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Abstract

This study is aimed to assess the biodegradation of sulfadiazine (SDZ) and characteriza-

tion of heavy metal resistance in three pure bacterial cultures and also their chemotactic

response towards 2-aminopyrimidine. The bacterial cultures were isolated from pig

manure, activated sludge and sediment samples, by enrichment technique on SDZ (6 mg

L-1). Based on the 16S rRNA gene sequence analysis, the microorganisms were identified

within the genera of Paracoccus,Methylobacterium and Kribbella, which were further des-

ignated as SDZ-PM2-BSH30, SDZ-W2-SJ40 and SDZ-3S-SCL47. The three identified

pure bacterial strains degraded up to 50.0, 55.2 and 60.0% of SDZ (5 mg L-1), respectively

within 290 h. On the basis of quadrupole time-of-flight mass spectrometry and high perfor-

mance liquid chromatography, 2-aminopyrimidine and 4-hydroxy-2-aminopyrimidine were

identified as the main intermediates of SDZ biodegradation. These bacteria were also able

to degrade the metabolite, 2-aminopyrimidine, of the SDZ. Furthermore, SDZ-PM2-

BSH30, SDZ-W2-SJ40 and SDZ-3S-SCL47 also showed resistance to various heavy met-

als like copper, cadmium, chromium, cobalt, lead, nickel and zinc. Additionally, all three

bacteria exhibited positive chemotaxis towards 2-aminopyrimidine based on the drop plate

method and capillary assay. The results of this study advanced our understanding about

the microbial degradation of SDZ, which would be useful towards the future SDZ removal in

the environment.

Introduction

Sulfadiazine [4-amino-N-(2-pyrimidinyl)benzene sulfonamide, SDZ] is one of the most com-

mon sulfonamide antibiotics, utilized widely in animal husbandry to treat and inhibit bacterial

diseases [1]. Conversely, treated animals have been reported to excrete unbroken SDZ with its

metabolite(s) into the ecosystem through their excretory system [2]. For example, SDZ has

been detected in the range of 0.3–198 mg kg-1 (drymatter of pig manure), depending on medi-

cation, dilution and age of the manure [3, 4] and also in slurry at high concentrations, almost
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500 mg kg-1 [5]. Studies revealed that SDZ is mainly released into soil either by living systems

and/or by application of contaminated manure from treated livestock as fertilizer on farming

land [6]. Moreover, SDZ was also detected in Jiulong river and its estuary in south-east region

of China [7]. The fate and effects of SDZ in manure during storage and into manure-applied

soils have also been reported [8–10]. Hence, the persistence of SDZ in the environment is of

great concern, because it might lead to severe damages to non-target organisms and thereby

favors the increase of resistant bacteria and pose adverse health effects to human beings [11]. It

is therefore necessary to study the metabolic fate of SDZ in the environment and its environ-

mental degradation.

There are reports on sulfonamide antibiotics sorption activity, mobility, transformation as

well as mineralization and the spread of antibiotic genes [12–17]. SDZ undergoes numerous

transformation pathways and during the process can be inactivated (acetylation), altered into a

less toxic molecule (hydroxylation), and/or to a highly hydrophilic metabolite with a lower

molecularmass [18]. However, there are only limited reports on SDZ-degrading strains. To

date, almost all independently isolated SDZ-degrading bacteria belonged toMicrobacterium

genus [19, 20]. On the other hand, 2-aminopyrimidine (major intermediate of SDZ) was not

completely mineralized by strain SDZm4 [20]. Recently, degradation of 2-aminopyrimidine by

Terrabacter-like bacterium has been studied and reported [21]. However, there is not much

information available on both SDZ and 2-aminopyrimidine degradation by a single pure bacte-

rium. Therefore, it is necessary to identify microorganisms with the ability to degrade SDZ and

its major metabolite, 2-aminopyrimidine. In this study, we report the isolation and characteri-

zation of three different bacteria capable of degrading SDZ as well as 2-aminopyrimidine, and

their resistance capabilities towards various heavy metals. In addition, we also report for the

first time positive chemotactic response of Paracoccus sp. SDZ-PM2-BSH30,Methylobacterium

sp. SDZ-W2-SJ40 and Kribbella sp. SDZ-3S-SCL47 towards 2-aminopyrimidine.

