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Abstract 

Background Deep learning (DL) algorithms are playing an increasing role in automatic medical image analysis.

Purpose To evaluate the performance of a DL model for the automatic detection of intracranial haemorrhage and 
its subtypes on non-contrast CT (NCCT) head studies and to compare the effects of various preprocessing and model 
design implementations.

Methods The DL algorithm was trained and externally validated on open-source, multi-centre retrospective 
data containing radiologist-annotated NCCT head studies. The training dataset was sourced from four research 
institutions across Canada, the USA and Brazil. The test dataset was sourced from a research centre in India. A 
convolutional neural network (CNN) was used, with its performance compared against similar models with addi-
tional implementations: (1) a recurrent neural network (RNN) attached to the CNN, (2) preprocessed CT image-
windowed inputs and (3) preprocessed CT image-concatenated inputs. The area under the receiver operating 
characteristic curve (AUC-ROC) and microaveraged precision (mAP) score were used to evaluate and compare 
model performances.

Results The training and test datasets contained 21,744 and 491 NCCT head studies, respectively, with 8,882 (40.8%) 
and 205 (41.8%) positive for intracranial haemorrhage. Implementation of preprocessing techniques and the CNN-
RNN framework increased mAP from 0.77 to 0.93 and increased AUC-ROC [95% confidence intervals] from 0.854 
[0.816–0.889] to 0.966 [0.951–0.980] (p-value = 3.91 ×  10−12).

Conclusions The deep learning model accurately detected intracranial haemorrhage and improved in performance 
following specific implementation techniques, demonstrating clinical potential as a decision support tool and an 
automated system to improve radiologist workflow efficiency.
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Background
Intracranial haemorrhage is an important neurological 
emergency characterised by bleeding into the cranial 
vault. Its subtypes depend on the location of haemor-
rhage: into the brain parenchyma (intracerebral haem-
orrhage (ICH)), the subarachnoid space (subarachnoid 
haemorrhage (SAH)), the ventricles (intraventricu-
lar haemorrhage (IVH)), the space between the dura 
mater and skull (extradural haemorrhage (EDH)) or 
the space between the dura mater and arachnoid mater 
(subdural haemorrhage (SDH)). Intracranial haemor-
rhage has reported 30-day mortality rates of up to 61% 
and low rates of full functional independence amongst 
survivors [1].

Delays in the detection of intracranial haemorrhage 
translate into delays in specialist referral and active man-
agement, leading to potentially preventable cerebral 
injury and morbidity/mortality [2]. The practical gold 
standard imaging modality is non-contrast computed 
tomography (NCCT) of the head. However, due to the 
rising complexity and volume of contemporary imaging 
studies, the identification of positive head NCCT stud-
ies may be delayed by competing acute imaging stud-
ies. Additionally, after-hours or rural settings may lack 
experienced clinicians/radiologists, compounding the 
challenges of prompt, accurate haemorrhage detection. 
Significant discrepancies in image interpretation have 
been reported between experienced radiologists and jun-
ior radiologists/emergency physicians [3–5], with missed 
SDHs, SAHs [3], fractures and chronic ischaemic foci [4]. 
Hence, an automated process has the potential to reduce 
these misdiagnoses and expedite the evaluation and man-
agement of intracranial haemorrhages.

In recent years, deep learning (DL) algorithms have 
been proposed for automatic medical image analy-
sis. DL is based on an artificial neural network struc-
ture inspired by the human brain. In image analysis, 
DL networks such as convolutional neural networks 
(CNNs) learn hierarchical feature representations from 
images, automatically building high-level information 
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from low-level features. This enables sensitivity to min-
ute image details while retaining insensitivity to large 
irrelevant variations in the background [6]. Commer-
cial solutions exist for haemorrhage detection (e.g., 
RAPID ICH, iSchemaView, Inc. and Viz ICH, Viz.ai, 
Inc.), However, their non-open-source nature limits 
disclosure of the DL architectures and implementa-
tion techniques used. This subsequently reduces public 
insight into how these algorithms may be improved and 
prevents public benchmarking to evaluate their perfor-
mances transparently and robustly.

This study aims to implement a DL model for the 
automatic detection of intracranial haemorrhage and 
subtypes on NCCT head studies. However, the analy-
sis of volumetric scans presents a unique challenge, as 
most computer vision tasks focus on two-dimensional 
(2D) image analysis. Several studies addressed this via 
the use of a three-dimensional (3D) CNN model [7–9] 
but due to the “curse of dimensionality”, each increase 
in input data dimensionality exponentially increases 
the amount of data required to train a model. An alter-
native to this is a joint 2D CNN-recurrent neural net-
work (RNN) model, which combines the image analysis 
capabilities of a CNN with an RNN ability to analyse 
sequences, thus capturing the relationship between all 
slices in a volume [10]. Other studies used slice combi-
nation methods, feeding preprocessed image data con-
taining consecutive slices—slices immediately superior 
and inferior to each input slice—into the DL model [11, 
12]. We aimed to extend these approaches by combin-
ing both techniques.

