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ABSTRACT

The coupled climate models used in the Fourth Assessment Report of the Intergovernmental Panel on

Climate Change are evaluated. The evaluation is focused on 12 regions of Australia for the daily simulation

of precipitation, minimum temperature, and maximum temperature. The evaluation is based on probability

density functions and a simple quantitative measure of how well each climate model can capture the

observed probability density functions for each variable and each region is introduced. Across all three

variables, the coupled climate models perform better than expected. Precipitation is simulated reasonably

by most and very well by a small number of models, although the problem with excessive drizzle is apparent

in most models. Averaged over Australia, 3 of the 14 climate models capture more than 80% of the

observed probability density functions for precipitation. Minimum temperature is simulated well, with 10 of

the 13 climate models capturing more than 80% of the observed probability density functions. Maximum

temperature is also reasonably simulated with 6 of 10 climate models capturing more than 80% of the

observed probability density functions. An overall ranking of the climate models, for each of precipitation,

maximum, and minimum temperatures, and averaged over these three variables, is presented. Those climate

models that are skillful over Australia are identified, providing guidance on those climate models that

should be used in impacts assessments where those impacts are based on precipitation or temperature.

These results have no bearing on how well these models work elsewhere, but the methodology is potentially

useful in assessing which of the many climate models should be used by impacts groups.

1. Introduction

Coupled climate models are our principal tools for

projecting future climate (Houghton et al. 2001). The

Intergovernmental Panel on Climate Change (IPCC)

Third Assessment Report concluded that they provide

“credible simulations of climate, at least down to sub-

continental scales and over temporal scales from sea-

sonal to decadal” (McAvaney et al. 2001). This evalu-

ation was based on the ability of climate models to

simulate a range of diagnostics including means and

variances of some variables, past climates, specific

perturbations such as volcanic activity, and some key

phenomenon (e.g., El Niño–Southern Oscillation,

monsoons, and other specific modes of variability).
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McAvaney et al. (2001) also evaluated the capacity of

climate models to simulate extremes including tem-

perature, rainfall, storms, and cyclones. Overall, their

conclusion that coupled climate models were useful

tools for projecting future climate was rigorously sup-

ported by the existing literature.

The latest model evaluations by Collins et al. (2006),

Johns et al. (2006), and Delworth et al. (2006) provide

detailed assessments of the strengths and weaknesses of

three major climate models based principally on sea-

sonal and annual time scales. Some attempts to provide

measures of overall climate model skill have been in-

cluded in recent model evaluation studies. Johns et al.

(2006), for example, used a simple weighted nondimen-

sional index of root-mean-square errors compared to

present-day climatological means (based on Murphy et

al. 2004). Monthly, seasonal, and annual data were used

for a range of simulated quantities, and a statistical skill

metric, the “Climate Prediction Index,” was presented.

Other measures of skill have been suggested by Watter-

son (1996), Taylor (2001), Knutti et al. (2006), Piani et

al. (2005), and Shukla et al. (2006) but all, when imple-

mented, use monthly to annual time-scale data, some-

times over ensemble means of climate models with

several realizations. While McAvaney et al. (2001)

evaluated climate models on a range of time and spatial

scales, they were hampered by a lack of literature on

the ability of climate models to simulate climate vari-

ables on daily time scales. Given that climate on time

scales of days has a direct impact on human health

(Trigo et al. 2005) and human activities (e.g., agricul-

ture; Luo et al. 2005), an assessment of the capacity of

models to simulate climate on time scales of days is

clearly valuable. This study attempts such an evaluation

for the AR4 models, thereby supplementing the many

assessments that evaluate monthly means, variances, as

well as specific phenomenon (see McAvaney et al.

2001).

The importance of examining climate statistics other

than climate means is not new (Katz and Brown 1992;

Boer and Lambert 2001). For example, recent studies

by Frich et al. (2002), Kiktev et al. (2003), and Alex-

ander et al. (2006) used climate indices and probability

density functions (PDFs) of indices to explore the fre-

quency and severity of climate extremes. These indices-

based analyses provide a clear way forward in using

climate model results for society-relevant impact as-

sessments. Dessai et al. (2005) calculated PDFs, using

seasonal data from climate models, to assess uncer-

tainty in regional climate change projections. They de-

vised a skill score that accounted for model bias and

spatial variation to compare models and data for sur-

face air temperature and precipitation.

However, few analyses have directly evaluated the

ability of climate models to simulate more than the

mean and standard deviation on time scales of days.

One of the few reported was conducted by Sun et al.

(2006) who used daily data to evaluate how well climate

models could simulate precipitation. Monthly, seasonal,

or longer averages can hide biases or systematic errors

that are identifiable in daily data. Further, the use of

statistics like means and standard deviations do not al-

low for a comparison of the entire data distribution.

Indeed, a “good” simulation of the mean does not en-

sure that other attributes of the data will be captured

well (Kharin and Zwiers 2000; Zwiers and Zhang 2003;

Schaeffer et al. 2005; Kharin et al. 2005). Given that

changes in parts of the simulated distribution other

than the mean are likely to affect humans (e.g., the

tails), natural ecosystems, agricultural crops, etc.,

more than changes in the mean (Katz and Brown 1992;

Colombo et al. 1999; Easterling et al. 2000), and

given there is evidence that extremes may change more

than indicated by a change in the mean (Mearns et al.

1984; Schaeffer et al. 2005; Trigo et al. 2005), an evalu-

ation of how well climate models can simulate entire

distributions of a simulated variable is clearly war-

ranted.

