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Abstract—Solutions for accurate and fine-grain monitoring
are at the basis of the growth of future large-scale green high
performance computing (HPC) infrastructures. The capability
of these systems to adapt to specific application requirements
relies on sensing and correlating several distributed physical
parameters with application phases and states. Meeting such
requirements allows thus to achieve a better use of the resources,
higher throughput and higher energy-efficiency. As the capabil-
ity of drawing such correlations relies on the synchronization
across a network of nodes and measuring devices, the use of
synchronization protocols becomes a critical component. Novel
low-cost embedded devices start to include hardware support for
network synchronization protocols to achieve a high resolution
time accuracy. These devices are promising for monitoring
physical parameters of HPC infrastructures. In this paper we
evaluate how the performance of the two widely used network
synchronization protocols, namely the Network Time Protocol
and IEEE 1588, scale on a state-of-the-art embedded platform,
namely a Beaglebone Black Board.

I. INTRODUCTION

It is nowadays evident that the tradeoff between perfor-

mance and energy consumption is a key challenge for future

large-scale green HPC infrastructures [1]. Such infrastructures

include a large variety of sensors for measuring architectural

and physical run-time parameters. Both architectural and phys-

ical parameters have been historically used to understand ap-

plications performance and bottlenecks, as well as to monitor

the status of the infrastructure by system administrators. With

a view to increasing the total energy efficiency, there is an in-

creasing demand for correlating applications and architectural

events, measured from the processing elements, with physical

parameters taken at the node level [1].

However, HPC applications usually run on multiple nodes

[2], which are in the order of thousands or millions [3],

each consisting of several processing elements and measuring

points. As a result, the monitoring system can be seen as

a multitude of agents that measure different metrics for the

hardware (HW) components. Ultimately, the capability of

correlating these monitoring points to form useful application

metrics is bounded by their sampling rate as well as by

the synchronization between the monitoring agents. Indeed,

a synchronization in a distributed system is essential for the

global ordering of events.

Distributed synchronization in IT systems is supported by

network time synchronization protocols. In these protocols

all the nodes are kept synchronized against a time reference

assumed as true time. In this context, accuracy refers to the

amount of shift between the mean of the time-tags obtained by

the agent and the time reference, while precision corresponds

to the standard deviation. This is represented in Figure 1.
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Fig. 1: Accuracy and precision of a set of measurements.

In the last few years two standards have emerged and are

widely adopted: the Network Time Protocol (NTP) and the

Precision Time Protocol (PTP), also known as IEEE 1588. The

NTP was proposed by Mills in 1991 [4], and later revised in

2010 with the version 4 (NTPv4) [5]. It is targeted towards

Wide Area Networks (WANs), where it typically achieves an

accuracy in the order of a few milliseconds. However, as

documented in the standard, within fast Local Area Networks

(LANs) NTPv4 can reach a potential accuracy in the tens of

microseconds. The Precision Time Protocol was proposed in

2002 and later revised in 2008 (PTPv2) [6]. It targets LANs

and can synchronize devices with accuracy and precision

in the sub-microsecond range. The protocol is suitable for

measurement and control systems, and for applications where

the cost of an external source of time for each node is not

sustainable (e.g. using the Global Positioning System - GPS).

The Precision Time Protocol has a highly accurate and

precise implementation, which is developed at CERN in col-

laboration with other partners. It is called White Rabbit (WR)

[7], and it aims to be included into the next PTP standard

revision. WR can synchronize nodes in an Ethernet-based

network with sub-nanosecond accuracy and deterministic data

transfer. Furthermore, it is based on an open-source paradigm

for both its hardware and software implementation. However,



WR is not suitable when general purpose monitoring devices

are used, as it requires specialized hardware. For this reason,

we focus our analysis only on the NTP and PTP protocols.

A key concept in the study of such protocols is that synchro-

nization is performed within the LAN of the HPC monitoring

infrastructure. This allows to work in a corner-case for the

NTP, where it can achieve its best performance. However,

both of them need to be evaluated on the embedded low cost

devices that are used for the HPC monitoring. With this goal,

one of the best out-of-the-box solution to realize the fine-grain

HPC monitoring, is a low-cost and low-power state-of-the-art

embedded device, namely the Beaglebone Black Board (BBB).