Additionally, although previous studies have dem-
onstrated promising performance with CNN-RNN 
architectures, their validity is limited by the testing meth-
odology used. Ye et  al. [10] and Grewal et  al. [13] used 
split-sample validation, with the training and test sam-
ples derived from the same dataset. This is a less robust 
method of validation compared to testing on an inde-
pendent dataset acquired from a different location with 
different scanners/scanning protocols.
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Thus, the objectives of this study are threefold: (1) to 
design a DL model for the detection, subtyping and local-
isation of intracranial haemorrhages on NCCTs; (2) to 
compare several implementation techniques and evaluate 
their benefit; and (3) to validate the performance of the 
model on an independent retrospective dataset.

Methods
The DL model implemented in this study was pro-
grammed in the Python programming environment 
(Python Software Foundation, https:// www. python. 
org/). It was trained and tested on open-source data-
sets containing radiologist-labelled NCCT head studies. 
To enhance model performance, raw input scans were 
preprocessed using image windowing and slice concat-
enation techniques. This preprocessed data was subse-
quently analysed by a joint CNN-RNN DL model. Finally, 
in addition to producing predictions, the model gener-
ated output saliency heatmap images, with the aim of 
increasing the explainability of the algorithm. The follow-
ing subsections outline these processes in detail.

Datasets
Two open-source retrospective datasets were used in 
this study. Both datasets were composed of de-identified 
data, licensed for non-commercial and academic use. 
The study was approved by the local institutional ethics 
review board.

The first dataset, the Kaggle dataset, was obtained 
from a 2019 online Kaggle challenge hosted by the Radi-
ological Society of North America [14]. This contained 
752,803 NCCT slices (21,744 studies), collected across 
four research institutions (Stanford University, Thomas 
Jefferson University, Unity Health Toronto and Univer-
sidade Federal de São Paulo). The data had been manu-
ally labelled by sixty radiologists from the American 
Society of Neuroradiology. Each scan was annotated at 
the slice level, labelled with the presence or absence of 
the following six classes: EDH, ICH, IVH, SAH, SDH, 
and intracranial haemorrhage (i.e., any haemorrhage 
subtype). Each scan may have more than one haemor-
rhage subtype.

The second dataset, the CQ500 dataset from qure.ai, 
was previously used in a study by Chilamkurthy et  al. 
[15], collected from the Centre for Advanced Research 
in Imaging, Neurosciences and Genomics, in New Delhi, 
India [16]. This dataset contained 193,317 slices (491 
studies) and excluded postoperative scans and scans of 
patients younger than 7 years. The data included annota-
tions, manually labelled by three radiologists with experi-
ence of 8, 12, and 20 years respectively in cranial NCCT 
interpretation. Each scan was annotated at the subject 
level by each radiologist, with class labels matching those 

of the Kaggle dataset. The majority vote of these three 
radiologists’ annotations was used as the gold standard. 
Inter-rater reliability between radiologists was highest 
for intracranial haemorrhage and ICH (Fleiss κ = 0.78 for 
both) and lowest for SDH (Fleiss κ = 0.54), as detailed in 
Supplementary Table S1.

Both datasets encompassed data collected from insti-
tutions across separate geographic locations (the USA, 
Canada, Brazil, India), using different computed tomog-
raphy (CT) scanners and protocols. The characteristics 
of the CT studies acquired in both datasets are detailed 
in Supplementary Table S2. CT studies in both datasets 
contained varying numbers of slices (12–548) and vary-
ing slice thicknesses (0.625–7 mm). Most CT studies had 
a slice thickness of 5 mm. More accurate patient demo-
graphics were unable to be assessed, as this information 
was not provided by the publishers of the open-source 
datasets.

The Kaggle dataset was used to develop and train the 
model. The CQ500 dataset was used as an independent 
dataset for testing and verifying the performance of the 
trained model. Testing was carried out at the subject level 
instead of the slice level. A previous study which used the 
CQ500 dataset also used it as a test dataset [15]; however, 
their DL model approach and training data differed from 
the present study.

Data preprocessing
To improve the performance of the DL model, all CT 
images were preprocessed prior to being fed into the 
model. Two separate preprocessing pipelines were used.