Materials and Methods

Chemicals and composition of the growth medium

Sulfadiazine was purchased from Sigma-Aldrich, Saint Louis, USA. Acetone, acetonitrile and

methanol were purchased fromMerck, Darmstadt, Germany. All other chemicals were of ana-

lytical grade or the highest grade available commercially. Stock solutions of SDZ, 2-aminopyri-

midine and 2-amino-4-hydroxypyrimidine (1.00 g L-1) were prepared individually using

methanol and stored in amber bottles at 4°C before use. The ammoniummineral salts (AMS)

medium plus yeast extract (0.04%) supplemented with substrates like SDZ (5 mg L-1) and

2-aminopyrimidine (5 mg L-1) were prepared individually by the method describedpreviously

[22, 23]. The AMSmediumwas set to pH 7.00 (using 2 M NaOH or 2 M HCl), dispensed in

100 mL quantities into 250 mL Erlenmeyer flasks and finally sterilized by autoclaving for 20

min at 15 psi. Substrates (5 mg L-1) dissolved in methanol, were added to the autoclaved

medium and after the evaporation of methanol, mediumwere inoculated.

Isolation of microorganisms by enrichment culture technique

SDZ-degrading bacteria were isolated from pig manure (PM2), activated sludge (WWTPs,

W2) and sediment (3S) samples, by enrichment on SDZ (6 mg L-1) as a sole source of carbon

and energy. PM2 and 3S were collected fromMaoming, China, whereasW2 was collected from

Xiamen, China (approved by XiamenWater Affairs Zhonghuan Sewage Treatment Co. Ltd.).

Samples (5 g/ 5 mL) were suspended in 100 mL of sterile distilledwater, mixed and filtered.

The 5 mL of filtrates were added to 95 mL of sterile AMSmedium (without yeast extract) in a

250 mL of Erlenmeyer flasks supplemented with SDZ (6 mg L-1) as a sole source of carbon and
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energy. The flasks were then incubated on a rotary shaker (150 rpm) at 30°C under dark condi-

tion for 30 days. After 30 days, 5 mL of the inoculumswere transferred into fresh medium con-

taining SDZ (6 mg L-1) and incubated for 30 days (until turbid) and the process was repeated

four more times. The bacterial consortia were purified by serial dilution and pour plate

method. AMS solid medium (without yeast extract) was prepared by adding 1.65% agar. A bac-

terial consortiumwas diluted serially and cultured on SDZ (6 mg L-1)-AMS agar plates. Differ-

ent colonies obtained from bacterial consortiumwere further grown on AMS agar plates

supplemented with SDZ (6 mg L-1). This process was performed several times to obtain pure

bacterial cultures. The purified bacterial cultures designated as SDZ-PM2-BSH30 (PM2),

SDZ-W2-SJ40 (W2) and SDZ-3S-SCL47 (3S) showed better growth on SDZ-AMS agar plates

and therefore used in further studies.

16S rRNA gene sequence analysis for the identification of bacteria

For DNA, single colony of pure bacteria was transferred into 50 μL lysis buffer (Takara) in 1.5

mL tube, boiled at 80°C for 15 min and centrifuged (slowly). DNA sample (1 to 5 μL) was used

for 16S rRNA gene amplification. The 16S rRNA gene was amplified by PCR using a pair of

universal primers: 27F (5'-AGAGTTTGATCMTGGCTCAG-3') and 1492R (5'-GGTTACCTT
TGTTACGACTT-3') [24]. PCRmixture contained 12.5 μL Premix Taq (Takara Biotechnology
Co., Ltd, Dalian, China), 0.5 μM of each primer, approximately 1 μL of DNA template and ster-

ile deionizedwater to make up the total reaction volume of 25 μL. PCR amplification was per-

formed with a GenePro Thermal Cycler (Bioer, Hercules, China) and the amplification

program consisted of: 1 cycle for 8 min at 94°C, followed by 37 cycles of 30 s at 94°C, 30 s at

55°C, 1.5 min at 72°C; and finally 1 cycle for 5 min at 72°C. The purified PCR products of 16S

rRNA genes were sequenced and analyzed by comparing and aligning with relative gene

sequences available in Ez-Taxon and GenBank data libraries using BLAST-n and CLUSTAL-W

program. The phylogenetic trees were constructed on the basis of maximum-likelihood

method using the Molecular Evolutionary Genetics Analysis software (MEGA6) [25].

