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ABSTRACT This study explored the applicability of Temperature Vegetation Dryness Index (TVDI)
derived from MODIS (Moderate Resolution Imaging Spectroradiometer) normalized difference vegetation
index (NDVI) and land surface temperature (LST) data for drought monitoring in Eurasia from April to
September during 2005 - 2014. TVDI was calculated based on the vegetation index/temperature trapezoid
eigenspace (VITT) in this study. The Standardized Precipitation Evapotranspiration Index in three time scales
(SPEI-01, SPEI-03, SPEI-06) and the Essential Climate Variable surface soil moisture product (ECV-SM)
was used to evaluate the performance of TVDI over Eurasia, and to assess the sensitivity of TVDI to different
land-cover types. The records of drought events from Emergency Events Database (EM-DAT) were also used
to validate TVDI. The results indicated that TVDI negatively responded to SPEIs about 77.43%, 72.01%, and
75.95% of lands respectively, of which 29.84%, 33.93%, and 25.59%were subjected significant relationships
(p<0.05). A negative correlation between TVDI and SPEIs was detected in most land-cover types, except
for evergreen broadleaf forest and deciduous needleaf forest. Similarly, TVDI was also negative correlated
with ECV-SM. About 66% of the study areas show negative correlation and 33% of them were statistically
significant. There is a highly negative correlation between TVDI and ECV-SM in most types of land cover.
Moreover, TVDI could not reflect drought condition correctly when TVDI < 0.40; it could only reflect
long-time excessive drought condition when TVDI > 0.86. A comparison of TVDI with drought records
demonstrated that the TVDI could capture drought events in study area.

INDEX TERMS Continental scales, drought monitoring, land-cover types, Eurasia, temperature vegetation
dryness index.

I. INTRODUCTION

Drought is a complex natural phenomenon that caused by
the imbalance of precipitation and evapotranspiration [1], [2].
It usually occurs with a lack of precipitation and results in a
decrease of soil moisture content, even affects plant growth
when it last a long time [3]. More importantly, the intensity
and frequency of drought is becoming more serious on the
background of global warming [4]. Therefore, drought mon-
itoring is vital for prevention and mitigation of disasters, and
avoiding and reducing the loss of agricultural economy [5].

The associate editor coordinating the review of this manuscript and

approving it for publication was Jon Atli Benediktsson .

In recent decades, many indexes, such as Palmer Drought
Severity Index (PDSI) [6], Standardized Precipitation Index
(SPI) [7], and Standardized Precipitation Evapotranspiration
Index (SPEI) [8] have been proposed and widely used to
monitor drought. Many studies have validated PDSI is an
good drought index for drought monitoring conditions in
different regions [9], [10], whereas its time scale is rela-
tively single. The SPI and SPEI can be achieved for flexible
time scales. SPI captures the decisive factor—precipitation
in the formation of drought, but it ignored the effects of
temperature on drought. SPEI combined the simplicity of
calculation, multi-temporal nature of SPI, and the sensitiv-
ity to evapotranspiration of PDSI. Many studies have used
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SPEI to analyze spatial and temporal characteristic of drought
in many regions [10], [11]. In recent years, remote sens-
ing data with wider spatial coverage is gradually applied to
derive drought indexes in monitoring spatiotemporal pattern
of drought. A important finding is that the normalized dif-
ference vegetation index (NDVI) [12] can be used to reflect
vegetation drought conditions [13], [14]. According to the
definition of NDVI, a number of vegetation indexes were
developed in detecting drought, such as Vegetation Con-
dition Index (VCI) [15], [16], Enhanced Vegetation Index
(EVI) [17]. However, vegetation index is closely related to the
greenness of vegetation and is often referred to as a greenness
index rather than a drought index [18]. The land surface
temperature (LST) is sensitive to crown water content and
soil moisture content, while land-cover types could severely
affect the relationship between LST and soil moisture con-
tent [19]. It means that only using LST data is not appli-
cable for drought monitor when the study area has various
land-cover types. For example, the crop water stress index
(CWSI) [20], [21], was applicable to only full vegetation
areas [24].
However, there are some studies which show that integrat-