In the first pipeline, an image windowing technique 
was used to mimic the clinical workflow of radiolo-
gists (Supplementary Fig. S1). This involves adjusting 
the window width (WW) and window level (WL) dis-
play settings of the CT image, to accentuate particular 
tissues or abnormalities being evaluated. Although sev-
eral studies have incorporated this into the preproc-
essing steps of their DL implementations [8, 10, 13, 15, 
17], the benefits of windowing have not previously been 
reported. Hence, we sought to clarify the extent of the 
impact of adding such a step. To incorporate this, each 
one-channel DICOM CT slice was converted into a 
three-channel 8-bit JPEG image (similar to the three-
channel RGB format), with each channel set to a specific 
window level (WL) and window width (WW) setting: 
brain window (WL = 40, WW = 80), subdural window 
(WL = 80, WW = 200) and soft tissue window (WL = 40, 
WW = 380).

In the second pipeline, a slice concatenation technique 
was used to mimic the way in which radiologists integrate 
information from adjacent slices when interpreting volu-
metric scans (Supplementary Fig. S2). Each one-channel 

https://www.python.org/
https://www.python.org/
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DICOM CT slice was converted into a three-channel 
JPEG image, with each channel corresponding to the cur-
rent slice and the slices immediately superior and inferior 
to it. These slices were brain-windowed. In cases with 
unavailable adjacent slice(s), the current slice was used 
instead.

In both pipelines, all image slices were then down-
sampled from 512 × 512 to 480 × 480 pixels to reduce 
memory usage. In addition, to synthetically “generate” 
more data for the model to train on and to improve the 
generalisability of the model, data augmentation was also 
performed. This involved geometrical transformations, 
with random extents of rotation (± 0–20°), scaling (by 
a factor of ± 0–0.05), shifting of height and width (by a 
factor of ± 0–0.05) and horizontal flipping applied to the 
images.

Deep learning model workflow
Two types of CNN models were trained: one using the 
image-windowed preprocessing pipeline  (CNNwdw) and 
another using the slice-concatenated preprocessing pipe-
line  (CNNslc). Both models were trained to detect the 
presence of any of the following predetermined six types 
of intracranial haemorrhage. A detected haemorrhage 
in any slice indicated positivity for haemorrhage for the 
patient. These two models were then combined into an 
ensemble  (CNNens). Predictions from  CNNens were based 
on the unweighted average of the probabilities predicted 
by both  CNNwdw and  CNNslc. The final joint CNN-RNN 
model  (CNNens-RNN) was created by joining the outputs 
of  CNNens to an RNN.

An important issue plaguing DL models is their lack of 
interpretability. To address this, we implemented a tech-
nique of providing “visual explanations” for the model 
predictions. This outputs a heatmap, which highlights the 
CT image pixels that contribute most significantly to the 
model prediction. This served the purpose of (1) increas-
ing the explainability of the model and (2) indicating the 
region of haemorrhage(s). The heatmap was generated by 
applying the Gradient-weighted Class Activation Map-
ping (Grad-CAM) technique [18] on  CNNwdw.  CNNwdw 
was selected for this purpose as Grad-CAM cannot be 
applied to ensemble models, and  CNNwdw takes more 
varied pixel information from a single CT slice compared 
to  CNNslc.

Deep learning model training procedures
The training Kaggle dataset was randomly split into train-
ing (80%) and validation (20%) sets. The training set was 
used to fit the model parameters. The validation set was 
used to further tune hyperparameters, to prevent the 
model from overfitting to the training set.

The DL model was implemented in the Python pro-
gramming language (Python 3.6) using the PyTorch DL 
framework (version 1.4.0). The CNN used was an Ima-
geNet-pretrained model with a ResNeXt architecture 
and received as input 2D images of 480 × 480 pixel 
size [19]. We used the Adam optimiser and weighted 
binary cross-entropy loss as the loss function. A con-
stant learning rate of 5 ×  10−5 was used. When com-
bined end-to-end, the CNN-RNN was composed of the 
same CNN model, with an additional RNN containing 
two bidirectional long short-term memory layers. The 
CNN outputs (obtained from the layer immediately 
before the final fully connected layer) were used as 
input into the RNN. The model is illustrated in Sup-
plementary Fig. S3.

Training was performed on a high-performance com-
puting system with two Intel Xeon E5-2650 central pro-
cessing unit processors (24 cores), four NVIDIA P100 
graphics processing units and 128 GB of random-access 
memory. Each model took about 50 h to train.