Growth and degradation of SDZ and 2-aminopyrimidine

To monitor the effects of initial concentrations of SDZ and 2-aminopyrimidine on the growth

of Paracoccus sp. SDZ-PM2-BSH30,Methylobacterium sp. SDZ-W2-SJ40 as well as Kribbella

sp. SDZ-3S-SCL47 and their degradation, the microorganisms were grown on 100 mL of AMS-

yeast extract (0.04%) in 250 mL Erlenmeyer flasks supplemented with appropriate concentra-

tion of SDZ (2–8 mg L-1) as well as 2-aminopyrimidine (3–7 mg L-1). The bacterial growth was

measured at 600 nm by UV-spectrophotometer (UV-5200 Spectrophotometer). For SDZ (5 mg

L-1) and 2-aminopyrimidine (5 mg L-1) degradation studies, the samples collected at regular

intervals were centrifuged (7000 × g) and then analyzed by high performance liquid chromatog-

raphy (HPLC). Detailed description is provided in Supporting Information. Uninoculated cul-

ture flasks with the same amount of SDZ, 2-aminopyrimidine, SDZ plus sterilized individual

bacterial cells and 2-aminopyrimidine plus sterilized individual bacterial cells were served as

controls.

Identification of metabolites

The metabolites of SDZ (5 mg L-1) in cell-free filtrates of Paracoccus sp. SDZ-PM2-BSH30,

Methylobacterium sp. SDZ-W2-SJ40 and Kribbella sp. SDZ-3S-SCL47 were identified by quad-

rupole time-of-flight-mass spectrometry (MS) (Q-/TOF-MS, SI). The cell-free filtrates were

collected at regular intervals. The same individual bacterial cultures supernatant without SDZ

were used as negative controls, and uninoculated controls containing SDZ (5 mg L-1) were
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included as well. The collected samples were centrifuged (7000 × g) for 20 min, adjusted to pH

2.0 with 2 MHCl and then extracted with ethyl acetate. The extracted samples were reconsti-

tuted in methanol (500 μl), filtered and analyzed by Q/TOF-MS.

SDZ-degrading bacteria’s resistance to heavy metals and their
minimum inhibition concentration (MIC)

Stock solutions (1000 mg L-1) of the targeted heavy metals were prepared by dissolving an

accurately weighted amount of their corresponding salts into Milli-Q water. Dissolved salts

involved (CdCl2)2.5H2O, CoCl2.6H2O, CuCl2.2H2O, ZnCl2, NiCl2.6H2O, Pb(NO3)2 and

K2Cr2O7. Stock solutions were stored at 4°C.

The SDZ-degrading bacterial cultures including Paracoccus sp. SDZ-PM2-BSH30,Methylo-

bacterium sp. SDZ-W2-SJ40 and Kribbella sp. SDZ-3S-SCL47 were tested for the resistance to

various heavy metals like copper (Cu), cadmium (Cd), chromium (Cr), cobalt (Co), lead (Pb),

nickel (Ni) and zinc (Zn) using sucrose-minimal salts low-phosphate (SLP) mediumwhose

composition is as follows; sucrose 0.9%, (NH4)2SO4, 0.1%, K2HPO4, 0.05%,MgSO4, 0.05%,

NaCl, 0.01%, yeast extract, 0.04% and CaCO3, 0.05%. The pH of the mediumwas kept around

7.05–7.10 [26]. The bacterial cultures grown on SDZ were placed onto the agar plates of SLP

supplemented with individual heavy metals. The cell concentration of SDZ-PM2-BSH30,

SDZ-W2-SJ40 and SDZ-3S-SCL47 were 3.3×107, 3.7×107 and 3.4×107 cfu/mL, respectively.

Inoculated plates were incubated at 30°C for 72 h. SLP agar plate without heavy metal was

used as a positive control. The lowest heavy metal concentration that prevented growth was

recorded as the minimum inhibitory concentration (MIC).

Chemotaxis towards 2-aminopyrimidine

The chemotactic response of Paracoccus sp. SDZ-PM2-BSH30,Methylobacterium sp.