It is based on a TI Sitara AM335x processor, which is a 1GHz

ARM Cortex-A8. The system-on-chip (SoC) has a built-in

12-Bit Successive Approximation Register (SAR) ADC, with

8-channels and a default sample rate of 200K Samples per

second. Furthermore, it includes two Programmable Real-Time

Units (PRUs), which make it suitable for on-board processing

of the sampled HPC-sensor data. Finally, it is PTP hardware-

enabled, which means it has a dedicated PTP hardware support

that improves the synchronization accuracy and precision.

The main contribution of the paper is a fine performance

evaluation of NTP and PTP in terms of accuracy, precision and

scalability, when they are used in a context of large scale HPC

monitoring. We conduct our analysis on a Beaglebone Black

Board platform which is a promising device for smart monitor-

ing and suitable for being integrated in a HPC infrastructure.

Our study shows that: (i) NTP protocol achieves in our best

configuration an accuracy of 17.5us and 8.4us of precision.

This means that for 99% of the cases the timestamp offset

(in between the monitoring device and its time reference)

is below 35us.(ii) PTP protocol instead achieves in our best

configuration an accuracy of 16.1ns and 513.7ns of precision.

This means that for 99% of the cases the timestamp offset (in

between the monitoring device and its time reference) is below

1.32us. (iii) when considering 75% of the cases the measured

timestamp offset, in between the monitoring device and its

time reference, becomes 23us for the NTP and 500ns for the

PTP. (iv) time synchronization protocols do not represent the

critical factor for the monitoring system scalability. Indeed,

our results shows that, for the above mentioned values of time

accuracy performance, these protocols require only 23 B/s per

client for the NTP, and a traffic of 180B/s plus a data exchange

of 186B/s per client for the PTP. In light of such results,

our study demonstrates that both NTP and PTP, as well as

the low-cost monitoring devices, can be used for fine-grain

measurement of supercomputer systems.

The paper starts by introducing, in section II, the im-

portance of HPC fine-grain monitoring and the key rule of

synchronization in this context. Then, section III describes

the selected synchronization protocols (i.e. NTP and PTP),

in terms of their specifications (sections III.A and III.B) and

implementations (sections III.C and III.D). Finally, section IV

discusses the experimental results, focusing on the achieved

accuracy and precision and further scalability. This is followed

by a short ”how-to” section, to outline the Beaglebone Black

Board software settings, and conclusions.

II. FINE GRAIN HPC MONITORING

This section introduces the concept of fine grain HPC

performance monitoring and the importance of time synchro-

nization in this context. Figure 2 sketches out a simplified

picture of a HPC system.
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Fig. 2: Sketch of a HPC smart monitoring and data collection.

It consists of a set of racks composed by several nodes.

HPC applications can run on one or multiple nodes at the same

time, taking advantage of the various computational resources

(e.g. several cores on different CPUs, accelerator cards, etc.).

As effect of the computation, different physical parameters

of the environment and of the components of the machine

are modified. The analysis of these changes is important for

system administrators and final users, and allows them to

ensure safe working conditions, higher system performance

and higher energy efficiency. A practical example is cooling,

which is a costly operation on HPC machines. As a reference

point, according to the TOP5001, nowadays most powerful

supercomputer in the world, Tianhe-2, consumes ~17.8 MWs

of peak power, that increases to ~24 MWs including the

cooling infrastructure [8]. Works in [9][10] show that this cost

can be reduced when advanced cooling control policies, based

on extensive monitoring, are in place. Indeed, as depicted

in Figure 2, several sensors are integrated in various node

components. These include performance counters, temperature

sensors, power gauges, etc. Therefore, a smart monitoring

device, located on each node, it is at the basis of a distributed

monitoring system. Such devices sample the data, process

them in real-time (that explains the attribute ”smart”) and fur-

ther sends them to a centralized unit via the LAN that connects

the whole infrastructure. Correlating these measurements will

lead to a better understanding awareness of the system, and

will help modeling and later optimizing both the computational

power and the energy efficiency of the entire machine.

This is where the synchronization protocols come into play.

The key point is that the capability of correlating the data

1Top500 is an organization which ranks the 500 most powerful supercom-
puters in the world, using Linpack Benchmarks.



taken by different devices is bounded by both the sampling

rate and the capability to precisely time stamp measurements.