Statistical analysis
All statistical analyses were performed using the Python 
modules scikit-learn (version 0.22.1) and statsmodels 
(version 0.12.2). The performance of the DL model on 
the test dataset was evaluated using the following met-
rics: accuracy, sensitivity, specificity, positive likelihood 
ratio, negative likelihood ratio, area under the receiver 
operating characteristic curve (AUC-ROC), area under 
the precision-recall curve (AUC-PR) and microaveraged 
precision score (mAP). Ninety-five per cent confidence 
intervals for accuracy, sensitivity and specificity were cal-
culated using the exact Clopper-Pearson method based 
on β distribution [20].

For each class, receiver operating characteristic (ROC) 
curves [21] were obtained by plotting the true positive 
rate (sensitivity) against the false positive rate (1 − speci-
ficity) at various discriminative threshold settings. Two 
operating points were selected—a “high sensitivity” and 
a “balanced” operating point—based on performance on 
the validation dataset. A “high sensitivity” operating point 
was chosen on the ROC curve, which maximised sensi-
tivity while ensuring a minimum specificity of 80%. If the 
sensitivity value at this point was less than 93%, another 
point was chosen with a minimum specificity of 70%. The 
decision to select an operating point that placed greater 
emphasis on sensitivity, over specificity, was based on the 
DL model aim to be used as a triage tool. A second more 
“balanced” operating point was also chosen, which max-
imised the Youden index [22] while ensuring a minimum 
sensitivity of 85%.
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Precision-recall (PR) curves were obtained by plot-
ting precision against recall at various discriminative 
threshold settings. Compared to ROC curves, PR curves 
are more reliable in datasets containing class imbalance 
[23–25], such as in this application where certain haem-
orrhage subtypes are more common. The mAP, a single 
informative metric that summarises PR curves across all 
classes, as well as the AUC-ROC (for the detection of the 
class ‘any intracranial haemorrhage’), were used to com-
pare specific model implementations. The DeLong test 
was used to evaluate the statistical significance between 
AUC-ROCs. The McNemar test was used to assess if the 
cases of false negative and false positives were signifi-
cantly different between models.

Results
Datasets
The DL models were trained on the Kaggle dataset and 
tested on the CQ500 dataset. Both datasets were intrin-
sically imbalanced (Table  1). EDH-positive scans made 
up a substantially smaller proportion of the data in both 
datasets (1.6% and 2.6% of each dataset), as compared to 
the other haemorrhage subtypes (17.0–40.8% and 5.7–
41.8%). Both datasets contained predominantly images 
negative for haemorrhage (59.2% and 58.2% of each 
dataset).

Comparison of model performance
The impact of the techniques used to enhance DL model 
performance was evaluated using mAP and AUC-ROC 
scores (Fig. 1).

For the detection of any intracranial haemorrhage sub-
type, the addition of both the image windowing and slice 
concatenation preprocessing pipelines, along with the 
RNN attached to the CNN, increased mAP from 0.77 to 

0.93 and increased AUC-ROC from 0.85 to 0.97 (DeLong 
p-value = 3.91 ×  10−12).

Compared to no preprocessing (CNN), the use of the 
image windowing preprocessing pipeline  (CNNwdw) 
increased mAP from 0.77 to 0.91 and increased AUC-
ROC from 0.85 to 0.96 (DeLong p-value = 5.10 ×  10−12). 
Compared to no preprocessing (CNN), the use of the 
slice concatenation preprocessing pipeline  (CNNslc) 
increased mAP from 0.77 to 0.91 and increased AUC-
ROC from 0.85 to 0.97 (DeLong p-value = 1.90 ×  10−12). 
Combining both pipelines  (CNNens) resulted in a mAP 
of 0.92 and an AUC-ROC of 0.97, which was not statisti-
cally significant when compared to using only the image 
windowing pipeline  (CNNwdw) or only the slice concat-
enation pipeline  (CNNslc) (DeLong p-values of 0.065 and 
0.823 respectively). The McNemar test was significant for 
the former but not the latter (McNemar p-values of 0.014 
and 0.052, respectively).

The addition of the RNN to the CNN increased mAP 
from 0.77 to 0.79 and increased AUC-ROC from 0.85 to 
0.87 (DeLong p-value = 0.017). The McNemar test was 
not significant (p = 1.000). Compared to without the 
RNN, the addition of the RNN with either the image win-
dowing pipeline, or the slice concatenation pipeline, or 
both pipelines led to increases in mAP: 0.91 to 0.93 for 
 CNNwdw versus  CNNwdw-RNN, 0.91 to 0.92 for  CNNslc 
versus  CNNslc-RNN, and 0.92 to 0.93 for  CNNens versus 
 CNNens-RNN. The changes in AUC-ROC were not sta-
tistically significant (DeLong p-values of 0.922, 0.902, 
and 0.750 respectively); however, the McNemar test 
was highly significant (p = 1.39 ×  10−17, 5.23 ×  10−30, 
2.25 ×  10−24).

