increases crystallinity by the increases the thickness. When the carbaryl was
introduced to GO–PVA thin film, the RMS roughness was significantly increased to 9.7 nm.
The combination of GO with PVA improved carbaryl adsorption, which increased the
shift of resonance angle for this carbaryl solution. Hence, this result indicates that GO
immobilized PVA can be used as a sensing element in the detection of carbaryl.

A better insight into the performance of the composite material to detect the carbaryl
was accomplished by the SPR spectroscopy method. In this platform, the change in the
resonance angle was observed for deionized water and various concentrations of carbaryl
ranged from 0.02 ppb to 0.06 ppb. It can be seen that the SPR reflectance curve shifted to the
right which indicated that the resonance angle increased with the increase of concentration
carbaryl. This result is also attributable to analyte-ligand interaction, which is caused by
changes in the refractive index and thickness of the GO–PVA sensing layer [164]. This is
aligned with the AFM result, which shows that the presence of carbaryl alters the thickness
of the sensing layer. Additionally, this study indicates that the sensitivity obtained is
13.78◦/ppb. As a result, it is confirmed that GO–PVA thin film has a considerable positive
correlation with carbaryl-based SPR optical sensor at a low concentration of 0.02 ppb.

The possible research directions for future work in this study may be considered in the
selectivity of the composite material in the detection of carbaryl. This work also indicates
that future work may be interested in carbaryl detection by using nanocomposites immobi-
lization with a polymers-based SPR method without using any antibodies or enzymes in
the fabrication of materials.

5. Comparison GO–PVA with Other Materials-Based Optical Methods to Detect Carbaryl

Thus far, most detection of carbaryl used antibodies and enzymes as the recognition
element. There is no doubt that antibodies and enzymes have many advantages in various
applications, especially in the field of biosensors [165,166]. However, they also have some
drawbacks such as being expensive, complicated to prepare, requiring desirable storage
properties, instability, and poor reproducibility [167–169]. To address the mentioned issues,
this work for the first time proposes the use of GO–PVA thin film as a sensing element
that is inexpensive, requires simple preparation, is easy to operate, more stable, repeatable,
and, most importantly, has a high sensitivity. The comparison of the performance of this
composite material compared to the previous study that used various materials to detect
carbaryl based on the optical method is given in the table below. Based on Table 1, it
can be concluded that the development of of a carbaryl pesticide detection-based optical
method has attracted extensive research interest with the use of various materials including
molecular imprinted polymer, metal oxide, and quantum dots. It also can be seen that the
GO–PVA sensing layer has the lowest limit of detection compared to the others. Therefore,
this work indicates that polymer nanocomposites prove to be a good candidate for carbaryl
detection at a low level.
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Table 1. Comparison of the lowest detection carbaryl with various material-based optical sensors.

Materials Limit of Detection References

4-acetamidobenzenesulfonyl azide-AuNPs 50.00 ppb [170]
acetylcholinesterase 20.00 ppb [171]

3,5-di(2′,5′-dicarboxylphenyl)pyridine 6.70 ppb [172]
idophenyl acetate-acetylcholinesterase 2.01 ppb [173]

silver reduced-graphene oxide 1.50 ppb [174]
monoclonal antibody 1.41 ppb [175]
monoclonal antibody 1.38 ppb [176]

flavourzyme-stabilized gold nanoclusters 0.47 ppb [177]
graphene quantum dots 0.36 ppb [178]

carbon quantum dots-AuNPs-acetylcholinesterase 0.20 ppb [179]
cadmium tellurite quantum dots 0.12 ppb [180]

monoclonal antibody 0.05 ppb [181]
cadmium selenide/zinc sulfide quantum dots 0.03 ppb [182]

graphene oxide-polyvinyl alcohol 0.02 ppb This study

6. Conclusions

According to the results stated above, the characterization properties of the graphene
oxide–polyvinyl alcohol (GO–PVA) thin film were successfully synthesized and investi-
gated. These research results also represent the first milestone in sensing performance for
GO–PVA thin film in the detection carbaryl-based-SPR method. From the investigation of
structural properties by FTIR, the result confirmed that the surface interaction between GO
and PVA thin film as the main functional group was obtained with the composite material.
Then the UV-Vis was employed to investigate the optical properties. The UV-Vis result
obtained high absorption and a lower band gap value in GO–PVA thin film compared
to the GO single element. Next, the surface morphology was analyzed by AFM, which
validates the interaction of the GO–PVA thin film and carbaryl based on the increment in
the thickness. Meanwhile, the as-prepared GO–PVA thin film exhibited a good sensing
performance-based SPR method when the reflected curve shifted to the right with the in-
creased concentration of carbaryl. This result indicates the high sensitivity in the detection
of carbaryl by the composite material. The high sensitivity of the SPR sensor makes this
GO–PVA an appealing recognition element for carbaryl detection while also opening up a
new path for pesticide sensor applications based on nanomaterials and polymers.
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