
Purdue University
Purdue e-Pubs
International Refrigeration and Air Conditioning
Conference School of Mechanical Engineering

1992

Evaluation of Suction Line-Liquid Line Heat
Exchange in the Refrigeration Cycle
P. A. Domanski
National Institute of Standards and Technology

D. A. Didion
National Institute of Standards and Technology

J. P. Doyle
Giant Food

Follow this and additional works at: http://docs.lib.purdue.edu/iracc

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/
Herrick/Events/orderlit.html

Domanski, P. A.; Didion, D. A.; and Doyle, J. P., "Evaluation of Suction Line-Liquid Line Heat Exchange in the Refrigeration Cycle"
(1992). International Refrigeration and Air Conditioning Conference. Paper 149.
http://docs.lib.purdue.edu/iracc/149

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Firacc%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/me?utm_source=docs.lib.purdue.edu%2Firacc%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engineering.purdue.edu/Herrick/Events/orderlit.html
https://engineering.purdue.edu/Herrick/Events/orderlit.html


EVALUATION OF SUCTION LINE· LIQUID LINE HEAT EXCHANGE 
IN THE REFRIGERATION CYCLE 

P.A. Domanski and D.A. Didion 
National Institule of Standards and Technology 

Gaithersburg, MD 20899, USA 

J.P. Doyle 
Giant Food, Inc. 

Washington, DC 20013, USA 

ABSTRAcr 

The paper presents a theoretical evaluation of the performance effects resulting from the 
installation of a liquid line! suction line heat exchanger (llsl·hx). It examines cycle the parameters and 
refrigerant thermodynamic properties that determine whether the installation results in improvement 
of COP and volumetric capacity. The study showed that the benefit of application of the Jlsl-hx 
depends on a combination of operating conditions and fluid properties • heat capacity, latent heat, and 
coefficient of thermal CJtpansion • with heat capacity being the most influential property. Fluids that 
perform well in the basic cycle are marginally affected by the llsl-hx, and the impact on the 
Coefficient of Perfo~mance and volumetric capacity may be either positive or negative. Fluids 
performing poorly in the basic cycle benefit from the llsl·hx installation through increase of the 
Coefficient of Performance and volumetric capacity. 

NOMENCLATURE 

{j ,. (1/v) · (avtaT)
2, ~oefficient of thermal expansion · 

COP = Coefficient of Performance 
Cp = heat capacity at constant pressure 
hr1 = latent heat of evaporation 
P = pressure 
q = evaporator capacity per unit mass 

of circulating refrigerant 
q. = volumetric capacity (ojv at suction) 
s = specific entropy 
T = temperature 
v = specific volume 
WM = molecular weight 
w = work of compression per unit mass 

of circulating refrigerant 
r = c tc., isentropic coefficient · 

= 100%(T1'-T1)/(T3-T1), effectiveness of the llsl-hx 

INTRODUCTION 

Subscripts: 
c = condenser 
cr = critical 
e = evaporator 
1 =liquid 
nb = normal boiling point 

=reduced 
v ,. vapor or volumetric 
1-4 = key locations 

in a cycle, 
per Figures 1 and 2 

Superscript ' denotes 
the llsl-hx cycle. 

Among many possible variations of the basic refrigeration (vapor compression) cycle, the cycle 
with the liquid line/suction line heat exchanger (llsl·hx) is used probably most often. As a result of 
employing this intra-cycle heat CJtchange, the high pressure refrigerant is subcooled at the expense of 
superheating the vapor entering the compressor. Schematics of hardware arrangement for the basic 
cycle and cycle with the llsl-hx are shown in Figure I; the reali2ed cycles are outlined on the pressure­
enthilpy diagram shown in Figure 2. 
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Figure 1. Schematic of hardware arrangements for the basic cycle and cycle with the liquid 

line/ suction line heat exchanger. 

The use ofliquid line/suction line heat exchangers is widespread in commercial refrigeration. The 

heat exchangers are often employed as a means for protecting system components, by helping to 

ensure single-phase liquid to the expansion device and single-phase vapor to the compressor. In 

residential refrigentors, a capillary tuhe/suction line heat exchanger is used to heat the suction line 

above the dew-point temperature of ambient air, thus preventing condensation of the water vapor on 

the outside of suction line. 