Further data comparing the performance of each of 
these models can be found in Supplementary Tables S3 
and S4.

Model performance on haemorrhage detection
Figure 2 and Table 2 summarise the performance of the 
final  CNNens-RNN model on the CQ500 dataset. The 
model achieved AUC-ROCs of 0.966, 0.971, 0.983, 0.991, 
0.949, and 0.953 and AUC-PRs of 0.965, 0.584, 0.951, 
0.934, 0.889, and 0.892 for the detection of intracranial 
haemorrhage, EDH, ICH, IVH, SAH, and SDH, respec-
tively. At the high-sensitivity operating point (sensitivi-
ties from 0.95 to 1.00), the accuracy range was 0.77–0.90, 
with specificities from 0.73 to 0.90. At the balanced oper-
ating point, the accuracy range was 0.86–0.96, with sen-
sitivities from 0.87 to 1.00 and specificities from 0.85 to 
0.96.

The time taken for each model to perform inference 
on the CQ500 dataset was about 1 h. The slowest model 
spent 1 h and 6 min, such that the average time taken to 
analyse a single slice was 0.0205 s. Given an average CT 

Table 1 Proportions of each class label in the Kaggle and CQ500 
datasets

Data is provided in n volumetric scans (%)

EDH Extradural haemorrhage, ICH Intracerebral haemorrhage, IVH 
Intraventricular haemorrhage, SAH Subarachnoid haemorrhage, SDH Subdural 
haemorrhage

Training (Kaggle 
dataset)

Test (CQ500 dataset)

No haemorrhage 12,862 (59.2%) 286 (58.2%)

Intracranial haemor-
rhage

8,882 (40.8%) 205 (41.8%)

EDH 354 (1.6%) 13 (2.6%)

ICH 5,321 (24.5%) 134 (27.3%)

IVH 3,692 (17.0%) 28 (5.7%)

SAH 3,932 (18.1%) 60 (12.2%)

SDH 3,812 (17.5%) 53 (10.8%)
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head scan contains about 30 axial images, this would take 
approximately 0.615 s to analyse.

Model visualisation
In addition to producing a prediction of the presence 
or absence of haemorrhage, our implementation also 
generated saliency heatmaps, highlighting the input 
image pixels which contributed most significantly 
to the final model prediction. These heatmaps were 
qualitatively assessed. Figures 3 and 4 depict examples 
of these images when the DL model  (CNNwdw) was 
applied to the CQ500 dataset. The heatmaps in Fig.  3 
indicate that the model largely based its predictions 
on haemorrhagic areas and, depending on the haem-
orrhage subtype, focused on different areas. In  situa-
tions where the model made false predictions (Fig.  4), 
the heatmap can help to identify the image pixels that 
the model had misinterpreted, thus providing insights 
into these incorrect predictions, as demonstrated in 
the bottom two image sets. The top two image sets of 
Fig. 4 indicate further discrepancies between the model 

prediction and the ground truth radiologist consen-
sus. However, in these cases, there was also disagree-
ment amongst the radiologists. Such contentious cases 
demonstrate the difficulty of assessing the true perfor-
mance of the model, especially where there is a lack of 
an objective ground truth.

Discussion
In this study, we developed a highly accurate DL model 
for the automatic detection of intracranial haemorrhage 
on NCCT studies. Our implementation additionally sub-
types the haemorrhage and produces Grad-CAM-gener-
ated heatmaps, which increases the explainability of the 
algorithm through visual interpretation.

Our model performance was validated on an independ-
ent retrospective test set, previously used by Chilam-
kurthy et  al. [15]. Despite utilising a smaller dataset of 
images for training compared to the aforementioned 
authors, our model achieved superior performance. 
Additionally, the performance of our model on intracra-
nial haemorrhage subtype classification was comparable 