There is at least one major advantage of evaluating a

climate model based on PDFs. If a climate model can

simulate an entire PDF, this demonstrates a capability

to simulate values that are currently rare and that may

become more common in the future. If the distribution

of values represented by a PDF shifts due to climate

change, it is likely that significant overlap between the

new distribution and the present distribution will re-

main. If a climate model that has been shown to already

simulate this region of the distribution that currently

exists and will remain in the future (but becomes more

likely to occur probabilistically), then we have identi-

fied that the model has skill in simulating these future

values. Clearly, this confidence declines as the overlap

between the present and future PDFs is reduced further

into the future. Until the overlap becomes critically

small, however, an impacts modeler could use how well

a model simulated the whole PDF of a set of variables

as criteria for those models to use in future impacts

assessments. Further, establishing the skill of a climate

model to simulate whole PDFs is a far harder test of a

model than (say) the mean and one standard deviation,

and thus by succeeding in such a test, we might have

more confidence in projections made with this model.

We do not claim that a PDF-based assessment of a

model is perfect of course. While performing well in a

PDF-based assessment is substantially harder than

reproducing the mean, key areas of model perfor-
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mance such as periods of sustained high temperature or

rainfall represented by indices (e.g., Kiktev et al. 2003;

Alexander et al. 2006) are not assessed. Further, as an

event becomes rarer in both the model and the ob-

served data, failure of the model to simulate these

events becomes less important to the skill score. While

these represent limits to our methodology, we are con-

fident that a PDF-based evaluation of a climate model

is substantially preferable to a mean-based assessment

and could simply replace the traditional reliance on

evaluating the mean performance.

Thus, the objective for this study is the evaluation of

climate models’ simulation of daily observations using

the original climate model results as the basis for analy-

sis, rather than indices. One obvious requirement is

high-quality observed data at suitable spatial and tem-

poral resolution (Peterson et al. 1998; Griffiths et al.

2005). Suitable global-scale datasets remain rare due to

gaps in spatial coverage (Kiktev et al. 2003). This pro-

vides a rationale for climate model evaluation at con-

tinental scales: our study focuses on Australia but we

provide a methodology that should be useful elsewhere.

This paper explores the capacity of a large sample of

climate models to simulate the PDFs of precipitation

(P), minimum temperature (TMIN), and maximum tem-

perature (TMAX). The choice of these three variables

was based on available data and on their role in driving

many human, industrial, and biological systems (Co-

lombo et al. 1999; Meehl et al. 2000; Christensen and

Christensen 2003; Trigo et al. 2005). We utilize the

model results submitted to the Program for Climate

Model Diagnosis and Intercomparison (PCMDI) at the

Lawrence Livermore National Laboratory in the

United States (http://www-pcmdi.llnl.gov/ipcc/about_ipcc.

php) as part of the Fourth Assessment Report con-

ducted by the IPCC (AR4).

We have chosen to identify individual models in this

paper for two reasons. First, these data are currently

being widely used and unless we identify models, users

of simulations cannot determine those models with par-

ticular strengths or weaknesses. Second, unless model

groups know their model performs well/poorly, they

cannot build on strengths or address weaknesses in

subsequent model development. However, we wish to

emphasize that a model that shows skill/weakness

over Australia may/may not show comparable skill/

weakness in other regions and each user should evalu-

ate the models they choose for their specific region of

interest.

In evaluating simulations of PDFs over Australia, we

introduce a model metric that is one measure of climate

model skill in terms of P, TMIN, and TMAX. Like all

existing metrics, this only assesses a fraction of the

quantities simulated by a climate model. It cannot be

used to determine the “best” model overall, as “best” is

dependent on the specific application for which the

model will be used.

The remainder of this paper explains our data and

analysis methods (section 2). This is followed by an

examination of the models’ PDF-based performance

(section 3). A discussion is presented in section 4 and

conclusions in section 5.

TABLE 1. All climate models with daily data for TMAX, TMIN, and P available from PCMDI. Column 1 is the acronym used in the text.

Column 2 is the name of the model used in the PCMDI archive, columns 3, 4, and 5 denote how many realizations from each model

could be used, and column 5 is the source of the model (see http://www-pcmdi.llnl.gov/ipvv/about_ipcc.php).

Acronym Model TMAX TMIN P Source

BCCR bccr_bccm2_0 — 1 1 Bjerknes Centre for Climate Research, University of Bergen, Norway

CGCM-h cccma_cgcm3_1_t63 1 1 0 Canadian Centre for Climate Modeling and Analysis

CGCM-l cccma_cgcm3_1_t47 4 5 4 Canadian Centre for Climate Modeling and Analysis

CSIRO csiro_mk3_0 2 3 3 Australian Commonwealth Scientific Industrial and Research Organisation

GFDL2.0 gfdl_cm2_0 — — 1 Geophysical Fluid Dynamics Laboratory

GFDL2.1 gfdl_cm2_1 — 1 1 Geophysical Fluid Dynamics Laboratory

GISSAOM giss_aom 1 1 1 NASA Goddard Institute of Space Studies

GISS ER giss_model_e_r — 1 1 NASA Goddard Institute of Space Studies

FGOALS iap_fgoals1_o_g 2 1 3 Institute of Atmospheric Physics, Chinese Academy of Sciences

IPSL ipsl_cm4 2 2 2 Insitut Pierre-Simon Laplace

MIROC-h miroc3_2_hires 1 — — Centre for Climate System Research, University of Tokyo; National Institute

for Environmental Studies; Frontier Research Centre for Global Change

MIROC-m miroc3_2_medres 2 1 3 Centre for Climate System Research, University of Tokyo; National Institute

for Environmental Studies; Frontier Research Centre for Global Change

ECHO-G miub_echo_g 3 2 3 Meteorological Institute of the University of Bonn

ECHAM mpi_echam5 — 1 1 Max-Planck-Institut für Meteorologie

MRI mri_cgcm2_3_2a 3 2 5 Japan Meteorological Agency

CCSM ncar_ccsm3 — — 6 National Center for Atmospheric Research
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2. Data and methods

a. Climate model data

Daily climate model data over Australia for P, TMIN,

and TMAX were taken from the PCMDI archive (http://

www-pcmdi.llnl.gov/ipcc/about_ipcc.php). Data from

1961–2000 from the Climate of the Twentieth Century

simulations were used as this time period was common

to all models. Some datasets contained erroneous data

(gaps, periods of repetitive data), or data were not

available at the time this study was undertaken and

were therefore omitted from subsequent analysis.