Employing an intra-cycle heat exchanger alters refrigerant thennodynamic states in the cycle, 

which may have significant, positive or negative, performance implications. For any fluid and system, 

a llsl-hx increases refrigerant temperature at the compressor inlet and outlet, which is a shortcoming. 

The Coefficient of Performance (COP) and · volumetric cavacity may increase for some 

fluid/application combinations, while for others they may decrease. 

Figure 3 provides an example of the impact of the llsl-hx on COP, evaluated by theoretical 

calculations for five different refrigerants. The ordinate is a ratio of COP obtained for a given 

effectiveness of the Jlsl-hx (E) and COP obtained for the same fluid working in the basic cycle (E=O). 

For Rl34a, the increase of COP was the highest, as much as 9.1% at the theoretical limit of 100% 

effectiveness of the heat exchanger. On the other hand, at low values of the llsl-hx effectiveness, R22 

showed degradation in performance, some of which was recovered at 100% effectiveness. 

A number of publications considered intra-cycle heat exchangers. Vakil [l] provided a general 

discussion on the application of high-pressure/low-pressure side heat exchange in systems using pure 

refrigerants and mixtures. Angelino and lnvemizzi [2] theoretically evaluated various fluids for the 

heat pumping application. They defined the index of molecular complexity, primarily dependent on 

gas heat capacity, and pointed out that, for fluids having a high index value, cooling of the liquid line 

w 
a: 
;:) 
C/1 
C/1 w 
a: 
"-

ENTHALPY 

may be mandatory, if a reasonable 

efficiency is to be achieved. McLinden 

(3] performed analysis of llsl-hx cycles 

employing a semi-theoretical cycle 

simulation model, which included 

representation for the evaporator and 

condenser, and tempenture profile of the 

sink and source heat transfer fluids. He 

concluded that fluids having a high vapor 

heat capacity can simultaneously achieve 

high capacity and efficiency. Domanski 

and McLinden [4] presented simulation 

6<1 • ~.tl'1-T1l results showing different relative 

rankin.gs of refrigerants studied 

depending on the cycle used for 

performance comparison (llsl-hx or 

reversed Rankine cycle). Kazacki [5) 

Figure 2. Key refrigerant state points in the basic 

cycle and llsl-hx cycle 

presented dimensionless equations for 

COP and volumetric-capacity 

effectiveness of the internal heat 
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1.12 ....... ---.---...----r---..---,-, exchange. A thorough" discussion of 
liquid-subcooling and vapor-superheating 
effects is given in the book by Gosney 
[6]. 
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, _ This paper presents an evallijltiO!I of 
the liqUid linelluction line heat exchange 
on a theoretical basis. It examines the 
cycle paramete,rs- and refrigerant 
thmnQdynamic prOperties that determine 
whether the installation of the 1lsl-hx 
results in improvement of COP and 
volumetric capacity. Twenty nine fluids 
were screened for their sensitivity to the 
liquid line/suction line heat exchange and 
evaluated for a few practical applications. 

1111· hx EFFECTIVENESS(%) 

Figure 3. Change of the COP at different effectiveness 
of the llsl·hx at T,=·23'C and T,=42.5'C 

PERFORMANCE IN THE BASIC AND LLSL·HX CYCLE 

The Cgefficiept of Perfounance 

Consider the performance of a vapor compression cycle with_ tile liquid line/suction line heat 
exchange, taking as a reference the performanCe: of the same cy~lewithout _the-~cat exchange at the 
same saturation temperatures in the evaporator and the condenser. -Figure 2· presents the two cycles 
considered. By definition, we may calculate the COP for these cy~les (an apostrophe denotes the·llsl--

, hx cycle): -

COP" ..i, · 
w 

l _,_ t.q 
COP' - q + t.q "' COP __ q_ 

w + t.w 1 .. t.w 
w 

.. COP (l • t.q - ~). 
q w 

by Taylor series, neglecting higher order terms. 

The COP multiplier, (1 + t.q/q- t.w/w), has to be greater than one if the cycle COP is to benefit 
from the llsl heat exchange. For obvious reasons, Aq/q is always greater than 0. Also, t.w/w is 
always positive, since the slope of co~stant entropy lines (which idealize the compression process) 
decreases with increasing vapor superheat on the pressure-enthalpy. diagram (Figure 2). Thus, the 
relative rates in which t.q/q and 4w/w change determine the performance impact of the llsl-hx. 