ing NDVI and LSI can offer more complete information on
drought with requires from bare soil to complete vegetation
coverage [22], and scientists established many indices by
combining satellite data of LST and NDVI [19], [23], [24].
One of them is the temperature vegetation dryness index
(TVDI), which is based on the empirical parameterization of
feature space established by the relationship between vegeta-
tion index and land surface temperature [25]. A lot of studies
have used TVDI for drought monitoring, crop yields estimat-
ing and soil moisture estimating for different small scales.
Son et al. [19] showed that TVDI from MODIS (Moderate
Resolution Imaging Spectroradiometer) Terra products of
monthly NDVI and 8-day LST could reflect drought in the
Lower Mekong Basin. Holzman et al. [22] estimated soil
moisture and the relationship with crop yield using MODIS
AQUA 8-day LST and 16-day NDVI in agro-climatic zones
of Argentine Pampas. In spite of the triangle method could
be used to monitoring drought or estimating soil moisture,
the LST-NDVI feature space model is affected by many
factors, such as spatial domain size changes [26], vegetation
cover [27] and so on. These factors might cause uncertain-
ties of the LST-NDVI feature space, including the unstable
dry/wet edges, which couldn’t clearly express the theoretical
edge of space [28]. In the TVDI calculation model, the wet
and dry edge equations play a very important role. However,
studies about LST-NDVI feature space for continental spatial
domain size, the comparison of TVDI with other indexes, and
the evaluation of TVDI was less. Moreover, there was few
research studies on the sensitivity of TVDI to different land-
cover types.
In Eurasia, there are abundant agricultural resources with

high added value of agricultural in Eurasia region, how-
ever, the ecosystem is complex and diverse, and the eco-
logical environment in part of Eurasia is fragile, it has

FIGURE 1. Land cover classification map generated by the MODIS
International Geosphere-Biosphere Program (IGBP) of 2012.

a profound impact on regional development [29]. More-
over, global warming made frequent disasters with increased
drought, which brings serious stress to the fragile ecologic
environment [30].

The objectives of this study was 1) to analyze the
LST-NDVI feature space and calculate TVDI over Eurasia,
2) evaluate the application of TVDI using SPEIs (SPEI-01,
SPEI-03, SPEI-06) and Essential Climate Variable surface
soil moisture product (ECV-SM) at continental scale and land
cover scale. 3) validate TVDI on drought monitoring with
drought events from Emergency Events Database (EM-DAT).

II. STUDY AREA AND DATA

A. STUDY AREA

The study area is the Eurasian continent, which covers a
total area of about 50 million km2. The Eurasian continent
stretches from 10◦52’S to 79◦59’N, and from 179◦58’W to
179◦58’E. With such a large area, it comprises many cli-
matic zones and complex natural environments [31], [32].
According to Köppen-Geiger climate classification [33],
it covers equatorial climates, arid climates, warm tempera-
ture climates, snow climates, and polar climates. Moreover,
the land-cover types in the region are abundant, primar-
ily in forests (evergreen, deciduous), grasslands, croplands,
and barren/sparsely vegetated (Figure 1), with an area
of 32.2 million km2, 21.7 million km2, 13.9 million km2,
and 22.3 million km2. The forests occupied the largest area.
And there are more than more than 60% of the total areas
occupied by arid and semi-arid grasslands, deserts and fragile
high-altitude ecological areas, which are characterized by
dry climate and low rainfall [29]. Overall, the ecological
environment is fragile, and drought events occur frequently.
The overall ecological environment is fragile, and drought
events occur frequently [29]. Fig.1 showed the types of
land cover in the study area developed by using the Inter-
national Geosphere-Biosphere Program (IGBP) global veg-
etation classification scheme of MODIS land-cover types
product (MCD12Q1, 2012).