Fig. 1 Comparison of model performances with different preprocessing and addition of an RNN. CNN denotes the model composed of a CNN, 
with no preprocessing image techniques or RNN added.  CNNwdw denotes the CNN model trained only with the image windowing preprocessing 
pipeline.  CNNslc denotes the CNN model trained only with the adjacent slice concatenation preprocessing pipeline.  CNNens denotes the ensemble 
model combining  CNNwdw with  CNNslc.  CNNwdw-RNN denotes the  CNNwdw model joined to an RNN.  CNNslc-RNN denotes the  CNNslc model 
joined to an RNN.  CNNens-RNN denotes the  CNNens model joined to an RNN. AUC-ROC Area under the receiver operating characteristic curve, CNN 
Convolutional neural network, mAP Average precision score (microaveraged across all six haemorrhage classes), RNN Recurrent neural network
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to or better than other studies currently in the litera-
ture [7–12, 15]. It achieved a superior AUC-ROC over 
previously reported 3D CNN implementations [7, 8]. 
Notably, although Chang et  al. [26] and Kuo et  al. [11] 
demonstrated results exceeding or comparable to ours 
respectively, the architecture of their algorithms (mask 
R-CNN and patch-based fully convolutional network 
respectively) necessitated pixel-level annotations. Such 
annotations are time-consuming to obtain and less scal-
able with time as datasets grow. Furthermore, previous 
studies have used split-sample validation to verify their 
algorithms’ performance [7, 9, 10, 27–29]. Thus, although 
comparisons of performances were similar in some cases, 
our results were able to demonstrate greater validity 
through testing on an independent dataset.

The performance of our model may be attributed to 
several design implementations. Firstly, we leveraged 

transfer learning: instead of initialising a model with 
random weights, we used a model pretrained on the 
large ImageNet dataset [30], fine-tuning it for the cur-
rent application. Transfer learning is known to reduce 
the amount of data required to train a model [31], and 
two studies have shown the advantages of using a pre-
trained model over a model trained from scratch for 
this application [27, 28]. However, these studies did 
not validate their model on an independent test data-
set, limiting reliability. Secondly, we used image win-
dowing, a technique frequently used by radiologists 
to accentuate specific regions of interest. Although 
other studies in the literature also implemented this, 
detailed quantification of the improvement in perfor-
mance with the addition of this technique has not been 
reported [8, 10, 12, 13, 15, 17]. Our study addressed 
this, providing important evidence for the role of 

Fig. 2 ROC and PR curves for the deep learning model on the CQ500 dataset. The top two graphs show the ROC curves (a intracranial 
haemorrhage; b each haemorrhage subtype). The bottom two graphs show the PR curves (c intracranial haemorrhage; d each haemorrhage 
subtype). Ninety-five per cent confidence intervals are provided in parentheses for each AUC. AUC  Area under the curve, EDH Extradural 
haemorrhage, ICH Intracerebral haemorrhage, IVH Intraventicular haemorrhage, PR Precision-recall, ROC Receiver operating characteristic, SAH 
Subarachnoid haemorrhage, SDH Subdural  haemorrhage
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image preprocessing in improving the quality of data 
fed to DL models and its subsequent effects on per-
formance. Thirdly, our implementation was able to 
incorporate the full spatial information of all slices 
within a CT volume. We added and compared several 
implementations to our 2D CNN model that enabled 
the analysis of interslice dependencies. We (1) con-
catenated adjacent slices together during the image 
preprocessing step and (2) used an RNN to analyse 
sequential slice information. Other studies have shown 
the benefit of each of these techniques [10–12]; how-
ever, none has integrated both into a single model. 
Although we did not find a statistically significant 
improvement in performance when combining both 
methods, McNemar tests did indicate that the disa-
greement between the models was significant.

Another notable feature of this study is the use of 
purely open-source datasets, sourced from multiple insti-
tutions. These aggregated datasets were collected using 
multiple different CT scanners from different manu-
facturers, with various acquisition protocols. Addition-
ally, the patient population was more diverse than data 
sourced from a single institution or geographic loca-
tion. By training and testing our model on such data, it 
ensures generalisability to other CT data and mitigates 
performance errors caused by factors related to CT 
scan acquisition. Although previous studies have shown 

comparable results, they were limited in validity due to 
the use of split-sample validation.

Furthermore, this study highlights the importance 
of such open-source datasets in supporting continuing 
research in this area. Similar to the ImageNet challenge 
[32], datasets such as these can be used as a “benchmark-
ing” challenge, allowing the performance of different 
models to be more reliably compared via validation on 
the same dataset.

This study also sought to address an important limita-
tion of DL models. DL models are often criticised as “black 
box” algorithms, generating predictions that cannot be 
explained due to their complex internal workings. Our 
implementation mitigates this by generating heatmaps, 
highlighting the CT image pixels that contribute most 
significantly to the final model predictions. This can aid 
users in identifying whether the model is placing undue 
importance on insignificant image features—the ability to 
identify errors and fallacies is a step towards producing 
a correctable and dependable system. Additionally, this 
implementation enables visual localisation of pathology, 
without the need for obtaining radiologist-labelled pixel-
level annotations of haemorrhagic areas for the model to 
train on.