Table 1 lists all models used, whether daily data were

available for a given variable, and if so, the number of

independent realizations for each variable. We use each

independent realization directly in the initial analysis

rather than average these realizations to produce an

ensemble result. However, we present ensembles over

the available realizations for each climate model in the

results for ease of presentation. We found that differ-

ences between realizations from a single climate model

in the simulated PDFs were negligible. Because of the

problem of missing data from some models for some

variables, a total of 14 models and 35 individual real-

izations were applicable for P, 13 models and 23 real-

izations for TMIN, and 10 models and 21 realizations for

TMAX. Model-specific masks were fitted to exclude

ocean data.

b. Observed data

Daily observed P, TMIN, and TMAX were obtained

from the Australian Bureau of Meteorology (BOM) for

the period 1961–2000. A total of 12 525 precipitation

and 1529 temperature stations contained data for all, or

a part of, this time period. Some individual stations

contained missing data but remaining data for an in-

complete station were included in the calculation of the

PDFs. Figures 1a and 1b show the locations of the tem-

perature and rainfall stations used in this study.

Homogenization and quality control of observed

data are common problems in model evaluation (Kiktev

et al. 2003; Griffiths et al. 2005; Alexander et al. 2006).

Quality control of observed data is vital when means or

standard deviations are calculated, since common and/

or large outliers can significantly affect these statistics.

We use PDFs as the basis of our analysis in part be-

cause they are less likely to be affected by observation

errors than the mean or standard deviation, and in part

FIG. 1. (a) Locations of observed minimum and maximum tem-

perature stations over Australia with data available between 1961

and 2000; (b) same as in (a), but for precipitation.

FIG. 2. PDF of observed maximum temperature for (a) unper-

turbed values, then 5% of values increased 5%, then 10% of

values increased 10%. Note that the maximum difference in the

PDFs is less than 0.01, between the original and 10% perturbed at

20°C. This PDF is for region 2 but is typical of all regions; (b) 100

PDFs calculated by randomly sampling 75% of the observed sta-

tions; (c) same as in (b), but for observed minimum temperature.
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because they allow a more complete assessment of a

climate model’s capacity to simulate the complete

range of observations at daily time scales.

Figure 2a presents three PDFs for a 10° � 10° region

of Australia to illustrate the relative insensitivity of a

PDF to errors in the observations (compared to means

or standard deviations). First, the original observed

data (solid line) has a mean of 23.34°C and a standard

deviation of 6.67°C. We then perturb the original

dataset by increasing 5% of the values by 5% to obtain

the second PDF and to give a revised mean of 23.52°C

and standard deviation of 6.77°C. Finally, we perturb

the original dataset by increasing 10% of the values by

10% to obtain the third PDF, giving a revised mean of

23.57°C and a standard deviation of 6.75°C. While both

the mean and standard deviation change in each case,

Fig. 2a shows little change in the shape of the resulting

PDFs. We will show later that differences between ob-

served and simulated PDFs are commonly too large to

be explained by observational error. A second advan-

tage of using PDFs is that we can safely merge data

from multiple stations where the data lengths are dif-

ferent and/or a station samples a small amount of a

total time series. We can thus use gap-affected obser-

vational data with relative ease provided we assume

these gaps (in time) are random in terms of their like-

lihood of contributing to a particular part of the PDF.

In terms of spatial coverage, Fig. 1 indicates that data

coverage is biased toward the coast, in particular in

southeastern and southwestern Australia. However, ex-

cluding regions 8 and 9, data coverage is quite complete

with stations widely distributed even in the sparsely

populated areas of the continent. In regions 8 and 9, in

particular for precipitation, data coverage is clearly in-

complete and/or spatially biased. Overall, however, by

using a PDF-based analysis that allows all stations to be

used to estimate the probability of a given temperature

or precipitation event (as distinct from the mean), our

comparison of modeled and observed temperature and

precipitation can be based on a more data-rich founda-

tion.

To explore the sensitivity of the observed PDFs to

the sampling the observed stations a sensitivity study

was conducted. Figure 2b (maximum temperature) and

Fig. 2c (minimum temperature) each represent 100

PDFs obtained by sampling the 75% of the individual

stations. There is a 0.97 overlap (where 1.0 represents a

perfect overlap) between the PDF calculated using all

observed data and the most dissimilar PDF calculated

using 75% of the data for both the maximum and mini-

mum temperatures (see section 2d for an explanation of

FIG. 3. Diagrams of modeled vs observed PDF illustrating

the total skill score in (a) a near-perfect skill score test (0.9) and

(b) a very poor skill score (0.02).

TABLE 2. Latitude and longitude boundaries for all 9.75° � 10.75° regions over Australia, with climate type based on the Köppen

classification scheme derived by Australian Bureau of Meteorology.