B. DATA

1) MODIS DATA

Monthly NDVI and 8-day LST data with 1km spatial res-
olution from MODIS are used in this study, which are
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FIGURE 2. The flowchart for this study.

obtained from National Aeronautics and Space Administra-
tions (NASA) (https://ladsweb.modaps.eosdis.nasa.gov) for
2005-2014. Months from April to September every year was
selected in this study. For 8-day LST, data with staring Julian
days 97 through 273 was used. These two data were used
to calculate TVDI. The MODIS land-cover type product
(MCD12Q1, 2012) with IGBP global vegetation classifica-
tion scheme was used to define the land cover classification
over Eurasia.

2) SPEI AND ECV-SM DATA

Global SPEI dataset (SPEI v2.4) with time scales at 1-, 3-,
and 6-months and 0.5◦ spatial resolution were obtained
from http://digital.csic.es/handle/10261/128892 [38]. Fur-
thermore, the daily ECV-SMwith 0.25◦ resolution, developed
with the support of the European Space Agency Climate
Change Initiative (ESA CCI, https://www.esa-soilmoisture-
cci.org/node/230) was also used in this study for evaluat-
ing the performance of TVDI on drought monitoring. This
remote sensing data contains the ACTIVE, PASSIVE, and
the COMBINED product. The active soil moisture data was
applied to regions with moderate vegetation density, and
passive soil moisture data was applied to arid or semi-arid
regions [34]. The combined product was blended together
by the ‘‘Active Product’’ and the ‘‘Passive Product’’, which
can better reflect the soil moisture of various land-cover
types. In consideration of diverse land-cover types over the
study area, the ‘‘Combined Product’’ as NetCDF-4-classic
file format covering from 2005 to 2014 was used. It was
available at http://esa-sst-cci.org.

3) DROUGHT RECORDS DATA

The EM-DAT which was established by the World Health
Organization (WHO) and the Belgian Government was
a source used to evaluate ability of TVDI to monitor
drought. This database provided records and effects of
droughts around the world from 1900 to the present day
(https://www.emdat.be).

III. METHODOLOGY

Figure 2 showed the flowchart for this study. Monthly TVDI
was calculated by monthly LST and monthly NDVI data. For

FIGURE 3. A conceptual LST-NDVI triangle (a, modified from
Sandholt et al. [25]) and a conceptual LST-NDVI trapezoid (b, modified
from Yan et al. [39]).

monthly LST, it was calculated by taking Maximum Value
Composite (MVC) with the 8-day LST data for DOY97-273
after masking the fill and missing values. Then we build
NDVI-LST feature space for every month of April to Septem-
ber for each year. Finally, according to these feature space,
monthly TVDI was produced. Here, we gave an example of
the calculated of monthly LST-NDVI scatterplots in the first
part of result section.

Firstly, the quality of monthly ECV-SM data was checked,
and monthly data with incomplete images was removed
from the analysis. Monthly ECV-SM data from Months
(June - September) with complete data during 2005 - 2014
was used in this analysis at last. To analyze TVDI with
SPEIs and ECV-SM at annual scale, we averaged monthly
TVDI from April to September, monthly SPEIs from April to
September and monthly ECV-SM from June to September to
obtain the annual TVDI, annual SPEIs and annual ECV-SM,
respectively. To match the resolution of SPEIs, TVDI,
ECV-SM data, and land-cover types product were both spa-
tially resampled to 0.5◦ by bilinear interpolation methods.
SPEIs and ECV-SMwere used to evaluate the performance of
TVDI over Eurasia at large scales.With the aid ofMOD12Q1,
the sensitivity of TVDI to different land-cover types was
evaluated. Lastly, drought events from EM-DAT was used to
validate the ability of TVDI for monitoring drought.