Our model performed with high accuracy, achieving 
AUC-ROCs greater than or equal to 0.949 on all classes. 
EDH, SAH and SDH were the poorest performing classes 

Table 2 DL model performance on the CQ500 test dataset at two selected operating points

95% CIs are provided in parentheses for accuracy, sensitivity and specificity

The greater the positive likelihood ratio, the greater the effect on the post-test probability of disease given a positive test result (0–5: slight increase, 5–10: moderate 
increase, > 10: large increase)

The smaller the negative likelihood ratio, the greater the effect on the post-test probability of disease given a negative test result (0.5–1: slight decrease, 0.2–0.5: 
moderate decrease, 0–0.1: large decrease)

DL Deep learning, EDH Extradural haemorrhage, ICH Intracerebral haemorrhage, IVH Intraventricular haemorrhage, SAH Subarachnoid haemorrhage, SDH Subdural 
haemorrhage

Accuracy Sensitivity Specificity Positive likelihood 
ratio

Negative 
likelihood 
ratio

High-sensitivity operating point

 Intracranial haemorrhage 0.88 (0.84–0.90) 0.95 (0.91–0.97) 0.81 (0.76–0.86) 5.100 0.061

 EDH 0.90 (0.87–0.93) 1.00 (0.54–1.00) 0.90 (0.87–0.93) 10.173 0.000

 ICH 0.87 (0.83–0.90) 0.99 (0.96–1.00) 0.83 (0.78–0.86) 5.700 0.009

 IVH 0.89 (0.85–0.91) 1.00 (0.91–1.00) 0.88 (0.84–0.91) 8.051 0.000

 SAH 0.79 (0.75–0.82) 0.96 (0.90–0.99) 0.74 (0.69–0.78) 3.622 0.058

 SDH 0.77 (0.73–0.81) 0.94 (0.87–0.98) 0.73 (0.68–0.77) 3.497 0.078

Balanced operating point

 Intracranial haemorrhage 0.91 (0.88–0.94) 0.88 (0.83–0.92) 0.94 (0.91–0.97) 15.400 0.129

 EDH 0.90 (0.87–0.93) 1.00 (0.54–1.00) 0.90 (0.87–0.93) 10.173 0.000

 ICH 0.94 (0.91–0.96) 0.95 (0.90–0.98) 0.93 (0.90–0.96) 14.341 0.053

 IVH 0.96 (0.94–0.98) 0.95 (0.83–0.99) 0.96 (0.94–0.98) 26.349 0.051

 SAH 0.86 (0.82–0.89) 0.87 (0.80–0.93) 0.85 (0.81–0.89) 5.927 0.150

 SDH 0.93 (0.90–0.95) 0.90 (0.81–0.95) 0.93 (0.90–0.95) 13.185 0.111
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Fig. 3 Visualisation of correct model predictions using heatmap images. Examples of the regions that contributed to the model decision in 
predicting the presence of haemorrhages. The warmer the colour (red > orange > yellow > green > blue), the greater the contribution of the image 
pixel to the prediction. EDH Extradural haemorrhage, ICH Intracerebral haemorrhage, IVH Intraventricular haemorrhage, SDH Subdural haemorrhage
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Fig. 4 Visualisation of incorrect model predictions using heatmap images. Examples of the regions which contributed to the model decision 
in predicting haemorrhages. The warmer the colour (red > orange > yellow > green > blue), the greater the contribution of the image pixel to 
the prediction. a The model predicted an EDH, whereas the ground truth consensus label determined by radiologists was an SDH. Notably, the 
haemorrhage had a biconvex shape more closely associated with EDHs. b The model predicted ICH and SAH. Although one radiologist identified 
both SAH and ICH, the ground truth consensus only indicated the presence of a SAH. However, there are several subtle areas indicating possible 
ICH. c False negative in which the model missed a SDH. Although the model detected a suspicious area as indicated on the heatmap, it did 
not reach a sufficient threshold to be classified as a haemorrhage. Stagnant blood in the dural sinuses, which are benign and more common, 
can appear similar to SDH in this area, which may have contributed to the model error. d False negative in which the model missed an ICH. The 
heatmap indicated that the model did not appropriately detect areas of abnormality. The presence of chronic infarction here may have affected the 
model performance. EDH Extradural haemorrhage, ICH Intracerebral haemorrhage, IVH Intraventricular haemorrhage, SDH Subdural haemorrhage
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based on both AUC-ROC and AUC-PR. Notably, the 
ground truth radiologist labelling of these three subtypes 
also had the lowest inter-rater reliability (Fleiss κ 0.61, 
0.64, and 0.54, respectively). Given the subjectivity of vis-
ual human interpretation, these ground truth labels are 
not free of error. Hence, the effects of potentially errone-
ous ground truth labels on DL model evaluation should 
be considered.