Region Lat Lon Climate

1 35.25°–44°S 143.75°–154°E Temperate

2 26.5°–35.25°S 143.75°–154°E Desert/grassland/temperate

3 17.75°–26.5°S 143.75°–154°E Desert/grassland/subtropical

4 9°–17.75°S 133.5°–154°E Tropical/equatorial

5 35.25°–44°S 133.5°–143.75°E Temperate/grassland

6 26.5°–35.25°S 133.5°–143.75°E Grassland/desert

7 17.75°–26.5°S 133.5°–143.75°E Grassland/desert

8 26.5°–35.25°S 133.5°–123.25°E Grassland/desert

9 17.75°–26.5°S 133.5°–123.25°E Grassland/desert

10 9°–17.75°S 133.5°–123.25°E Grassland/tropical

11 26.5°–35.25°S 113°–123.25°E Temperate/grassland/desert

12 17.75°–26.5°S 113°–123.25°E Grassland/desert
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this overlap statistic). This provides an indication of

how robust the observed PDFs are to the spatial sam-

pling of the observed data and provide some measure

of how similar a climate model would need to simulate

a PDF to be indistinguishable from the observed. We

have not attempted to sample the observed stations to

achieve a spatially uniform coverage because this leads

to the inclusion of individual stations of very different

data lengths and the omission of many stations that

contain useful samples of data.

c. Gridding and calculation of PDFs

Before evaluating the climate models, Australia was

divided into 13 rectangles, each of 9.75° � 10.75°. The

two eastern tropical regions were combined, as some

climate model grids did not resolve both land areas

(both shown as region 4 in Fig. 1a). The final 12 regions

and their main climate types are shown in Table 2 (see

also Fig. 1a). An advantage of focusing on Australia is

that several climate types are represented ranging from

tropical to desert environments. This division of the

continent into �10° � 10° regions permits the evalua-

tion of the climate models across various climate types

(Table 2), based on a large amount of observational

data in most regions (Fig. 1).

In calculating the PDFs, all observed data within

each �10° � 10° region were used to construct the

representative distribution. Similarly, for each model,

all data contained in the realizations available for a

model were used to derive the PDF. We did not aver-

age across realizations, nor did we average across indi-

vidual grid squares contained within a given �10° � 10°

region. The use of the daily data, each grid square, and

each realization provides a large sample for calculating

the PDF. Further, the use of �10° � 10° regions also

meant that each included at least four climate model

grid cells. Our analyses therefore do not attempt to

evaluate individual climate model grid elements.

Using MatLab (http://www.mathworks.com), PDFs

were calculated for each �10° � 10° square for P, TMIN,

and TMAX. Observed and model data were binned

around centers determined by the range of the ob-

FIG. 4. (a) Probability density functions for precipitation for regions 1–6, defined in Table 2. The observed PDF has been smoothed.

(b) Probability density functions for precipitation for regions 7–12, defined in Table 2. The observed PDF has been smoothed.
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served data for the variable in question, unique to each

region. Bin sizes of 0.5°C for TMIN and TMAX, and 1 mm

day�1 for P were used. All daily values of P below 0.2

mm day�1 were omitted because rates below this

amount are not recorded in the observations (Parkin-

son 1986). While Dai (2001) and Sun et al. (2006) noted

that precipitation rates below 1 mm day�1 contribute

little to total daily precipitation over most regions, we

used data above 0.2 because over Australia these

amounts may be important in some arid regions. The

PDF of the observed values was smoothed to remove

artificial variability caused by observer biases (values

immediately after the decimal point tended to be biased

to either zero or five). This did not affect the resulting

skill scores to an extent that affect conclusions.

An issue with comparing climate model precipitation

with observations is whether the generated precipita-

tion is a point or area estimate (Skelly and Henderson-

Sellers 1996; Osborn and Hulme 1997; Osborn and

Hulme 1998). Osborn and Hulme (1997) introduce a

method to avoid biasing a mean-based comparison be-

tween simulated and observed precipitation. However,

given the large number of observational data used in

this paper, and the coverage of stations within each 10°

� 10° rectangle, we have not implemented this meth-

odology. Indeed, since our focus is on probability den-

sity functions rather than a direct comparison of means

we suspect that station coverage within our rectangles

would not introduce biases.

d. Skill score

We explored how to create a summed metric using a

variety of established statistical tests (e.g., Kolomogor-

ov–Smirnov, Kendall’s tau, Cramer von Mises, and

Mann–Whiteney). However, it is not clear how to sum

across these PDF-based statistics as each test overlaps

to some degree in the sense that they examine similar

parts of the model-observed statistical space. It is there-

fore not clear whether various statistical scores should

be weighted in some way if they are to be combined.

We therefore explored an alternative metric that ap-

pears to be a very simple but very useful measure of

FIG. 4. (Continued)
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similarity between two PDFs, which allows a compari-

son across the entire PDF. This metric calculates the

cumulative minimum value of two distributions of each

binned value, thereby measuring the common area be-

tween two PDFs. If a model simulates the observed

conditions perfectly, the skill score (Sscore) will equal

one, which is the total sum of the probability at each bin

center in a given PDF (see Fig. 3a). Expressed formally,

Sscore � �
1

n

minimum�Zm, Zo�,

where n is the number of bins used to calculate the PDF

for a given region, Zm is the frequency of values in a

given bin from the model, and Zo is the frequency of

values in a given bin from the observed data. If a model

simulates the observed PDF poorly, it will have a skill

score close to zero with negligible overlap between the

observed and modeled PDFs (see Fig. 3b). This is a

very simple measure that provides a robust and com-

parable measure of the relative similarity between

model and observed PDFs, and is likely preferable to

ad hoc weightings based on statistical tests. We base our

analysis on this statistic because it is clear, easily inter-

preted, and directly comparable across variables. It also

has the virtue of providing a quantitative measure of

similarity comparable to what would be assessed by

eye.

3. Analysis of model-simulated PDFs

a. Precipitation (P)

Figure 4 shows the PDFs for precipitation for each

10° � 10° region (Fig. 1a; Table 2). We show the PDFs

for each model and each region in this section to avoid

selectivity. We calculated the PDFs using all indepen-

dent realizations for a given model as these were vir-

tually indistinguishable in the figures. The x axes in Fig.

4 uses square root of the simulated value since the ma-

jority of the simulated P occurs at rates of less than 10

mm day�1. Most models tend to overestimate the

amount of “drizzle” that falls in each region (Sun et al.