A. TEMPERATURE VEGETATION DRYNESS INDEX

Carlson et al. [23] and Price [35] found the scatter diagram
of NDVI and LST would present a trapezoid, as shown in
Figure 3a. Later, based on the model of the LST-NDVI trian-
gle, Sandholt et al. [25] proposed TVDI, and he regarded wet
edge as a parallel line. In addition, Moran et al. [36] defined
the vegetation index/temperature trapezoid (VITT) based on
the relationship between temperature and vegetation. This
trapezoidal model has also been used to calculate the TVDI
index in many studies [26], [37]–[39]. In combination with
the actual scatter plot, the wet edge is not considered as a par-
allel line. We use a linear fit to fit the wet edge. For the study
area, with various land-cover types, TVDI can be applied
to drought monitoring well, because the principle of TVDI
requires that sufficiently large study area, the surface cover-
age ranges from bare soil to complete vegetation coverage,
and soil moisture changes Drought becomes humid [22].
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TABLE 1. Drought categories For TVDI [41].

TVDI could be constructed through the relationship between
NDVI and LST as Figure 3b.
TVDI could be calculated using following equations:

TVDI =
LST − LSTmin

LSTmax − LSTmin
(1)

where LST is the land surface temperature of any pixel,
LSTmin is the lower horizontal line of the triangle/trapezoid,
defining the wet edge; LSTmax is the maximum surface tem-
perature, defining the dry edge:

LSTmin = a1 + b1 ∗ NDVI (2)

LSTmax = a2 + b2 ∗ NDVI (3)

Equation (2) is called wet edge equation, and (3) is called
dry edge equation, both of them are determined by linear
regression analysis. a1, b1, and a2, b2 are coefficients of
wet edge equation and dry edge equation respectively. Pixels
(NDVI < 0 and LST < 200 K) were excluded from anal-
ysis for that they might represent inland water bodies [40].
Applying the least-squares regression fitting to extract the
maximum LST value and the minimum LST value of the
NDVI interval in step of 0.01 from the LST-NDVI trapezoid
to obtain the fitting equations for the dry edge and the wet
edge. TVDI values variable from 0 to 1, the closer to 1,
the closer to dry edge, which means more drought. The
values of TVDI were classified into five intensity categories
(Table 1).

B. VERIFICATION OF RESULTS

1) CONTINENTAL SCALE

Pearson’s correlation coefficient (R) was used to analyze
comparison between monthly TVDI and monthly SPEIs,
monthly ECV-SM in the spatial pattern. To further discuss
the linkages of annual TVDI with annual SPEIs and annual
ECV-SM, the scatterplots of TVDI with SPEIs and ECV-SM
for 2012 were established with a TVDI interval of 0.01. The
annual TVDI, annual SPEIs and annual ECV-SM were aver-
aged by monthly TVDI from April to September, monthly
SPEIs from April to September and monthly ECV-SM from
June to September, respectively. These scatterplots exhibited
the different relationships of TVDI with SPEIs and ECV-SM
over different TVDI ranges. Pearson correlation coefficient
(R) were used to analyze the relationship between TVDI and
SPEI.

FIGURE 4. LST-NDVI scatterplots in months (April - September) for 2012.

2) LAND COVER SCALE

According to MODIS IGBP classification scheme, the
Eurasian continent has 17 land cover types. In this anal-
ysis, the areas of water, Permanent wetlands, Urban and
built-up, snow and ice, and barren were not considered.
In addition, we removed the closed shrub lands and savannas
due to scattered distributions and less areas, which might
cause mixed-pixel and type-error when resampling land-
cover types product from 500m to 0.5◦ resolution. To explore
the performance of TVDI under different land-cover types,
TVDI was compared with SPEIs and ECV-SM using the
Pearson correlation coefficient (R) under different land-cover
types. The distribution and dispersion of R at p<0.05 for
pixels with different land-cover types were analyzed.

3) DROUGHT RECORDS

To evaluate the capability of TVDI to monitor drought,
typical drought year of 2012 and several extreme drought
events recorded in EM-DAT aswell as literatures over Eurasia
in 2005-2014 were analyzed and compared to TVDI. Area
weighted average TVDI and SPEI-06 for drought-affected
regions were calculated.