We can evaluate the terms involved ·using a few simplifying assumptions. Considering that 
isotherms in the liquid region are nearly vertical on the pressure.enthalpy diagram, we can express 
the evaporator capacity, q, in terms of fluid properties and the evaporator and condenser temperatures: 

q "' hr, .• - c,,, • (T, - T.) where c . - __ I_ J T. c dT. 
p.l T-T T •·' ' . . 

The change in the evaporator capacity, 4q, is equal to the amount of heat exchanged between the high­
pressure liquid and low-pressure suction vapor: 

<lq z c,.. . (T,, - T,) where - 1 IT;' c,.. "' '1"'"=---T T c,,v dT. 
I t I I 

Treating refrig~t vapor as ideal gas with a constant healcapacity, we can express the work of 
i~nr,ropic compression by the familiar relation: 
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and 

Introducing these relations and rearnnging, we obtain the following equation for a fractional COP 

change of the llsl-hx cycle over the basic cycle: 

COP' 
.COP 

For this ratio to be greater than 1, 

VI' -VI 
where B. • is an avemge coefficient of theonal expansion. 

vt'(Tt' - T1) 

The derived equation allows one to make a p_rcliminary evaluation of the COp improvement 

potential due to installation of the llsl-hx. Also, it provides us with the insight as to which properties 

influence the COP of the llsl-hx cycle. The !<Quation indicates that the COP improvement is advanced 

if hr1,.1c~,v and Bare minimized, and (T. - TJ · cJ>.1/cp,v is maximized. The ratio of heat capacities 

of liquid and vapor exerts a stronger influence at large tempemture lifts between the evaporator and 

condenser. The effect of all the terms is scaled with the amount of superheat gained by the suction 

vapor, T 1• - T 1, which at the theoretical limit is equal to the difference between the temperatures of 

the saturated refrigerant in the evaporator and condenser. 

During our discussion, we have to remember that we are examining the relative performance -of 

the llsl-hx cycle using as a reference the performance of the same fluid in the basic, reversed Rankine 

cycle. We may also remind ourselves that relations other than described above influence refrigerant 

performance in the basic refrigemtion cycle. -

A gtaphical representation of the "goodness• of thermodynamic properties for the reversed 

Rankine cycle (and also for the Carnot cycle) are the slopes of the liquid and vapor saturation lines 

on the ~emperature-entropy diagram. Ideally, both lines should be vertical. On the ·c'ompression side, 

with_ a pOSitive slope of the saturation line, the end-State of the compression Would-lay within the twO­

phase region - an undesired refrigerant condition for positive displacement compressors. With a 

negative slope, excessive compression work is required. On the expansion side, only a positive slope 

of the saturated liquid line is possible (Morrison, [1]). This line's gtadient is related to the part of 

evaporator capacity that is lost due to liquid flashing. 

dT 

ds 

The satumtion-line slopes can be represented as proposed by Duffield and Hodgett [8]: 

T 

where~· f1 and v are values forth~ ph~ (liquid or_vapor) for which the saturatio~ line is_c~nsidered. 

The saturation lines would be verttcal tf the denommator was equal to zero. Thts condttton can be 

satisfied on the vapor line but cannot for the liquid line due to a small value of 131 and v1 being much 

smaller than v.. Since the slope of the saturated liquid line is always positive, it follows that 

perfoonance of any refrigerant in the reversed Rankine cycle would. improve if liquid heat cap~ci~y 

were ·smaller and the latent heat larger. We should note that the opposite property trends, larger hqutd 

heat capacity and smaller latent heat, result in performance improvement when a llsl-hx is installed. 
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Figure 4. The relative COP of the llsl-hx 
cycle (100\i llsl-hx effectiveness) at T,,,=0.82 
and T,,,=0.65 as a function of c;, .• 
of sat. vapor at T,=0.65 

1~ 

The twenty nine fluids listed in 
Table 1 were screened for their 
performance . sensitivity for the liquid 
line/suction line heat exchange. The 
performance was simulated for the basic 
cycle and the llsl-hx cycle at the same 
rcduCQI temperatures in the condenser 
and evaporator, T,,, = 0.82 and T,,, = 
0.65, respectively, and with the 
assumption of isentropic compression. 