2006). This is clear in almost all models: the observed is

at the low end of the range of simulated values at the

intersection of the y axis. In many cases, models over-

estimate the observed probability of rainfall in the 1–2

mm day�1 range by 2–3 times.

It is not easy to interpret the PDFs for rainfall rates

greater than about 5 mm day�1, but there is evidence in

Fig. 4 that the models do quite well. Figure 5 shows the

skill score for P for each model and for each region.

This quantification of the model PDFs, in comparison

to the observed, provides an objective measure of

model skill. Figure 6a shows the ensemble skill score

for each model averaged over all 12 regions. Overall,

the skill scores for 9 of the 14 models exceed 0.7 (Fig.

6a) and the Bergen Climate Model, version 2.0

(BCCR), ECHAM, and the Meteorological Institute of

the University of Bonn ECHO-G are very close to 0.85.

This strong performance is clear in most regions:

ECHO-G and ECHAM exceed 0.8 in all regions (Fig.

5). The Coupled General Circulation Model, version

3.1 T47 (CGCM-l) and Community Climate System

FIG. 6. (a) Ensemble PDF-based skill score for precipitation for

each climate model averaged over all regions defined in Table 2;

(b) box–whisker diagrams for each region shown in Table 2. The

horizontal center bar in each box is the ensemble mean of all

models, the upper and lower horizontal bars show the 75th and

25th percentiles, and the extremes of the bars show the maximum

and minimum values.
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Model, version 3.0 (CCSM), Meteorological Research

Institute CGCM version 3.0 (MRI), Institut Pierre-

Simon Laplace Climate Model, version 4 (IPSL), and

the Goddard Institute for Space Studies Atmosphere–

Ocean Model (GISS AOM) appear to be relatively

weak with ensemble skill scores �0.7 or lower in most

regions and falling to �0.5 in some regions (Fig. 5).

Figure 6a shows that, averaged over Australia, three

models score higher than 0.8 while no model scores less

than 0.6, a result that hides the considerable regional

variability. Figure 6b shows the ensemble average per-

formance of all models by region (horizontal line in

center of the box) as well as the maximum and mini-

mum skill scores for the models. The worst performing

areas are regions 3 and 7 with ensemble skill scores

�0.7. These are the subtropical/temperate transition re-

gions. The relatively low skill in these regions contrasts

with the better performance in those regions where the

rainfall is driven by either monsoons or storm tracks.

However, this result is strongly affected by a few mod-

els that show very variable performance by region. If

models with skill scores �0.7 are omitted, the remain-

ing models show little variability in performance re-

gionally. This strongly supports omitting weak models

from an ensemble as these weak models strongly bias

the skill of the ensemble but in regionally variable

ways. Thus, the apparent overall poorer behavior in

regions 3 and 7 (Fig. 6b) is, in fact, a reflection of the

poor skill in CGCM-l, GISS AOM, MRI, IPSL, and

CCSM.

b. Minimum temperature (TMIN)

The simulated and observed PDFs are shown in

Fig. 7 for each region. The associated skill scores are

shown in Fig. 8. No individual climate model produces

systematically anomalous results. Figure 7 shows an en-

couraging result: at least visually the shape of the mod-

els’ PDFs varies from region to region in similar ways to

the observed. A very tight and pointed observed PDF

(regions 4 and 10) can be contrasted with a broader

PDF (regions 2, 8, and 12) and it is reassuring that the

models do simulate this basic change. The overall skill

in the models’ simulation of TMIN is 	0.8 for 11 of the

13 models (Fig. 9a). Figure 7 shows that the simulated

PDFs are typically quite tightly clustered around the

observed PDF although there is a tendency toward a

horizontal shift in the PDF in some regions (this ap-

pears unrelated to the nature of the climate in a given

FIG. 7. (a) Same as in Fig. 4a but for minimum temperature. (b) Same as in Fig. 4b, but for minimum temperature.
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region). In regions 2, 6, 8, and 11 (which are all within

the same latitudinal bands) the models tend to overes-

timate the probability of warmer minimum tempera-

tures but the probability of lower minimum tempera-

tures appears to be quite well represented in most mod-

els. Of course, some models perform better than others

and overall Commonwealth Scientific and Industrial

Research Organisation Mark version 3.0 (CSIRO), the

Geophysical Fluid Dynamics Laboratory Climate

Model version 2.1 (GFDL2.1), CGCM-l, and MRI per-

form best (skill scores 	0.85; Fig. 9a) although each

model also performs relatively weak in some regions.

The Flexible Global Ocean–Atmosphere–Land System

Model g1.0 (FGOALS) and ECHO-G are relatively

poor (skill score �0.7, Fig. 9a) and are substantially

weaker (by about 0.1) than most other models.

The regional performance of the ensemble of the

models is shown in Fig. 9b. Ensemble mean skill scores

are between 0.75 and 0.85 with little variation between

regions. However, if those weaker models (FGOALS,

ECHO-G, and BCCR) are omitted, the scores range

between 0.85 and 0.9 for all regions. This indicates that

the better models show very similar skill, but a system-

atic error of �0.1 remains in all models.

c. Maximum temperature (TMAX)

Figure 10 presents the PDFs of the observed and

modeled TMAX for each region and Fig. 11 shows

the corresponding skill scores. Overall, most climate

models simulate the PDF of observed TMAX well. Many

of the models capture the changes in location (with

respect to the x axis) and shape of the observed PDF

well between regions. There are, however, anomalies in

all regions. The FGOALS model, for example, is poor

in the Tropics (regions 4 and 10) but is highly competi-

tive in many other regions. The CSIRO model grossly

overestimates the probability of TMAX toward the

lower end of the range in regions 9 and 12. A common

problem is an excessive simulation of too many low

TMAXs and too many high TMAXs such that the ob-

served peak in the PDF is underrepresented. This is

particularly clear in regions 2, 6, 8, 11, and 12. These are

the more temperate regions of Australia and likely the

most difficult to model well. These are also regions

where soil moisture is likely in transition between non-

limiting (to evaporation) and limiting (see Koster et al.