This study had several limitations. Firstly, the influ-
ence of haemorrhage mimics, including intracranial cal-
cifications, cavernous haemangiomas, acute clots, and 
post-treated lesions such as embolised arteriovenous mal-
formations and tumours, had not been evaluated in this 
study. These mimics may have played a role in reducing 
model accuracy. Secondly, the model performance had 
not been tested on images subject to different CT image 
reconstruction methods. Iterative reconstruction tech-
niques have been used to improve image noise and image 
quality over traditional filtered back projection methods, 
and these techniques are known to result in perceptible 
differences in images presented to the reader [33, 34]. 
Hence, future work to investigate the impacts of these 
techniques on model performance may be worthwhile. 
Thirdly, the datasets used contained class imbalances, 
with disproportionately fewer scans containing EDH com-
pared to the other haemorrhage subtypes in both Kaggle 
(354, 1.6%) and CQ500 (13, 2.6%) datasets. During test-
ing, this led to wide confidence intervals for the sensitiv-
ity, AUC-ROC, and AUC-PR for EDH detection. Notably, 
EDH can also be more challenging to detect due to prox-
imity to the adjacent hyperdense calvarium. This prob-
lem is compounded with the use of thicker image slices, 
which suffer from volume averaging artefacts [35]. Given 
that our DL model had ten times fewer EDH-containing 
images to train on, compared to the other subtypes, our 
model performance on EDH detection could potentially 
be improved by acquiring more images.

The prevalence of intracranial haemorrhage in both 
datasets (almost 60%) was not reflective of real-life 
clinical populations. ICH has an overall incidence of 
24.6 per 100,000 person-years [1] with other subtypes 
such as SAH being less common [25, 36]. Although 
sensitivity, specificity and AUC-ROC are independent 
of prevalence, precision and AUC-PR are sensitive to 
it, as demonstrated by the significantly lower AUC-PR 
for EDH (0.584) compared to its AUC-ROC (0.971). 
AUC-PR has been argued to be a better evaluation 
metric than AUC-ROC in imbalanced datasets such as 
these where certain haemorrhage subtypes are more 
common, [23–25]; however, the ability to generalise 
these specific metrics to realistic clinical populations 
is limited. Hence, likelihood ratios were also com-
puted. Given a pre-test probability (i.e., prevalence) of 

haemorrhage, the likelihood ratio can be used to com-
pute the post-test probability of haemorrhage in the 
case of a positive prediction. However, the prevalence/
rates of haemorrhage (and its subtypes) amongst CT 
head scans performed in a hospital is currently unclear 
in the literature. Hence, a study clarifying these prev-
alences, or a direct evaluation of the model in a clini-
cal setting—reflective of the true target population—is 
required.

Aside from this, future directions for this DL system 
relate to its clinical utility. Clinical deployment neces-
sitates integration with clinical workflow tools such as 
radiology information and picture archiving and com-
munication systems (RIS-PACS). Our model has been 
shown to rapidly generate predictions; however, this does 
not take into account the additional time involved with 
reciprocal data transfer from the DL device to the clinical 
RIS-PACS tools. Additionally, following integration, the 
ease of use of the system by practising physicians must 
also be evaluated. Furthermore, our DL model is cur-
rently limited to the detection, subtyping and localisation 
of intracranial haemorrhage. However, quantification of 
intracranial haemorrhage volume is also important for 
estimating the burden of disease and weighing manage-
ment options [37, 38]. Thus, it would be worthwhile to 
incorporate such a feature into future DL models.

To summarise, this study demonstrates the high perfor-
mance of a DL model for the automatic detection, subtyp-
ing and localisation of intracranial haemorrhage on NCCT 
head studies. The use of multiple image preprocessing 
techniques substantially improved the performance of 
the model, highlighting the need for greater emphasis on 
understanding the quality of data that is fed into DL mod-
els. Furthermore, the addition of a technique to visualise 
the model predictions provides an opportunity to explain 
and rationalise its predictions. The implementation of this 
model into a triage role has the potential to improve the 
diagnostic yield and efficiency of CT reporting, thus expe-
diting treatment and improving outcomes for intracranial 
haemorrhage. Further testing of the model on prospective 
data, while it is integrated with clinical workflow systems, 
will be integral to evaluate its clinical utility.
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