The selection .of the same reduced 
temperatures, rather than absolute 
temperatures, allowed examining the 
fluids at their best operating temperature 
range, while testing them against the 
same COP limit of the Camot cycle, in 
this case equal to 3.82. On the other 

hand, the choice of the same reduced temperatures resu~ts in larger temperatures lifts for fluids of 
higher critical temperatures, emphasizing the ratio of liquid and vapor heat capacities as the 
influencing factor for a COP change. 

Based on the simulation results, we examined which of the relevant thermodynamic properties (see 
Table 1) have the most significant impact on the COP change of the llsl-hJ cycle over the COP of the 
basic refrigeration cycle. The tightest "eyeball fit" was obtained for vapor heat capacity at constant 
pressure at the evaporator outlet, shown in Figure 4. A similarly good fit was obtained for liquid heat 
capacity; the latent heat of evaporation and the coefficient of thermal expansion correlated more 
poorly. 

The dominating impact of heat capacity on the performance of the basic refrigeration cycle can 
be demonstiated analytically considering the denominator in the relation for dTfds. As pointed out 
by Morrison [9], at the normal boiling point, we can approximate the latent heat of evaporation by the 
Hildebrand variation of the Trouton's law [10]: 

h,, ,. d • T,. + R · T,. • lnT,. + d,.,. 

where d is a constant, and d.,. represents .a small correction dependent on the shape of mole<;ule and 
its polarity. Noting that v.> >v1 and {j""lfT for ideal gas; we obtain the relation for the vapor side: 

v 
c, - {j, • h,. v ~ v • -c, - (d + R • InT .. + d.,.fT,.) , . ' 

in which variation of c, between different fluids dominate the value of the relation since InT,. is a 
weak function in comparison. For the saturated liquid line, this strong influence of c, is even more 
apparent since {31 < < (3. and v. > > v,. 

Figure S presents the COPs obtained for the basic cycle and for the llsl-h:\ cycle at 100% 
effectiveness of the liquid line/suction line heat exchanger. The results are arranged in the ascending 
order of vapor heat capacities at constant pressure, c, ... of the evaluated refrigerants. Table I lists 
the refrigerants and their relevant properties in the ascending order of critical temperatures. 

Figure S shows that the COPs of fluids working in the basic cycle are significantly different. It 
is interesting to notice that the fluids· which perform particularly poorly in the basic cycle benefit most 
profoundly from switching to the llsl-hx cycle. Refrigerants rated best for the basic cycle marginally 
benefitted from the llsl-hx or, in a few cases, their performance even deteriorated. If we consider the 
best refrigerant results independently of the application cycle, their COPs are much more uniform. 
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2.0 

The Volumetric Capacity 

Figure 5. The COP of the basic cycle 

and llsl-AA cycle for T .,,=0.65 and 

T.,,=O.S2 

(The horizontal short lines mark the 

COP for the basic cycle. The vertical 

lines indicate the difference between the 

COP for the basic cycle and llsl-hx 

cycle.) 

Following the same approach as for the COP, we may derive the expression for the volumetric 

capacity for the llsl-hx cycle, q,'. Starting with the volumetric capacity for the basic refrigeration· 

cycle, u a reference, · 

the following equation may be obtained for the volumetric capacity of the llsl-hx cycle: 

1+~q 

q,' "'q q 
·~ 1+-' 

v, 

The term ll.v1/v1 is equal to t:J.w/w, if ideal gas is assumed. Thus, by comparison with the expression 

for COP of the llsl-hx cycle and with limitations of the assumptions made in deriving these equations, 

the rate of change of the volumetric capacity is equal to the rate of change of the COP. 

Simplified yi Enct Theoretical Calculations 

Simplified calculations (performed with the aid of the derived equations) will cany errors resulting 

from simplification made during derivation of these equations. Volumetric-capacity calculations will 

carry the error of representing the difference of enthalpy of saturated liquid at two temperature levels 

by the product of the temperature difference and mean heat capacity at a constant pressure. COP 

calculations will be affected by the same error, as well as by the error of assuming the compression 

process as that of ideal gas. 