Indeed, every sampled data is associated with a timestamp.

This is taken from a clock running on each embedded device.

Therefore, the time offset between clocks is one of the main

factor that bounds the monitoring granularity: the smaller the

offset, the finer the monitoring and correlation grain.
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(Clock_Dev_1)

Actual_Time1 2 3 4 5

Sensor Y

(Clock_Dev_2)
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Clock_Ts_Dev_1
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Θ

Correlation based on actual time: Correlation based on “wrong” Timestamps:
Clock_Ts_Dev_1 = Actual_Time

Clock_Ts_Dev_2 = Actual_Time + Θ

Fig. 3: Importance of the clock synchronization for a fine grain

monitoring and events correlation.

Figure 3 explains the concept. Events occurred at the

same time (represented with spikes in the left plot of the

picture), could be interpreted in a wrong way if the timestamp

offset θ between the sampler devices (Clock Ts Dev 1 and

Clock Ts Dev 2 in the plot on the right) is not ”small”

enough. We will see in the next sections that more than one

clock can be present on a single device, and each of them

introduces a different level of synchronization.

III. SYNCHRONIZATION PROTOCOLS

In this section the key concepts of the two synchronization

protocols used in this paper will be described. More in detail,

the first two subsections are focused on their specifications,

outlining the hierarchical topologies and the message synchro-

nization patterns. In the last two parts their implementation

is then introduced, focusing on the different timestamping

methods and the main sources of jitter.

According to the protocols’ standardization, from now on

the terms client and server will be used in the NTP context,

while slave and master in the PTP. However, there is no

conceptual difference between them.

A. Hierarchical Topologies

Figure 4 shows typical hierarchical topologies for both NTP

and PTP. Both protocols use a hierarchical master-slave net-

work. In the NTP, each level is called ”stratum” and can range

from 0 to 15. Stratum 0 represents the time reference (e.g.

atomic clock, GPS) and is connected to stratum 1. Lower strata

are instead synchronized over the network, to the respective

one-upper level stratum (e.g. stratum ”n” to stratum ”n-1”).

The NTP algorithm sets then the synchronization paths by a

shortest-path spanning tree with specific metrics. Devices in

the same stratum can also peer with each other to stabilize the

clock. Finally, stratum 16 indicates unsynchronized devices.

Stratum 0

(Time Ref.)

Stratum 1

Stratum 2

(1) NTP Hierarchical topology

Grandmaster

(2) PTP Hierarchical topology

OC

Boundary Clock

Time Ref.

Fig. 4: Examples of hierarchical topologies.

The Precision Time Protocol uses a similar master-slave

hierarchy within a LAN. Such a hierarchy is managed by the

Best Master Clock (BMC) algorithm running on every device.

As in a general network we can distinguish between end-nodes

and networking-nodes (e.g. switches) used to interconnect the

former. The end-nodes are devices with only one PTP port

which can be either master or slave. Such devices are called

ordinary clocks (OC). In particular, the ordinary clock that

is the root timing reference for the whole PTP network is

called grandmaster clock. This device is straight connected to

a source of time which gives a high-degree of accuracy and

precision (e.g. GPS). Therefore, to synchronize each network

segment the BMC algorithm select one master between all the

PTP ports. If the connection with the grandmaster is lost, other

clocks may assume its rule.

PTP networking-nodes can be of two kinds. The first one is

called transparent clock (TC), while the second one boundary

clock (BC). Both have the goal to compensate the jitter (load

dependent latency) introduced by general networking devices.

The transparent clock corrects it by measuring the time taken

for a PTP message to transit the device and adding that to the

packet. It is ”transparent” from the clocks point of view, as

it does not have PTP ports which acts as a master or a slave

for other nodes. Such a thing is done instead by the boundary

clock, which has several PTP ports. As illustrated in Figure

4.2, in such a node one port (in a specific moment) is in a slave

state, while the others are masters for one or more slaves.

B. Synchronization Message Exchange Pattern

The basic synchronization message exchange for both pro-

tocols is represented in Figure 5. The idea behind NTP is that

each client regularly polls a cluster of servers to synchronize

its clock, computing both the round-trip delay δ and the time

offset θ. According to the standard, the latter is the time offset

of the server relative to the client (Timeserver - Timeclient).