IV. RESULTS AND DISCUSSION

A. LST-NDVI SCATTERPLOTS

The LST-NDVI scatterplot is very important for calculating
TVDI. We calculated the scatterplots for each month of the
year, and only the results for 2012 are shown here (Figure 4).
All monthly LST-NDVI scatterplots during the study period
were showed in Fig S1. As shown in Figure 4, the range of
NDVI is from 0 to 1, indicating that the vegetation coverage
in study area ranges from bare to full coverage, which was in
line with the TVDI calculation principles. The results show
that the LSTmax has a significant negative correlation with
NDVI, and they could be used to build dry edge model.
All the slopes of the dry edge in the LST-NDVI feature
space were less than 0, indicating that LSTmax was decreasing
with NDVI increasing. The correlation coefficient (R) in each
month were in the range from −0.96 to −0.72. Also worth
noting was the wet edge, it is generally considered parallel
to the horizontal axis, which means that LSTmin does not
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FIGURE 5. Spatial correlation coefficient values between TVDI and
SPEI-01 (a), SPEI-03 (b), SPEI-06 (c), ECV-SM (d) for 2005 - 2014
respectively.

change with the NDVI. However, the slopes of the wet edge
in this study are all greater than 0 (Fig.4, Fig.S1). Thus it is
reasonable to linearly fit wet edge instead of considering the
wet edge as a line parallel to the horizontal axis.

B. COMPARISON OF INDICES AT CONTINENTAL SCALE

The monthly TVDI was evaluated with monthly SPEIs and
ECV-SM through Pearson correlation coefficient. Figure 5
showed the spatial correlation coefficient values between
TVDI and SPEI-01, SPEI-03, SPEI-06, and ECV-SM for
2005 – 2014 respectively. The spatial distributions of P-values
were showed in Fig. S2. Spatially, TVDI was negatively
correlated with SPEIs and ECV-SM. And TVDI showed
relatively larger correlation with ECV-SM and SPEI-01 than
SPEI03, SPEI06.
As shown in Figure 5a, b, and c, the distribution of

R between TVDI and SPEIs displayed similar spatial pat-
terns over the whole study area. TVDI negatively responded
to SPEIs about 77.43%, 72.01%, and 75.95% of total
areas respectively, and about 29.84%, 33.93%, and 25.59%
areas, the correlation coefficients are statistically significant
(p<0.05). The high correlation values (R<−0.6) between
TVDI and SPEIs were mainly observed in eastern regions of
Europe, western regions of Asia, Balkan Peninsula, and cen-
tral parts of Russia. These regions are mainly featured with
humid temperate climate covered bymixed forests, grassland,
and croplands, or arid climate. However, the TVDI had posi-
tive correlation with SPEIs in needleleaf forest and evergreen
broadleaf forest regions in Russia and southeast Asia, and in
humid regions in China. This may be the strong influence of
land-cover types and environmental factors. These regions are
mainly featured with extremely cold climate or (sub-) tropical
humid climate. Vegetation growth in cold region is mainly
constrained by temperature and solar radiation. Increased
solar radiation under short-term drought conditions could
contribute to vegetation growth, which might be a reason for
the positive correlation between TVDI and SPEI [42].
Similarly, TVDI was also negative correlated with

ECV-SM. About 66.07% of study areas showed negative

FIGURE 6. The scatterplots and correlation coefficient R and R0.4 values
between TVDI and SPEI-01 (a), SPEI-03 (b), SPEI-06 (c), ECV-SM (d) for
2012. R was calculated using the values of 0 <TVDI <1, R0.4 was
calculated using the values of 0.4 <TVDI <0.86.

TABLE 2. The Statistical Results of Correlation Between TVDI and SPEI-01,
SPEI-03, SPEI-06, and SM.