These two errors are not involved if we perform calculations using the generic equations for the COP 

and· volumetric capacity, and evaluate all the properties needed using an equation of state·and other 

rigorous thermodynamic relations. Such an evaluation is performed by CYCLEO, a theoretical 

simulation program, which is based on the Camahan-Starling-DeSantis equation of state [11]. 

Simulation results of CYCLEO for the selected 29 fluids are displayed in Figure 6. in the ascending 

order of c,. .• of the refrigerants. With the exception of three fluids (8, 15, and 19) which are barely 

sensitive to l!sl-hx, the impact of the Jlsl-hx on the COP and volumetric capacity is in the same 

performance direction (positive or negative), the impact on the volumetric capacity being always 

greater than that on the COP. It wu shown earlier that the simplified equations would predict an 

equal impact for the COP and volumetric capacity. 
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To evaluate the accuracy of the 
simplified equations, we compared 
prcdil,:tions by these . equations and 
CYCL_EO .. The predic.tions for volumetric 

a 
1 

2 • 1v
11

s 
8

1s
12 

e1 .1328212l1723~11102822a711JF' 
FIEFRlGERAHT DESIGNATION (perT- 1 I 

. ~pacity were almost identical, on average 
within 0.2~, The COP results were more 
~read. Since tire. COP and volumetric­
capacity results calculated by the derived 
equations are identical, and the volumetric 
capacity results for both methods are very 
close, the spread between the COP and 
volumetric capacity change shown in 
Figure 6 is also repieseiJtative of the 
difference between the COP predictions 
by the derived equations and CYq .. EO. 
We may conclude that the simplified 
equations may be used with reasonable 
confidence for a preliminary fluid 
evaluation. 

Figure 6. Change in the COP and volumetric capacity 
due to llsl-hx (100~ effectiveness) referenced 
to performance of the basic cycle at T,,,=0.82 and 
T,,,=0.65 

APPLICATION CHARTS 

Among many possible graphical representations of the impact of the llsl-hx on the system COP, the representation using as coordinates a change of the COP (COP' -COP) and the temperature lift (temperature difference between the evapotator and condenser, T,-TJ proves to be quite simple. In this coordinate system, the Jines denoting different possible evaporator temperatures, T,, are almost straight. 

Figure 7 shows charts genera~ for four refrigerants - Rl2, RJ34a, RJ52a, and R22 - assuiJ!ing 1(10% effectiveness of the liquid-line/suction-line beat exchan&er- Besides its simple form, the important feature of these charts is that they clearly sepante operating conditions for which the 
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Figure 7. Change in the COP for R12, Rl34a, Rl52a, and R22 f'?r various evaporator temperatures and temperature lifts. 
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implementation of the llsl-hx can be beneficial or detrimental to the system COP. We can see that. 

even for RI2,- which is commonly regarded as the_ refrigerant benefiting from the llsl-hx, a loss in the 

COP will occur for a low evaporator temperature and low temperature lift. For example, forT,=· 

30°F and 6Q•F temperature lift the loss in the COP will be approximately 0.09, while for the same 

lift but T,=4Q•F, the COP will increase by 0.06. The operation ranges marked in the charts 

correspond to a domestic refrigerator for RIS2a, a domestic refrigerator and water chiller for Rl2 and 

R 134a, and an air ·conditioner and a supermarket refrigeration unit for R22. 

Tiiis impact on the COP can be explained considering changes in values of the relevant refrigerant 

properties utilized in the equation for COP'/COP. At a higher temperature, heat capacities are larger, 

while the latent cap;icity and coefficient of thermal expansion have smaller values. All these trends 

positively impact the COP for Usl-hx cycles. 

Plots generated for different refrigerants differ by the stope of the evaporator temperature lines 

and their positions with respect to values of the tempemture lift on the abscissa. Steeper lines for the 

evaporator temperature indicate stronger sensitivity of COP to intra-cycle heat .transfer between the 

suction line and liquid line. 