The message exchange pattern is composed by only a pair of

messages: the NTP_Req from the client to the server (query)

and the backward called NTP_Resp (reply). As soon as the

server receives the query containing the client’s transmission
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Fig. 5: Synchronization message exchange patterns.

timestamp t1, it generates a reception timestamp t2 and sends it

back together with its transmission timestamp t3 via the reply

message. Therefore, the client notes its reply reception time

t4, and can finally compute both δ and θ by:

δ = (t4 − t1)− (t3 − t2) (1)

θ =
(t2 − t1) + (t3 − t4)

2
(2)

where equation 2 is calculated assuming:

• a symmetric network delay between the client (c) and the

server (s), δc→s = δs→c =
δ
2

,

• by summing the server-client offset obtained by the

NTP_Req message θ = t2 − (t1 +
δ
2
), and that obtained

by the NTP_Resp message θ = t3 − (t4 −
δ
2
).

Equations 1 and 2 are also valid for PTP, where the one-

way delay δ
2

it is used instead. Similar to NTP, the idea is

to continuously exchange messages between master and slave

ports in order to calculate both offset and one-way delay. Fig-

ure 5.2 describes the synchronization message exchange using

the delay request-response pattern2. Four packets are involved:

Sync, Follow_Up, Delay_Req and Delay_Resp. Sync

and Delay Req are called event messages, as an accurate

timestamp is generated at both transmission and receipt. In-

stead, the other two are general messages, as no timestamp

is required. That means only the event messages contribute to

the actual computation of θ and δ
2

, while the other two packets

are used as support. Indeed, the master periodically sends Sync

packets to the slaves, taking note of its transmission current

time t1. Such a time is then delivered within the general

message Follow Up. The reason behind this mechanism is

that, to include t1 within the Sync packet itself, dedicated

hardware is necessary. In the PTP nomenclature, such kind of

hardware is called one-step clock, while the generic hardware

which delivers the time in two steps (Sync + Follow Up)

is called two-step clock. As soon as the slave receives the

Sync message, it notes the reception time t2, and conveys the

Delay Req packet to the master, writing down its transmission

time t3. In the last step, the slave receives from the master

2A second option would be to evaluate the protocol synchronization
performance via the peer delay mechanism pattern, which is actually less
flexible, and for such a reason left for possible future works.

the Delay Req reception time t4 by the Delay Resp message.

Therefore, the slave can finally measure both offset and mean

propagation time.

Some further considerations on the PTP synchronization

pattern are essential to understand its network scalability,

which will be later examined. The key concept is that PTP

communication is based on a multicast messaging model (or

potentially a unicast messaging model). In other words, each

PTP packet sent by any PTP port has a destination’s multicast

address, which means that will be received by all the PTP ports

in the network segment. For packets which are specific for a

device (e.g. the Delay Resp message, which is specific for the

slave that delivered the Delay Req), then the clock identity of

the destination device is specified within the message. This

allows PTP to reduce the network load on the master side.

C. Timestamping Methods

One of the main sources of jitter that directly affects the time

synchronization accuracy is due to the uncertain processing

time of the protocol stack during the packets transmission.

Ideally, the packet is forwarded right after the timestamp

is generated, with no related timing delay. However, in the

real implementation, this delay depends on the layer of the

protocol stack where the timestamp is done: the higher the

distance from the physical layer, which is the exact point

where the packet is transmitted, the greater the jitter introduced

in the timestamp. Figure 6 depicts the difference between

ideal and real implementation, and the several points where

the timestamp can be done.

Ideal Timestamp 

Timing

Fig. 6: Sources of jitter in the protocol stack.

The two possibilities are the software timestamp and the

hardware timestamp. The latter is available only for PTP

hardware-enabled devices, and it is actually one of the main

advantages that PTP has over NTP. The software timestamp,

indeed, is the least accurate option. It is based on a software



clock that runs in the kernel, namely the system clock. It can

be applied when a packet reaches the application layer or,

in order to reduce the delay in the protocol stack, the device

driver layer. The system clock works with timer interrupts and

keeps the time by reading the CPU register which counts the

number of clock cycles since the last reboot (e.g. the Time

Stamp Counter on Intel x86 processors). The system clock,

has not to be confused with the battery powered clock, also

known as Real-Time Clock and present in most Linux devices.