2004). Errors in the modeling of these processes can

contribute to errors in the simulation of TMAX and

TMIN (see section 4).

FIG. 7. (Continued)
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The overall performance of the models in represent-

ing TMAX is similar to TMIN. Figure 12a shows that 6 of

10 models generate a skill score in excess of 0.8 (in

contrast to 11 of the 13 for TMIN). Figure 12b shows the

overall region-by-region performance of the models.

The poorest simulated regions are 1, 4, and 10, which

are the extreme north and south of Australia. However,

as with TMIN, if models with skill scores �0.8 are omit-

ted (this excludes CGCM-l, CGCM-h, GISS AOM, and

MRI), the regional performance of the remaining mod-

els is almost always between 0.85 and 0.95. Thus, the

remaining systematic error of �0.1 is common between

TMAX and TMIN.

d. Simulation of 80th, 90th, and 95th percentiles

One advantage of using PDFs as the basis for the

analysis of the models is that they can be assessed

against higher percentile values. We used the 80th,

90th, and 95th percentiles as measures of how well the

models could simulate these rarer values that are not

easily interpreted from the figures showing the PDFs.

We calculated continental-scale percentiles to give an

overview of the models’ capacity. This was achieved by

concatenating data from all models for all regions for a

given variable and sampling each dataset for the spe-

cific percentile.

Figure 13 shows the model results corresponding to

each percentile for P, TMIN, and TMAX. Precipitation, at

these higher percentiles, is poorly captured by the mod-

els. Specifically, the highest values simulated by any

model for the 95th percentile is about 24 mm day�1

(ECHAM)—a figure close to the observed 90th per-

centile (�22 mm day�1; see the final data point in Fig.

13a). This is �10 mm day�1 lower than the observed

value for the 95th percentile, highlighting that all mod-

els systematically underestimate high rainfall rates in

addition to the overrepresentation of low rainfall rates.

These findings confirm Sun et al.’s (2006) conclusions

in a more detailed regional analysis. There are, how-

ever, two groups of models represented in Fig. 13a.

BCCR, CSIRO, GFDL2.0, GFDL2.1, the Model for

Interdisciplinary Research on Climate, version 3.2 T42

(MIROC-m), ECHO-G, and ECHAM are superior to

the remaining models in this measure. They produce

rainfall for the 95th percentile that compares to the

observed 90th percentile. The remaining models’ 95th

percentile compares more to the observed 80th percen-

tile. This provides one means of discriminating between

models in the simulation of the rarer events that are

important in impact assessments.

The results for TMIN (Fig. 13b) and TMAX (Fig. 13c)

are quite variable. Six of the 13 models are within 
2°C

of the observed for TMIN. There is a general bias in the

models to overestimate the higher percentiles in both

TMIN and TMAX. BCCR is clearly relatively poor for

TMIN and GISS AOM, GISS ER, FGOALS, IPSL,

ECHO-G, and ECHAM are all about 5°C to warm on

each percentile. For TMAX, the Coupled General Cir-

culation Model version 3.1 T63 (CGCM-h), CGCM-l,

GISS AOM, and MRI are excessively warm but

CSIRO and FGOALS are impressively close to the ob-

served.

The warm bias in TMIN is straightforward to explain.

In many parts of Australia, minimum temperatures are

orographically induced. The resolution of climate mod-

els tends to prevent local minima from being simulated,

where these are due to specific topographical features.

The warm bias in TMAX, however, is not likely due to

orography and is more likely to indicate problems in

FIG. 9. (a) Same as in Fig. 6a, but for minimum temperature.

(b) Same as in Fig. 6b, but for minimum temperature.
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the models’ simulation of net radiation and/or terres-

trial processes (see section 4).

4. Discussion

The development of climate models for future pro-

jection has placed increasing demands on models to

simulate the present-day climate well. It is a demanding

challenge to produce global, fully coupled climate mod-

els that show genuine skill in regional climate simula-

tions. While monthly or seasonal means from climate

models have traditionally been the most common basis

for analysis, they are not necessarily the most useful

measures for climate impact assessment. Changes in

other statistics like annual maximum temperature, an-

nual daily maximum rainfall, and annual minimum tem-

perature are likely to have a greater impact on a range

of biophysical systems than a change in the mean (e.g.,

Frich et al. 2002). Evaluating indices for each of these is

very useful and may underpin many impacts assess-

ments (e.g., Alexander et al. 2006), but this paper fo-

cuses on model evaluation and presents a way to evalu-

ate models across a variable’s full range utilizing the

entire PDF. A climate model with skill across a range of

observed PDFs shows a capacity to simulate the full

range of climates in different regions. If a climate model

can accurately simulate the probability of temperatures

two standard deviations from the current mean, this

builds confidence that they could simulate the greater

proportion of future climates, at least until tempera-

tures rise such that the PDFs overlap with the present

day little.

An evaluation of the regional PDFs of P, TMAX, and

TMIN for each of the AR4 models show, as expected, a

range of performances that were quantified via a skill

score that measured the degree of overlap of the PDFs.

The skill scores were aggregated by model and by re-

gion to enable a quantitative assessment of model per-

formance and to identify regions where the models

were particularly good or bad.

First, it surprised us how well most models repro-

duced the observed PDFs of P, TMIN, and TMAX for

each region. It is demanding for a global fully coupled

climate model to be able to capture observed regional

PDFs. The skill shown by most models strongly sup-

ports previous assessments that climate models are use-

ful tools (e.g., McAvaney et al. 2001). However, there

were understandably problems with some models in

some regions. In terms of rainfall, the tendency of cli-

FIG. 10. (a) Same as in Fig. 4a, but for maximum temperature. (b) Same as in Fig. 4b, but for maximum temperature.
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mate models to simulate too much low-intensity rainfall

was shown, supporting the findings of Sun et al. (2006).