CONCLUDING COMMENTS 

The benefit of application of the intra-cycle heat exchange between the liquid line and suction line 

depends on the combination of the operating conditiOns and fluid properties - heat capacity, latent heat, 

and coefficient of thermal expansion • with heat capacity being the most influential property. Fluids 

that perform well in the basic cycle are marginally affected by the llsl-hx, and the impact on the·COP 

and volumetric capacity may be either positive or negative. Fluids performing poorly in the basic 

cycle benefit from the Ilsl·hx installation by increase of the Coefficient of Performance and volumetric 

capacity. 
This paper describes a fundamental analysis of llsl·hx application; The results presented are based on 

theoretical evaluations using thermodynamic properties, with the assumption of the ·isentropic 

compression, no-pressure-drop infinite heat exchangers, and no-pressure-drop liquid line/suction line 

heat exchanger. In a real system, other factors such as transport properties, heat exchanger design, 

heat transfer fluid temperature profiles, compressor performance, etc., will also affect the system 

performance. 
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Table 1. Selected Properties of Screened Refrigerants 

Refrigerant T, T, WM C,,t c,,Y hr, .• 13. T,-T, P/P, (K) (K) (g/mo1) (1/mo1) (1/mo1) (1/mol) (1/K) (K) 

1 R14 227.5 147.9 88.0 93.7 41.7 11563.2 0.007810 38.7 7.6 2 R23 299.1 194.4 70.0 100.7 42.3 16812.3 0.005708 50.8 8.9 3 R13 302.0 196.3 104.5 108.5 54.6 15296.7 0.005895 51.3 7.5 4 R170 305.4 198.5 30.1 88.2 44.9 14064.8 0.005979 51.9 6.5 5 Rl25 339.4 220.6 120.0 147.0 81.1 19484.4 0.005029 57.7 9.4 6 R13B1 340.2 221.1 148.9 116.9 62.0. 17418.9 0.005257 57.8 7.5 7 R218 345.1 224.3 188.0 203.8 125.1 20431.6 0.004945 58.7 10.0 8 R143a 346.3 225.1 84.0 130.2 66.3 19199.0 0.004937 5~.9 8.6 9 R32 351.6 228.5 52.0 94.0 39.5 19766.4 0.004797 59.8 9.0 10 Rll5 353.1 229.5 154.5 161.4 94.4 19642.6 0.004957 60.0 8.8 11 R22 369.3 240.0 86.5 108.9 51.7 19838.3 0.004718 62.8 8.2 12 R290 369.8 240.4 44.1 121.8 .65.1 18332.6 0.004836 62.9 7.2 13 Rl34a 374.3 243.3 102.0 146.6 76.0 22371.8 0.004514 63.6 10.0 14 R!2 384.9 250.2 120.9 124.6 68.3 19719.7 0.004607 65.4 7.6 15 R152a 386.7 251.4 66.0 124.2 62.2 21828.8 0.004401 65.7 9.0 16 RC318 388.5 252.5 200.0 231.1 145.0 24308.2 0.004359 66.0 10.9 17. Rl34 392.1 254.9 102.0 152.2 84.0 22807.5 0.004374 66.7 9.5 18 R124 395.6 257.2 136.5 !62.2 91.7 22813.0 0.004336 67.3 9.4 19 RC270 398.3 258.9 42.1 104.3 51.1 19117.6 0.004521 67.7 6.9 20 R600a 408.1 265.3 58.1 133.2 89.7 19025.7 0.004352 69.4 7.0 21 R142b 410.3 266.7 100.5 144.8 79.4 22387.7 0.004235 69.8 8.5 22 R114 418.8 272.2 170.9 180.3 113.0 23201.2 0.004139 71.2 8.7 23 El34 420.7 273.5 118.0 164.8 87.0 26035.7 0.004011 71.5 10.6 24 R216a 453.1 294.5 220.9 241.9 156.2 27032.4 0.003766 n.o 9.9 25 R216b 453.1 294.5 220.9 242.2 156.2 26850.8 0.003779 77.0 9.8 26 R123 456.9 297.0 152.9 175.1 103.8 26313.7 0.003753 77.7 9.3 27 Rll 471.2 306.3 137.4 137.8 81.0 24366.8 0.003759 80.1 7.7 28 R141b 478.0 310.7 116.9 120.2 79.1 23680.3 0.003665 81.3 7.7 29 R113 487.5 316.9 187.4 194.0 123.1 27274.6 0.003557 82.9 8.8 

T, ""0.65-T" 
c, ... h'•·" 13., and P. evaluated at saturation at T, 
c,; and P, evaluated at saturation at T, = 0.82 ·T" 
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