SDZ-W2-SJ40 and Kribbella sp. SDZ-3S-SCL47 towards 2-aminopyrimidine was examined

qualitatively (drop plate assay) and quantitatively (capillary assay) by following procedures

described earlier [27, 28]. For drop plate method, the bacterial cells of SDZ-PM2-BSH30,

SDZ-W2-SJ40 and SDZ-3S-SCL47 were grown in LB supplemented with SDZ (5 mg L-1). The

cultures were harvested at mid-log phase (O.D600 between 0.60–0.70) by centrifugation at

4000 × g for 10 min and pellets were washed twice with phosphate buffered saline (PBS), re-

suspended in drop plate assay medium (AMS with 0.3% bacto agar) and transferred into petri-

plates (96 mm). Pinch of 2-aminopyrimidine was placed in the middle of plates and then incu-

bated at 25°C. The chemotactic response was observed after 5–8 h of incubation. For quantita-

tive capillary method, the optimum concentration of 2-aminopyrimidine was determined by

carrying out at various concentrations of 2-aminopyrimidine (2–8 mg L-1). Initially, 10 μL of

glass capillaries were filledwith the desired amount of 2-aminopyrimidine (in chemotaxis

buffer) and the suction end was closed by sterile agarose gel. The control capillaries were with-

out any chemotactic compound. Capillaries were individually inserted into micro centrifuge

tubes (separately) and having a suspension (1010 to 1011 cells mL-1) of SDZ-PM2-BSH30,

SDZ-W2-SJ40 as well as SDZ-3S-SCL47 and were incubated at 25°C for 40 min. The solutions

of capillaries were then serially diluted and spread onto LB agar plate, followed by determina-

tion of CFUs count after 48 h incubation at 37°C. Chemotaxis index (ratio of the number of

CFUs produced from capillary supplemented with test substrate to CFUs produced from a

control capillary) was used to quantify the chemotactic response. Aspartate was used as the

positive control.

Biodegradation of Sulfadiazine
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Results

Isolation and characterization of microorganisms

SDZ (6 mg L-1) degradingmicroorganisms were isolated from PM2,W2 and 3S samples by

enrichment culture technique. On the basis of 16S rRNA gene sequence analysis, SDZ-PM2-

BSH30, SDZ-W2-SJ40 and SDZ-3S-SCL47 were identified as the member of genera of

Paracoccus,Methylobacterium and Kribbella, respectively. Phylogenetic tree was constructed

by 16S rRNA gene sequences in comparison with other related bacteria and are shown in Fig 1.

The bacteria,Paracoccus sp. SDZ-PM2-BSH30 andMethylobacterium sp. SDZ-W2-SJ40

belong to Gram-negative whereasKribbella sp. SDZ-3S-SCL47 belongs to Gram-positive bacte-

ria. The 16S rRNA gene sequence of SDZ-PM2-BSH30, SDZ-W2-SJ40 and SDZ-3S-SCL47

were deposited in NCBI under accession number KT316368, KT316377 and KT316383,

respectively.

Degradation of SDZ and 2-aminopyrimidine by three pure bacteria

The individual bacterial cultures growth (Paracoccus sp. SDZ-PM2-BSH30,Methylobacterium

sp. SDZ-W2-SJ40 and Kribbella sp. SDZ-3S-SCL47) in AMSmedium plus 0.04% of yeast

extract and SDZ (5 mg L-1) were monitored and are shown in the Fig 2. The strains

SDZ-PM2-BSH30, SDZ-W2-SJ40 and SDZ-3S-SCL47 degraded SDZ (5 mg L-1) up to 50.0,

55.2 and 60.0%, respectively within 290 h. No further SDZ degradation was observed even after

incubating for prolonged periods (>320 h). In addition, the bacteria were also able to grow on

yeast extract (0.04%)-AMSmedium in the presence of 2-aminopyrimidine and 2-amino-

4-hydroxypyrimidine at an initial concentration of 5 mg L-1, respectively. Furthermore, 2-ami-

nopyrimidine (5 mg L-1) was degraded up to 47.8, 57.6 and 66.4% by SDZ-PM2-BSH30,

SDZ-W2-SJ40 and SDZ-3S-SCL47, respectively within 210 h (Fig 3). On the other hand, in