We also identified limits in the models’ capacities to

simulate the 80th, 90th, and 95th percentiles. We

showed that if all models are included, there appears to

be greater skill in simulating tropical and storm-track-

driven climates. However, this was shown to be biased

by a group of models with relatively little skill in the

temperate/subtropical regions. If these weaker models

were omitted, the remaining models showed high and

similar skill in all regions.

One advantage of the skill score used here is that it is

comparable between models. It therefore provides a

basis for ranking climate models variable by variable or

overall by averaging over variables. Table 3 shows, av-

eraged over Australia, that the best model for precipi-

tation is BCCR closely followed by ECHAM and

ECHO-G. There is some sensitivity in this ranking to

the choice of minimum precipitation in calculating the

PDFs. If we omit values below 1 mm day�1 (following

Sun et al. 2006), ECHAM performs best. The exact

ranking is therefore affected by the selection of the

minimum value for precipitation. Others using this

technique should determine what constitutes a daily

rainfall amount that can be ignored since this varies

regionally (one would choose a different minimum in

the Sahara compared to the Amazon) and depending

on the intended application. However, while the exact

ranking varies, it is typically by 
1 position and the

methodology does not explain the poor scores obtained

by some models.

In terms of TMIN, the majority of models (10 of 13)

had PDF-based skill scores 	0.8, in comparison to 6 of

10 models for TMAX; TMIN is driven by radiative cool-

ing, which in turn is associated with cloud, and atmo-

spheric moisture content. Figure 9a implies that the

suite of AR4 climate models are capturing this radiative

cooling process well as it would not be possible to simu-

late the PDF of TMIN otherwise. BCCR, FGOALS, and

ECHO-G are, however, relatively weak, suggesting a

problem with cloud, radiation, or atmospheric moisture

content. Diagnosing the reasons for individual model

performance is beyond the scope of this paper. In terms

of overall ranking of the AR4 models for TMIN,

GFDL2.1, CSIRO, and CGCM-l are best (see Table 3)

although the top 10 models vary by only 0.09, indicating

that most of the AR4 models perform similarly and

well. It is likely that a significant fraction of the remain-

ing skill score error (�0.1) is related to the scale dif-

ference between the models and observed. The coarse

FIG. 10. (Continued)

4370 J O U R N A L O F C L I M A T E VOLUME 20

Unauthenticated | Downloaded 08/24/22 02:14 PM UTC



F
IG

.
1

1
.

(a
)

S
a

m
e

a
s

in
F

ig
.

5
a

,
b

u
t

fo
r

m
a

x
im

u
m

te
m

p
e

ra
tu

re
.

(b
)

S
a

m
e

a
s

in
F

ig
.

5
b

,
b

u
t

fo
r

m
a

x
im

u
m

te
m

p
e

ra
tu

re
.

1 SEPTEMBER 2007 P E R K I N S E T A L . 4371

Unauthenticated | Downloaded 08/24/22 02:14 PM UTC



model resolution smoothes orography, thereby limiting

the capacity of the models to simulate local minima.

The simulation of TMAX requires a larger number of

processes to be captured in a climate model. In addition

to clouds interacting with incoming solar radiation and

water vapor influencing net infrared radiation, TMAX is

affected by albedo, which directly controls absorbed

solar radiation. The key problem in simulating TMAX is

that many models overestimate the probability of high

values (see Figs. 7 and 13c). This may be related to an

overestimation of net radiation in the models, although

this is unlikely since Wild (2005) found climate models

to underestimate surface insolation. An alternative pos-

sibility is that TMAX is affected by how net radiation is

partitioned between sensible and latent heat fluxes and

this partitioning is controlled by land surface processes.

Variations in any processes that control the supply of

water for evaporation (soil moisture, root distribution,

stomatal conductance; Pitman 2003) can affect evapo-

rative cooling and therefore TMAX (Collatz et al. 2000).

We undertook a first-order examination of climate

model skill in simulating TMAX as a function of the

complexity of surface parameterization in the climate

models. We found no simple association between land

surface complexity and skill in simulating TMAX but

note it is difficult to determine the complexity of these

land surface models implemented in the climate models

FIG. 12. (a) Same as in Fig. 6a, but for maximum temperature.

(b) Same as in Fig. 6b, but for maximum temperature.

FIG. 13. Cumulative ensemble percentile values for (a) P, (b)

TMIN, and (c) TMAX. Diamonds represent the 80th percentile,

squares the 90th, and triangles the 95th. The observed is shown at

the right-hand side of each figure. Note all daily values �0.2 mm

day�1 are omitted in calculating the precipitation percentiles.
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based solely on the literature. Overall, the Model for

Interdisciplinary Research on Climate, version 3.2 T106

(MIROC-h), ECHO-G, and MIROC-m simulate TMAX

best over Australia (see Table 3).

Another advantage of the PDF skill score used in this

paper is that it provides a direct way to omit models

from ensembles based on a quantitative threshold. Fig-

ure 14 illustrates the use of the skill score to omit indi-

FIG. 14. Ensemble probability density functions for (top) precipitation, (middle) minimum temperature, and

(bottom) maximum temperature for (left) region 2 (temperate) and (right) region 3 (tropical). Three simulated

PDFs are shown where all model values with a skill score less than 0.5 are omitted, where all values less than 0.7

are omitted, and where all values less than 0.8 are omitted.

TABLE 3. Ranking of climate models for P, TMAX, and TMIN over all regions of Australia (an average of all 12 regions shown in Table

2). The top part of the table includes those models where all data for P, TMAX, and TMIN were available. Only these models are included

in the final ranging shown in the right-hand column. Readers interested in the ranking by region can refer to Figs. 5, 8, and 11.