This clock, indeed, is used only to keep track of the time when

the system is turned off and later initialize the system clock at

boot time. In Linux systems, NTP is usually implemented by

a daemon running in user space, the ntpd, which constantly

updates the system clock. The kernel will then correct the

real-time clock drift, usually at a much lower frequency.

To minimize the jitter introduced by the processing time of

the OSI3 layers, PTP introduces the idea of hardware times-

tamping support. As described in Figure 6, the PTP Hardware

Clock (PHC) subsystem, sketched here with the PHC block,

takes advantage of the Media Independent Interface (MII) to

detect PTP frames and provide timestamps with an accuracy

close to the physical layer. Several Linux implementations are

available for PTP. The one used in this paper is the Linux

PTP Project [11]. It involves two user space applications, ptp4l

and phc2sys. Both take advantage of the kernel space support

for the PHC subsystem by using the clock gettime family of

calls. While ptp4l is the actual implementation of the PTPv2,

implementing both boundary and ordinary clocks, phc2sys is

used to synchronize the PHC to the system clock.

We will see in the next sections, it is possible to tune the

synchronization messages rate on both protocols implementa-

tions, ntpd and ptp4l. This can be done by setting the client

(slave in the case of PTP) polling period parameter. We will

see also that while it is useful to increase such frequency

for the NTP, it is not for the PTP. Instead, using phc2sys

to increase the update rate between the PHC and the system

clock, will result in a higher synchronization performance.

D. Possible Sources of Jitter

Aim of this subsection is to summarize the main sources

of jitter that affect the time synchronization performance that

will be after evaluated. The main difference between the two

protocols is of course the method used for the timestamp,

as the HW timestamping support reduces the processing time

delay to the OSI physical layer. Therefore, remaining sources

of jitter, on both protocols, are mainly attributed to [12][13]:

1) the delay on the physical link, which includes

• the physical channel (i.e. asymmetry of the network

propagation delay in the two directions),

• the use of general networking devices. In the PTP

that can be improved by using PTP-enabled net-

working devices. In the NTP by replacing general

switches with more recent models, which can be

used as NTP time server. Indeed, the number of

3ISO/OSI model, which stands for International Organization for Standard-
ization/Open Systems Interconnection model.

hops between client and server will be reduced to a

point-to-point connection.

• the physical distance between the PHY layer and

the PHC support within the device, for PTP only.

2) the hardware properties of the clock (i.e. rate and stabil-

ity of the oscillator, which result in a limited hardware

resolution and precision of the timestamps, respectively).

More in detail,

• in the NTP, the rate and the stability of the oscillator

used for the system clock interrupt timer.

• in the PTP, the rate and the stability of the PHC.

IV. EXPERIMENTAL RESULT

A. Testbed Setup

The goal of this section is to evaluate how the performance

of NTP and PTP scale on a Beaglebone Black Board used as

monitoring device in this work. For this purpose, we set up

the testbed described in Figure 7. It consist of a slave node

(BB1) directly connected to a master (BB2). Using the NTP

nomenclature, BB1 is the client and BB2 the server. We used

it to find an upper bound (best performance) for the achievable

accuracy and precision, aimed at the sensor data timestamping

and collection within a HPC infrastructure. Moreover, in this

scenario it is not necessary to synchronize clocks with an

absolute time reference, but instead, it is important that all the

collected sensors data are synchronized between each other

and the rest of the HPC nodes. Therefore, the system clock of

the Beaglebone Black master is used as source of time:

• In the NTP tests, the client system clock is directly

synchronized to server system clock by the daemon ntpd.

• In the PTP tests, the ptp4l application, running on both

Beaglebones, synchronizes the two ordinary clocks (PHC

slave to the PHC master), while the phc2sys program

updates the two system clocks with the respective PHC.

In particular, the phc2sys running on BB1, synchronizes

its system clock taking the time from its PHC. Instead,

the phc2sys on BB2 does the opposite, updating its PHC

taking the time from its system clock.