Fig 1. Phylogenetic relationships established by the maximum-likelihoodmethod (usingMEGA6 software) based on 16S
rRNA gene sequences of isolated bacterial strains (SDZ-PM2-BSH30, SDZ-W2-SJ40, and SDZ-3S-SCL47). Scale bar, no. of
nucleotide changes/sequence position. The number at nodes shows the bootstrap values obtained with 1,000 resampling analyses.

doi:10.1371/journal.pone.0165013.g001
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control experiments, SDZ and 2-aminopyrimidine at 5 mg L-1 were adsorbed by killed cells at

negligible amount (Figs 2 and 3). Hence, the results in this study clearly demonstrated the deg-

radation of SDZ and 2-aminopyrimidine by Paracoccus sp. SDZ-PM2-BSH30,Methylobacter-

ium sp. SDZ-W2-SJ40 and Kribbella sp. SDZ-3S-SCL47 (Figs 2 and 3).

Identification of metabolites

The identification of SDZmetabolites was conducted by high resolutionMS and HPLC. S1 Fig

provides the mass spectrometryof the culture supernatant of SDZ-3S-SCL47. The signal ofm/z

at 96.056 was identified as [2-aminopyrimidine+H]+, which was in accordance to Tappe’s work

[21]. The signal ofm/z at 111.05 was identified as 2-amino-4-hydroxypyrimidine. 2-Amino-

4-hydroxypyrimidine was confirmedby HPLC chromatogram (S2 Fig). The retention time of

the 2-amino-4-hydroxypyrimidine standard solution was 2.29 min (S2b Fig), while in the cul-

ture supernatant of SDZ-3S-SCL47, a peak was observedat similar time, which suggested the

presence of 2-amino-4-hydroxypyrimidine (S2a Fig). The two metabolites were also observed in

the culture supernatants of SDZ-PM2-BSH30 and SDZ-W2-SJ40 (data not shown).

Characterization of various heavy metal resistance in three pure bacteria

The SDZ-degrading bacteria including Paracoccus sp. SDZ-PM2-BSH30,Methylobacterium sp.

SDZ-W2-SJ40 and Kribbella sp. SDZ-3S-SCL47 were challenged to heavy metals for the

Fig 2. SDZ (5 mg L-1) degradation by SDZ-PM2-BSH30 (a), SDZ-W2-SJ40 (b) and SDZ-3S-SCL47 (c). Error bar
represents the standard deviation of the triplicates.

doi:10.1371/journal.pone.0165013.g002
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determination of the MIC values. All three newly isolated pure bacteria showed resistance to

Cu, Cd, Cr, Co, Pb, Ni and Zn (Table 1). SDZ-PM2-BSH30 showed highMIC to Pb (214 mg

L-1) whereas SDZ-W2-SJ40 showed highMIC to Pb (168 mg L-1), Co (204 mg L-1) as well as

Zn (146 mg L-1) and SDZ-3S-SCL47 showed highMIC to Pb (220 mg L-1), Ni (169 mg L-1) and

Zn (216 mg L-1) (Table 1). The bacteria SDZ-PM2-BSH30 showed least MIC to Cr (8 mg L-1),

Cd (16 mg L-1) and Ni (14 mg L-1) whereas SDZ-W2-SJ40 showed least MIC to Cr (24 mg L-1)

and SDZ-3S-SCL47 showed least MIC to Cd (9 mg L-1) (Table 1).

Table 1. Minimum inhibitory concentration of heavymetal for bacterial isolates.

Bacteria Minimum inhibitory concentration of heavy metals (mg L-1)

Pb Cu Co Cr Cd Ni Zn

SDZ-PM2-BSH30 214 31 26 8 16 14 47

SDZ-W2-SJ40 168 47 204 24 122 108 146

SDZ-3S-SCL47 220 42 115 37 9 169 216

doi:10.1371/journal.pone.0165013.t001

Fig 3. 2-Aminopyrimidine (5 mg L-1) degradation by SDZ-PM2-BSH30 (a), SDZ-W2-SJ40 (b) and SDZ-3S-SCL47 (c). Error bar
represents the standard deviation of the triplicates.

doi:10.1371/journal.pone.0165013.g003
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Chemotaxis of SDZ-PM2-BSH30, SDZ-W2-SJ40 and SDZ-3S-SCL47
towards 2-aminopyrimidine

The chemotactic behavior of Paracoccus sp. SDZ-PM2-BSH30,Methylobacterium sp.