R values and 33.17% of them were statistically significant
(p<0.05). The high correlation values (R<−0.6) mainly
located in mid-latitude and low-latitude regions. TVDI
showed positive respond to ECV-SM in a high-latitude
region, especially in areas covered by shrub lands and forests
(Figure 1), polar region, and Siberian parts of Russia. For
polar region and Siberian parts of Russia, due to wide range
of frozen soil, the retrieval of soil moisture from satellite
acquisitions was unreliable [43]. Overall, TVDI was in good
agreement with ECV-SM.

To further investigate the relationship between TVDI and
SPEIs, ECV-SM, we used the scatterplots between them
to find their relationship. As shown in Figure 6, taking
2012 as an example, the scatterplot between TVDI and SPEI,
ECV-SM showed that TVDI are generally negative correlated
with SPEIs and ECV-SM. Especially when the values of
TVDI in the range of 0.40-0.86, there was a significant strong
negative correlation between TVDI and SPEIs. However,
when TVDI < 0.40 (the wet) or so, there was almost no
specific linear relationship between TVDI and SPEIs, but
there was a negative correlation between TVDI and ECV-SM.
It illustrated SPEI had great uncertainty in humid areas [44],
and it resulted in the anomalous correlation between TVDI
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FIGURE 7. The box plots of Correlation coefficients of TVDI and
SPEI-01(a), SPEI-02(b), SPEI-03(c), and ECV-SM(d) under different
land-cover types during months (April - September) of 2005-2014 (at
p<0.05). The color zone in this figure references to Figure 1.

and SPEIs in humid regions in spatially in Figure 5a, b, and c.
In addition, when the value of TVDI reached a higher level,
TVDI > 0.86 or so (the excessive drought), the negative rela-
tionship between TVDI and SPEI-01, SPEI-03, and ECV-SM
became weakened, especially with SPEI-01. This suggested
that TVDI could monitor the long-term excessive drought,
however, for short-term excessive drought (<3month), TVDI
cannot reflect its condition and effect. It might be concluded
that using TVDI to monitoring drought was suitable for nor-
mal, slight, moderate, severe drought and long-time excessive
drought.

C. COMPARISON OF INDICES AT LAND COVER SCALE

The correlation between TVDI and SPEIs, ECV-SM at land
cover scale was shown in Figure 7. At most land-cover types,
the correlation between TVDI and SPEI was negative. But
for evergreen broadleaf forest and deciduous needleaf forest,
TVDI was positively correlated with SPEIs. The evergreen
broadleaf forest was mostly observed in tropical humid cli-
mate, such as Southeast Asia. Moist forests in tropics has
high resilience during drought [45], [46], as shown by the
positive correlation between TVDI and SPEIs. The decidu-
ous needleaf forest are mainly distributed in cold temperate
regions, Xu et al. [47] showed growth of cold temperate
forests may negatively respond to SPEI. In order to be able
to observe the correlation between TVDI and SPEIs more
clearly, we separately extracted the data under the cover of
other vegetation types, which were showed in Figure Fig. S3.
The deciduous broadleaf forest showed the most sensitive
response to drought at 1-month scale (Rspei01_mean = −0.36),
while the savannas was least sensitive (Rspei01_mean =

−0.31). The correlation between TVDI and SPEI-03 was the
strongest under open shrublands (Rspei01_mean = −0.37),
but the weakest under grassland (Rspei01_mean = −0.33).
TVDI had the strongest correlation with SPEI-06 under open
shrublands (Rspei01_mean = −0.35), and the weakest corre-
lation under mixed forest (Rspei01_mean = −0.30). At the

evergreen needleleaf forest, mixed forest, open shrublands,
cropland/natural vegetation mosaic, and open shrublands,
TVDI were the most sensitive to drought at 3-month
timescale, respectively. And deciduous broadleaf forest,
grasslands, and croplands showed the most sensitive response
to drought at 1-month timescale, respectively.