BB1 (Slave) BB2 (Master)

Oscilloscope

Input Square Wave

System Clock 

BB1 (slave)

PTP4l

PHC2SYS

PTP HW 

Clock (PHC) 

BB1

PHC2SYS

PTP HW 

Clock (PHC) 

BB2

TimeStamp BB2TimeStamp BB1

System Clock 

BB2 (master)

Fig. 7: Testbed setup which sketches PHC and system clock

running on both Beaglebones, master and slave. In the case of

NTP, only the system clock is used.



To have an empirical measurement of the time precision

and accuracy in-between the two embedded devices, we had

to solve two technical problems: (i) the two Beaglebones need

the same triggering event. (ii) We have to measure with an

external reference the actual time when the two devices sense

the triggering event and generate the timestamp.

The idea is to use an input square wave as source of interrupt

for triggering both nodes. The GPIO used as input pin, is then

handled through the Interrupt Service Routine (ISR) within

an ad hoc device driver. As soon as the square wave goes

high, a second GPIO, used as output pin and connected to an

oscilloscope (Agilent MSOX3054A), is driven high. Hence,

in the next instruction a timestamp is generated, taking the

time from the system clock. Figure 8 outlines the oscilloscope

window.

Time1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bit-state

(0-1)

GPIO_BB1

GPIO_BB2
Input_wave

Delay_ISR_2 ΔISR

Delay_ISR_1

Triggering

Event
TS_BB2 TS_BB1

Fig. 8: Oscilloscope’s window that shows the several involved

signals (i.e. input wave and the two output GPIOs on both

Beaglebones), and the delays introduced by the interrupt

service routines in-between the triggering event and the actual

moment the timestamp is generated (i.e. Delay ISR 1 and

Delay ISR 2).

The blue line represents the output GPIO on the Beaglebone

slave (GPIO BB1), while the green line the one on the

master (GPIO BB2). As soon as the two Beaglebones receive

the trigger event, they will generate a timestamps (TS BB1

and TS BB2), both with a ISR processing time delay (De-

lay ISR 1 and Delay ISR 2). Therefore, such configuration

allows to take into account the offset between the two ISR

processing time delays (∆ISR), for the final computation of

the system clock time-offset:

System Clockoffset = TSs − (TSm +∆ISR) (3)

where TSs and TSm correspond to system clock timestamps of

the Beaglebone slave and master, respectively. Moreover, the

offset ∆ISR is here always referred to the master time and

can be either positive or negative depending on which clock

is head of time.

B. Measurement Results

1) Accuracy and Precision: Both values were traced by

measuring the skew between the two system clocks, for

several working frequencies of the previously mentioned Linux

programs (i.e. ntpd, phc2sys, and lastly ptp4l). Regarding NTP,

the ntpd polling period can be set by the two options minpoll

and maxpoll within the range 8s to ~36.4h. Default values

are 64s for minpoll and 1024s for maxpoll. The histogram in

Figure 9.1 shows the master-slave offset obtained by setting

both values to the minimum polling period of 8s.
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Fig. 9: Best tested NTP and PTP synchronization performance

on a Beaglebone Black Board.

The green line on the zero corresponds to the master clock,

while the red curve is the approximated Normal Distribution.

As can be seen in the plot, the measured accuracy (mean

value) over 30k samples is ~17.5us, and the precision (standard

deviation) is ~8.4us. To observe how the percentage of samples

skews from the reference time, the Cumulative Distribution

Function (CDF) is traced in Figure 9.2. Results show that

75% of the samples stay within ~23us, 95% below ~30us,

and finally 99% of the values below ~35us. Note that this

exchanging message rate should not be a problem within

a HPC LAN. Moreover, the scalability factor will be later

analysed.

Figure 9.3 shows the best PTP performance trade-off. The

phc2sys program was used to tune the internal-slave clock

update rate on both Beaglebones, namely the PHC update

rate on BB2 and the system clock update rate on BB1. This

is not related to the frequency of synchronization messages

exchanged over the network, which instead is possible to set

with the ptp4l application. The reason for not altering such a

frequency is that its default configuration in ptp4l is already

set to the maximum value of 1Hz for all the event messages.