SDZ-W2-SJ40 and Kribbella sp. SDZ-3S-SCL47 towards 2-aminopyrimidine was also studied

by capillary assay and drop plate method. In capillary assay, it was observed that the cells of

SDZ-PM2-BSH30, SDZ-W2-SJ40 and SDZ-3S-SCL47 were chemotactic towards 2-aminopyri-

midine at an optimum concentration of 5 mg L-1 with chemotaxis index of 24.52, 28.10 and

33.76, respectively. As shown in the Fig 4, the chemotaxis index values for all three bacteria

increasedwith increasing concentration until the optimal concentration. Further increase in

concentration of 2-aminopyrimidine led to sharp decline of chemotaxis index values in

SDZ-PM2-BSH30, SDZ-W2-SJ40 and SDZ-3S-SCL47. Aspartate was a positive control and

there was not much decrease of chemotaxis index values in all three bacterial cultures (Fig 4).

Drop plate assays showed the formation of bacterial ring around the crystals of 2-aminopyri-

midine after incubation between 4–6 h (Fig 5). This is well supported to the data of capillary

assay.

Fig 4. Quantitation of the chemotactic response and determination of optimal response concentration for Paracoccus sp.
SDZ-PM2-BSH30 (a),Methylobacterium sp. SDZ-W2-SJ40 (b) andKribbella sp. SDZ-3S-SCL47 (c) towards 2-
aminopyrimidine using capillary assay. Error bar represents the standard deviation of the triplicates.

doi:10.1371/journal.pone.0165013.g004
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Discussion

In this study, the screening of SDZ-degrading bacteria by enrichment method from various

samples like PM2,W2 and 3S allowed to select the potential isolates with high survivability to

various heavy metals and chemotactic towards 2-aminopyrimidine. Overall, three newly iso-

lated pure bacteria were studied and compared for their degradation capability on both SDZ

and 2-aminopyrimidine at 5 mg L-1. The bacterial clutters like SDZ-W2-SJ40 and SDZ-

3S-SCL47 showed higher degradation rate of SDZ (5 mg L-1). None of these bacteria were

Fig 5. Chemotaxis of bacteria like SDZ-PM2-BSH30 (a), SDZ-W2-SJ40 (b), and SDZ-3S-SCL47 (c)
toward 2-aminopyrimidine. The bacterial cells were grown on SDZ and tested on 2-aminopyrimidine.
Results were obtained by drop plate assays. The assays were performed in triplicate and the representative
plates are shown here. Aspartate was used as the positive control.

doi:10.1371/journal.pone.0165013.g005
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previously reported for the degradation of both SDZ and 2-aminopyrimidine. In addition,

SDZ-W2-SJ40 and SDZ-3S-SCL47 showed higher degradation of 2-aminopyrimidine than

SDZ-PM2-BSH30. There are reports on addition of yeast extract during the degradation of

toxic or inhibitory pollutant(s) by pure bacteria and/or bacterial consortia [22, 29]. Previous

studies reported that the addition of yeast extract increases the growth of microorganisms

thereby enhancing the toxic pollutant degradation [29, 30]. In the present study, addition of

0.04% of yeast extract helped to enhance the bacterial growth and achieve faster degradation of

SDZ, but the three strains could also degrade SDZ without addition of 0.04% of yeast extract

(data not shown).

On the basis of identifiedmetabolites and also degradation of 2-aminopyrimidine in SDZ-

3S-SCL47, a pathway for the degradation of SDZ in Kribbella sp. SDZ-3S-SCL47 was proposed

(Fig 6). Similarly, in other two bacteria like SDZ-PM2-BSH30 and SDZ-W2-SJ40, SDZ was

also transformed into 2-aminopyrimidine which was further converted to 2-amino-4-hydroxy-

pyrimidine (data not shown). No furthermetabolites were observed in all three pure bacterial

cultures. Moreover, all three bacteria showed the ability to degrade 2-aminopyrimidine. The

initial step of SDZ catabolism involved ipso-hydroxylation to form 2-aminopyridine whereas

other by-products were not detected in this case. Similarly, inMicrobacterium lacus strain

SDZm4, SDZ was transformed into 2-aminopyrimidine [20]. The metabolite 2-aminopyridine

was observednot only by microbial process, but also detected during photolysis, electrochemi-

cal oxidation and sorption experiments by soils [1, 18, 31, 32]. Furthermore, in strain 2APm3,

2-aminopyrimidine was metabolized into two by-products with one of that identified as

2-amino-4-hydroxypyrimidine [21]. Similarly, in this study, the bacteria degraded 2-amino-

phyrimidine into 2-amino-4-hydroxypyrimidine.