P Rank TMAX Rank TMIN Rank Overall Rank

MIROC-m 0.77 5 0.87 3 0.84 5 0.83 1

CSIRO 0.73 7 0.80 6 0.88 2 0.80 2

ECHO-G 0.83 3 0.87 2 0.69 12 0.80 3

IPSL 0.65 12 0.85 4 0.83 7 0.78 4

MRI 0.65 11 0.78 8 0.86 4 0.76 5

GISS AOM 0.64 13 0.78 7 0.83 8 0.75 6

FGOALS 0.70 9 0.81 5 0.69 13 0.73 7

CGCM-l 0.60 14 0.68 10 0.86 3 0.71 8

BCCR 0.85 1 0.73 11 0.79

CGCM-h 0.72 9 0.84 6 0.78

GFDL2.0 0.79 4 0.79

GFDL2.1 0.76 6 0.89 1 0.82

GISS ER 0.73 8 0.80 10 0.76

MIROC-h 0.87 1 0.88

ECHAM 0.84 2 0.81 9 0.83

CCSM 0.67 10 0.67
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vidual models at specific locations. Only regions 2 and

3 are shown (temperate and subtropical climates) since

these examples capture the majority of behavior found

in other regions. In Fig. 14, models are omitted if their

skill score in a given region is �0.5, �0.7, and �0.8.

Obviously, as models with poorer skill are omitted, the

resulting ensemble PDF becomes more similar to the

observed. In the case of precipitation, omitting models

with a skill score �0.8 halves the error in the resulting

PDF in the subtropical region and reduces the error by

about 30% in the temperate region. Overall, the simu-

lation of precipitation at rates 	5 mm day�1, and the

shape of the PDFs for temperature, are simulated by

the better models with considerably more skill than an-

ticipated. A systematic overestimation of higher values

of TMIN remains in the temperate region even when

only the better models (skill scores 	0.8) are included.

In contrast, the skill in the tropical region for TMIN is

close to perfect. It is not clear why TMIN can be cap-

tured so well in the Tropics but not in the temperate

regions of Australia, although the coarse orography is a

potential explanation. Finally, improvements in TMAX

are achieved in both regions, but clearly systematic er-

rors remain in even the best models. This is not possible

to attribute to one cause but solar radiation and terres-

trial processes are likely factors.

In one sense, Fig. 14 shows how far we have to go to

obtain a near-perfect representation of the observed

PDFs of these variables. There is clearly considerable

room for improvement in P and TMAX. Overall, how-

ever, we reiterate that the skill in simulating P, TMIN,

and TMAX by most models over all regions of Australia

was better than we anticipated. It is worth restating the

challenge: to develop a fully coupled global climate

model that can simulate the daily observed PDFs of P,

TMAX, and TMIN over all 10° � 10° regions of Australia.

The best climate models can effectively meet this chal-

lenge with skill scores exceeding 0.8.

5. Conclusions

The evaluation of climate models against observed

data is an important step in building confidence in their

use for impact assessment. While climate models can be

evaluated in many ways, the most common methods

explore model performance in annual, seasonal, or

monthly means. These are not likely the time scales that

will most strongly affect human, physical, or biological

systems.

To address the issue of mean-based evaluation of

climate models we examined the capacity of the AR4

models to simulate the observed PDFs, region by re-

gion over Australia using daily data. The skill of each

climate model to reproduce the PDF was assessed using

a skill score based on the overlap between the observed

and modeled PDFs (region by region). While large bi-

ases were identified in some models, in general, the

AR4 climate models showed considerable skill (com-

monly 	80%) in representing the observed PDFs.

These models could capture the changes in the shape of

the PDFs as these changed across Australia. This is

quite a remarkable achievement given that the com-

plexity of the fully coupled global climate models used

here. We suggest that strong performance in a PDF-

based evaluation provides more confidence in a climate

model that a means-based assessment. However, a

model that does well in a PDF (or mean based) assess-

ment could still hide major limitations in (say) the fre-

quency of no-rain days, consecutive days over a thresh-

old temperature, or events that are too rare to signifi-

cantly contribute to the skill score.

Despite some limitations, we conclude that there are

climate models within the AR4 archive that have useful

skill in simulating the PDFs of P, TMIN, and TMAX over

Australia. We have already noted that BCCR,

ECHAM, and ECHO-G simulate P best over Austra-

lia, based on our skill score. MIROC-h, ECHO-G, and

MIROC-m are best in simulating TMAX; and GFDL2.1,

CSIRO, and CGCM-l are best in simulating TMIN. An

overall ranking of those models that could be assessed

for all of P, TMIN, and TMAX is shown in Table 3. Three

models have skill scores over 0.8, averaged over Aus-

tralia and over the three variables. They are, in order,

MIROC-m, CSIRO, and ECHO-G. We note that sev-

eral models, where data were missing for one or more

variables, could not be ranked but are shown in Table

3 to be the best for a single variable (BCCR for P,

MIROC-h for TMAX). However, we also note that while

BCCR was best for P, it was close to worst for TMIN,

highlighting the need for model evaluation to be based

on several variables.

McAvaney et al. (2001) concluded that climate mod-

els were useful tools, at least down to subcontinental

scales. Our analysis, while limited to one continent, sug-

gests that some of the AR4 models show considerable

skill at subcontinental scales, even when assessed using

daily data. This builds confidence in the use of these

models for regional assessment. However, we also note

that some models show major biases that need to be

addressed. All of the models reported here are included

in the AR4 assessment and clearly, at least over Aus-

tralia, some models are demonstrably better than oth-

ers. While this is not surprising, impacts groups could

use our evaluation as a basis for choosing climate mod-

els for subsequent study.
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