Moreover, there would not be any reason to further increase

this frequency as it is the typical best trade-off to achieve

the minimum traffic on the network and the optimal point of

work of the PHC oscillator [12]. The tested frequencies range

from 1Hz to 24Hz with steps of 6Hz. Table I reports such

results, while the CDFs in Figure 9.4 stand out that 12Hz



corresponds to the best trade-off to minimize both frequency

and skew from the time reference. Indeed, results show that

75% of the values are below ~500ns, 95% below ~970ns, and

finally 99% below ~1.32us.

Update-rate µ-offset σ-offset

1Hz -230.8ns 2.01us

6Hz -9.2ns 753ns

12Hz 16.1ns 513.7ns

18Hz 101.6ns 458.7ns

24Hz 23.6ns 488.5ns

TABLE I: PTP performance achieved by tuning the phc2sys

internal-slave clock update rate to several frequencies. Accu-

racy and precision are indicated here by µ-offset and σ-offset,

respectively.

As both protocol implementations are based on free-running

oscillators [14], decreasing the synchronization message fre-

quency over the network it follows in a growth of the time drift

between the master and the slave Beaglebones. Of course, such

a drift is bounded within two consecutive synchronizations and

related to the system clocks in the NTP case, and PHCs in the

PTP (which actually follows in a drift of the respective master

and slave system clocks). The four plots in Figure 10, obtained

by setting the maximum polling period (i.e. ~36.4h) on both

ntpd and ptp4l, give an idea of such a drift.
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Fig. 10: Linear drift between the two Beaglebone free-running

oscillators.

In particular, Figure 10.1 and Figure 10.3 reports the several

histograms for NTP and PTP, respectively. The error bars

in Figure 10.2 and Figure 10.3 show instead the almost

linear trend of both drifts. Indeed, the x-axis represents the

elapsed time between the first test and the others, and the fact

that the trend is growing in a positive or negative direction

depends on which clock was ahead of time during the initial

synchronization.
In light of the achieved results, the Network Time Protocol

running on a Beaglebone Black Board allows a time-

synchonization for a fine grain HPC monitoring, and further

events correlation, with an accuracy of ~17us and precision

of ~8.4us. Such values decrease to ~16ns and a ~513ns,

respectively, using the Precision Time Protocol. Furthermore,

the results track an upper bound of ~35us and ~1.32us on

NTP and PTP, respectively, for 99% of cases.

2) Scalability: Looking at the message exchange patterns,

it is possible to quantify, for both protocols, how the master

scales with the number of connected devices. In particular,

considering N clients, the NTP server (bottleneck) has to deal

with 2N packets per time update (a pair query-reply). In the

NTPv4, the query consists of 90Bytes (42B for the header and

48B for the payload), while the reply involves 94Bytes (46B

the header + 48B the payload) [5]. Therefore, with a polling

period of 8s (our best tested performance) the NTP server data

rate corresponds to 23B/s per client, where of course the best

case in terms of such a data rate corresponds to the client-

server point-to-point link.
Focusing on the PTP multicast messages exchange model,

the master has to handle 2 + 2N packets per time update. In

other words, setting a polling period of 1s for all the synchro-

nization messages, there is a fixed component of 180B/s (90B/s

for the Sync + 90B/s for the Follow Up), and a scalable com-

ponent of 186B/s per slave (86B/s for the Delay Req + 100B/s

for the Delay Resp) [6]. To be precise, PTP provides other

general messages with the view to handle the PTP network.

These messages are sent with a lower frequency and mainly

contribute to the fixed component only, reason why they do

not undermine the scalability. Such considerations are valid for

network topologies with transparent clocks (or generic non-

PTP devices) between the two nodes master and slave. Again

the best case in terms of such a data rate corresponds to the

master-slave point-to-point link, which could be achieved, for

instance, using boundary clocks between the two nodes.
With the goal to synchronizing devices within a monitoring

infrastructure, we can finally assert that both protocols are

not critical in terms of scalability. Indeed, considering a

Fast Ethernet, which support the bit rate of 100Mb/s (e.g.

the 10/100 RJ45 of the Beaglebone Black Board), in our

best performance configuration the NTP server uses only

~0.000184% of the network bandwidth per client, while the

PTP master only ~0.001488% of the network bandwidth per

slave (where in case of a network with only boundary clocks

between the several nodes there is only one slave per master).