A highly negative correlation between TVDI and ECV-SM
was detected in most types of land cover. However, in the
areas covered by evergreen broadleaf forest, open shrublands,
and savannas, TVDI and ECV-SM showed a positive correla-
tion in some pixels, especially in evergreen broadleaf forest.
Luo et al. [48] found the variation in NDVI of evergreen
broadleaf forest were very low, and drought might not be
a limiting factor for vegetation activity. On the other hand,
it could tolerate drought, and it could use water in deep soil to
sustain growth [45], [49]. While ECV-SM stands for surface
soil moisture [50]. For open shrublands, the third quartile of
R was 0.77, while the mean and median of R were −0.44 and
−0.66, respectively. It indicated that only a small number
of pixels showed a positive correlation between TVDI and
ECV-SM. According to Figure 5d, some inaccurate pixels of
ECV-SM data from frozen soil regions existed in this statistic.
The savannas occupied a small percentage of the whole area
(Figure 1), but inter-quartile range was high (R values from
−0.77 to 0.75), demonstrating diverse relationships between
TVDI and ECV-SM. Savannas located in cold humid zone
and tropical humid zone respond differently to surface soil
moisture due to rooting habits and water strategies [47].
In addition, regardless of evergreen broadleaf forest, open
shrublands, and savannas, TVDI had the strongest nega-
tive correlation with ECV-SM in evergreen needleleaf forest
(RECV−SM_mean = −0.75), and had the weak correlation in
mix forest (RECV−SM_mean = −0.72).

D. COMPARISON BETWEEN TVDI AND

DROUGHT RECORDS

1) COMPARISON TO TVDI IN TYPICAL YEAR

According to the records from EM-DAT, the number of
drought events in 2012 was the highest during 2005-2014
over Eurasia, with 52 drought events (at province scale).
The drought events recorded in the EM-DAT during
April to September for 2012 of Eurasia were captured
by TVDI (Figure 8). For example, in Thailand, there
was 12,000,000km2 affected by drought from April to
August in 2012; Ukraine was affected by drought from
April to July in 2012; western Russian was affected by
drought from June to August in 2012. Although there was no
more than one month error appeared between EM-DAT and
TVDI, it is notable that EM-DAT was a collection of records
created by organizations [51], lacking sufficient objectiv-
ity [52]. We also compared droughts of 2012 mentioned in
literatures with TVDI results. In South Asia, the areas of
moderate and severe drought expended from April to July,
and consecutive droughts in Pakistan and India extensively
affected crop yield, Gao et al. [53]. In East Asia, various
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FIGURE 8. TVDI results during April to September for 2012.

FIGURE 9. Drought occurrence in 2010 (a) and 2012 (b) in western Russia
with TVDI. Area weighted average TVDI, SPEI-06 results for western
Russia regions for 2005 – 2014 period (c). Vertical gray bars denote years
with typical drought events.

intensity of droughts occurred in southwestern China, south-
ern China and Huang-huai area in spring and autumn [54].
These drought events were successfully detected by TVDI.

2) COMPARISON WITH TYPICAL DROUGHT

EVENTS IN STUDY AREA

Several regional drought examples from TVDI were high-
lighted here. In western Russia, food crop yields have
fallen by 25-30% and livestock production has severely
suffered from the Heat Wave and its associated drought
event in 2010 [55]. This drought was clearly recognized
by the TVDI results, including Eastern Europe, Georgia,
Kazakhstan, and western Russia, especially from June to
August, 2010 (Figure 9a, and c). In addition, another major
drought event occurred in 2012 was also captured by TVDI
and SPEI-06 (Figure 9b, and c). Lupo et al. [56] and
Spinoni et al. [57] suggested that drought in 2010 was
heavier than in 2012, and EM-DAT showed affected areas
in 2010 with 1,400,000km2 was larger than 2012 with
1,140,000 km2, this condition was consistent with TVDI and
SPEI-06 results.

FIGURE 10. Drought occurrence in 2011 (a) and 2013 (b) in the south of
Yangtze River with TVDI. The Yangtze River area was shown in red box.
Area weighted average TVDI, SPEI-06 results for the Yangtze River for
2005 - 2014 period (c). Vertical gray bars denote years with typical
drought events.