In addition, Paracoccus sp. SDZ-PM2-BSH30,Methylobacterium sp. SDZ-W2-SJ40 and

Kribbella sp. SDZ-3S-SCL47 were resistant to various heavy metals. Paracoccus sp. SDZ-PM2-

BSH30 showed high resistance to Pb,Methylobacterium sp. SDZ-W2-SJ40 showed high

Fig 6. A proposed pathway of SDZ degradation by Kribbella sp. SDZ-3S-SCL47.

doi:10.1371/journal.pone.0165013.g006
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resistance to Pb, Co and Zn whereasKribbella sp. SDZ-3S-SCL47 showed high resistance

towards Pb, Ni and Zn. These high levels of heavy metal resistance could be beneficial for living

and adjusting of these microbial strains in severe heavy metal polluted environment. There are

reports on various organisms capable of resisting different heavy metals [26, 33–37]. Future

study using molecular biology techniques, possibly will help to understand the mechanism of

heavy metal resistance in SDZ-degrading pure bacteria.

Microbial chemotactic response was identified as an important phenomenon of bacteria to

different toxic pollutants and thus, such bacteria were useful for the bioremediation of toxic

pollutants in the environment [38]. Hence, it is suggested that chemotactic response can

increase the biodegradation through improving the availability of substrate to support the

development of mixed bacteria with the capabilities of biodegradation [27, 38, 39]. There are

reports on various bacteria having the ability of chemotactic response towards various toxic

pollutants such as nitroaromatics, organophosphate, chloroaromatics and aminobenzoates etc.

[27, 40, 41]. In this study, SDZ-degrading bacteria such as Paracoccus sp. SDZ-PM2-BSH30,

Methylobacterium sp. SDZ-W2-SJ40 and Kribbella sp. SDZ-3S-SCL47 showed chemotaxis

towards 2-aminopyrimidine, which these bacteria can degrademetabolically or co-metaboli-

cally. The chemotactic response (capillarymethod) results in this study were similar to the

results observed in Pseudomonas sp. strain BUR11 (chemotaxis towards organophosphate

compound) [40]. However, it is necessary to investigate at genomic level for better understand-

ing of this chemotactic activity in all of these three pure bacterial cultures, since this feature is a

novel and characteristic to our SDZ-degrading bacteria. From previous reports, it has been

observed that the bacterial chemotactic response towards various aromatic compounds pro-

ceeds via two different mechanisms (metabolism dependent and metabolism independent).

There are reports on various microorganisms, which showed metabolism dependent chemo-

tactic response to different compounds [27, 42, 43]. Similarly, metabolism independent chemo-

taxis has been also reported for different bacterial strains towards various toxic chemicals [41,

44, 45]. However, we are not sure whether this chemotaxis behavior is metabolically indepen-

dent and/or dependent [40, 42], although results presented in this study demonstrated that all

three bacteria had the ability to degrade both SDZ and 2-aminopyrimidine.More experiments

related to chemotaxis behavior of these bacteria for those substrates which these strains were

not able to metabolize and/or transform will be needed to clarify the chemotacticmechanism.

Conclusions

In this study, we have isolated three different bacteria, including Paracoccus sp. SDZ-PM2-

BSH30,Methylobacterium sp. SDZ-W2-SJ40 and Kribbella sp. SDZ-3S-SCL47 by enrichment

on SDZ. In all three bacterial cultures, SDZ was initially transformed into 2-aminopyrimidine

which was further converted to 2-amino-4-hydroxypyrimidine. Furthermore, these pure bacte-

rial cultures were also capable of degrading 2-aminopyrimidine. The MIC results revealed that

Paracoccus sp. SDZ-PM2-BSH30,Methylobacterium sp. SDZ-W2-SJ40 and Kribbella sp. SDZ-

3S-SCL47 were able to resist various heavy metals. In addition, all three bacteria showed che-

motaxis towards 2-aminopyrimidine. Hence, these microorganisms showed potential use in

future bioremediation of SDZ in the environment.
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