In theory, using only 10% of the bandwidth a NTP server

could handle up to ~54k nodes, while each PTP master port

up to ~6.7k nodes. Moreover, using a Gigabit Ethernet these

values decrease to ~0.0000184% and ~0.0001488% for the

NTP server and PTP master, respectively. As before, in theory

this would correspond to handling up to ~540k nodes for each

NTP server and ~67k nodes for each PTP master port.

C. Baglebone Black Board - NTP-PTP Settings

In this final section we describe a short ”how-to”, based on

the experience gained in this work, in order to achieve our best

time synchronization results on the BBB. Table II summarizes

the main settings of both ntpd and phc2sys, for NTP and PTP,

respectively.



Program Server (Master) Client (Slave)

ntpd minpoll 3 maxpoll 3
fudge stratum n

minpoll 3 maxpoll 3
fudge clock IP stratum n

phc2sys -R12 -R12

TABLE II: Ntpd and Phc2sys settings to achieve our best

accuracy and precision on a Beaglebone Black Board.

In the NTP configuration file (/etc/ntp.conf) it is possible to

set the polling period of both client to its server, and server

to its time-reference. Furthermore, the option fudge allows to

specify the stratum number (from 0 to 15) associated to the

source of time in both client and server. Regarding PTP, the

-R parameter allows phc2sys to set the polling rate of the

internal-slave clock (PHC or System Clock). Moreover, it is

possible to generate the System Clock timestamp using the

clock gettime family of calls. In particular, within the device

driver do gettimeofday() was used. Otherwise, in a user-space

program the gettimeofday() call can be used. Note that, using

instead clock gettime() along with the CLOCK REALTIME

tag, results in a performance deterioration. Indeed, such

timestamp is generated by the Real-Time Clock previously

described, which is updated with a lower frequency than the

system clock. Finally, if synchronization with an absolute-

time reference is needed, we suggest the use of a GPS at

the top of the hierarchical topology, instead of using a cluster

of servers outside the LAN. Indeed, this could decrease the

performance due to the jitter introduced by typical store-and-

forward networking devices. We remark that our analysis is

based on synchronization with a relative-time reference as we

are interested in application and sensor data correlation of

devices within a HPC infrastructure LAN, and not outside of it.

V. CONCLUSION

Solutions for accurate and fine-grain monitoring are cru-

cial for the growth of large-scale green HPC infrastructures.

These large scale systems require a distributed monitoring and

thus the time-granularity, at which architectural and physical

events can be correlated and analysed, is bounded by the

monitoring devices’ time-synchronization. In this work we

evaluate the achievable synchronization performance in terms

of accuracy, precision and scalability of two widely adopted

time synchronization protocols: the Network Time Protocol

and the Precision Time Protocol, both running on a state-of-

the-art embedded monitoring platform, namely the Beaglebone

Black Board. Our results show that the NTP achieves, in our

best configuration, an accuracy of ~17.5us and a precision

of ~8.4us, while the PTP decrease such values to ~16.1ns

and ~513.7ns respectively. In 99% of the performed tests, the

timestamp offset calculated between the monitoring device and

its time reference is not greater than ~35us for the NTP and

not greater than ~1.32us for the PTP. Furthermore, in 75%

of the cases, such a timestamp offset decreases to ~23us for

the NTP and ~500ns for the PTP. Finally, given these values

of time synchronization, these protocols are not critical to the

monitoring system scalability.

As a result, our study demonstrates that both NTP and PTP,

as well as low-cost embedded monitoring devices, can be used

for fine-grain measurement of HPC systems. Furthermore,

such results can be applied in any context of performance

monitoring within a LAN that takes advantage of a Beaglebone

Black (more in general that uses the TI Sitara AM335x

processors’ Family) and PTP-HW enabled devices for PTP.

We also expect that using different processors as monitoring

devices, as long as they are PTP-HW enabled, will not change

the order of magnitude of the results. Finally, as the state-of-

the-art of some built-in HPC performance monitoring sensors

(e.g. power sensors) do not have a sub-milliseconds resolution,

our study shows that synchronization is not a boundary factor

for application and sensor data correlation. Moreover, in our

future work we plan to investigate faster power monitoring

strategies and their implication in large scale systems.
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