Apart from the samples in Europe described above,
the other drought occurred in Asia were also analyzed and
compared with TVDI. The south of the Yangtze River is
dominated by tropical and subtropical monsoon climates,
with high-temperature and rainy weather in summer, and low
frequency of droughts. However, widespread severe drought
due to higher temperature and less rain occurred in 2013.
According to the report of China Meteorological Adminis-
tration (CMA) in 2013, the precipitation in most areas in the
Yangtze River was 52.6% less compared to normal years.
the drought began to appear in the middle of June,; and
developed to the worst in August, thenfaded to moderate in
September [58]. The process of drought development was
accurately captured by TVDI (Figure 10b). The areaweighted
average TVDI came to the same conclusion. While it was
not detected by SPEI-06. (Figure 10c), which provided the
evidence of uncertainty of SPEIbase in the south of Yangtze
River. It was notable that SPEI-06 captured drought in 2011,
but TVDI failed. The main cause for drought in the south
of the Yangtze River of 2011 was the decrease of rainfall,
and this drought lasted for less than three month [59]. In the
calculation of TVDI, precipitation was not considered as
a direct factor, NDVI was considered to be insensitive to
short-term precipitation reduction [42], the two factors might
cause the limitation of TVDI under short-time reduce rainfall
conditions.

V. CONCLUSION

It seems very ambitious and doubtable to monitor large-
area drought with a unique index given the diverse climates,
environmental features, and land-cover types. This study sug-
gested the potential high performance of TVDI as an index to
monitor drought in most regions over Eurasia. Based only on
MODIS remote sensing data, TVDI was applied at a large-
area scale and long-time scale in this study. It was evaluated
with SPEIs and ECV-SM at continental scale and land cover
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scale, respectively; and it also was validated with drought
records.
We have found that TVDI was significantly negative cor-

related (p<0.05) with SPEIs in humid temperate climate
covered by mixed forests, grassland, and croplands, or arid
climate, but not in extremely cold climate or (sub-) tropi-
cal humid climate. And it also showed that that TVDI was
suitable for long-time excessive drought when TVDI>0.86.
In the situation of slight, moderate and severe drought with
the value of TVDI in the range of 0.40-0.86 or so, it could
reflect drought correctly. However, it could not monitor
drought correctly when TVDI<0.40. In addition, TVDI was
in good agreement with ECV-SM, which means TVDI was
suitable for estimating soil moisture over Eurasia.
According to comparisonwith land-cover types, TVDIwas

most sensitive to SPEI-01 in deciduous broad-leaved forests,
and was most sensitive to both SPEI-03 and SPEI-06 in open
shrublands. In most land-cover types, TVDI was sensitive to
drought at 3-month timescale. While in deciduous Broadleaf
forest, grasslands, and croplands, TVDI was more sensitive
to drought at 1-month timescale. Additionally, there was a
highly negative correlation between TVDI and ECV-SM in
most types of land cover, of which TVDI showed the highest
negative correlation in evergreen needleleaf forest. However,
due to living environments, rooting habits and water strate-
gies of vegetation, TVDI had positive correlation with SPEIs
in evergreen needleleaf forest, and deciduous needleleaf for-
est; and had positive correlation with ECV-SM in evergreen
needleleaf forest, open shrublands, and savannas.
Furthermore, TVDI was in agreement with drought

records, but the capability of TVDI to monitor drought is
poor in conditions that they only caused by reduced rainfall.
It might because TVDI was derived by NDVI and LST, while
precipitation was not integrated directly in the calculation of
TVDI, and NDVI was considered to be insensitive to short-
term precipitation reduction.
In general, our results demonstrated that TVDI could be

used to monitor drought and capture drought events over
Eurasia. It was suitable for estimating soil moisture, and
slight, moderate, severe drought, or long-time excessive
drought, but it should not be used to monitor situations of
short-time excessive drought and wet.
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