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Abstract: The goal of biomarker testing, in the field of personalized medicine, is to guide treat-
ments to achieve the best possible results for each patient. The accurate and reliable identification
of everyone’s genome variants is essential for the success of clinical genomics, employing third-
generation sequencing. Different variant calling techniques have been used and recommended by
both Oxford Nanopore Technologies (ONT) and Nanopore communities. A thorough examination
of the variant callers might give critical guidance for third-generation sequencing-based clinical
genomics. In this study, two reference genome sample datasets (NA12878) and (NA24385) and the
set of high-confidence variant calls provided by the Genome in a Bottle (GIAB) were used to allow
the evaluation of the performance of six variant calling tools, including Human-SNP-wf, Clair3, Clair,
NanoCaller, Longshot, and Medaka, as an integral step in the in-house variant detection workflow.
Out of the six variant callers understudy, Clair3 and Human-SNP-wf that has Clair3 incorporated
into it achieved the highest performance rates in comparison to the other variant callers. Evaluation
of the results for the tool was expressed in terms of Precision, Recall, and F1-score using Hap.py
tools for the comparison. In conclusion, our findings give important insights for identifying accurate
variants from third-generation sequencing of personal genomes using different variant detection
tools available for long-read sequencing.

Keywords: nanopore; variant detection; human-SNP-wf; Clair3; Clair; NanoCaller; Longshot; Medaka

1. Introduction

Over time, the field of genetic testing for many cancer biomarkers, such as breast
cancer driver genes BRCA1 and BRCA2, improved, starting from single gene sequencing on
sanger sequencing technology, followed by multigene panels, which were created as a result
of developments in next-generation sequencing technology (NGS), allowing for a broader
genetic assessment, a faster testing method, and better throughput, without being cost
prohibitive but constrained by the generation of short reads [1,2]. MinION, the first long-
read Nanopore-based sequencer, was released by Oxford Nanopore Technologies (ONT),
overcoming the primary limitations of short-read sequence creation [3] by introducing
long-read sequencing technology that was adapted by both ONT and Pacific Biosciences
(PacBio) [4]. These technologies proved that new long-read, single-molecule sequencing
technologies could reliably be able to identify small variants, indel, and structural variants
(SVs), with significant improvements in both sensitivity and specificity [3,5].

In human genomes, single-nucleotide polymorphisms (SNPs) and short insertions
and/or deletions (indel) are two forms of genetic variants [6,7]. They contribute to genetic
diversity and have the ability to affect phenotypic differences, such as human disease
susceptibility. Detecting SNPs and indel is challenging in studying genomic variants and
functions using new generations of high-throughput sequencing data [5]. Many different
variant (SNP/indel) callers were introduced by the Nanopore community and recom-
mended by ONTs for accurate variant detection based on data from long-read sequencing.
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Some variant callers implemented variant calling methods using deep learning, such as
“Clair” [8], the successor of “Clairvoyant” [9]. “Longshot “ [10] calls SNPs on long-read data
using a Pair-Hidden Markov Model (pair-HMM) for a small local window surrounding
candidate sites. Medaka [11], an SNP/indel caller based on deep learning on long-read
data, was recently launched by ONTs [11]. Medaka predicts SNPs from unphased long
reads before phasing them. For each set of phased reads, Medaka ends up making SNP
and indel calling. Nanocaller [12] is a deep convolutional neural network that incorporates
a long-range haplotype structure to improve variant detection on long-read sequencing
data. “Clair3” [13] combines the greatest characteristics of two key method categories:
pile-up calling, which handles most variant candidates fast, and full alignment, which
tackles complicated candidates with precision and recall in an account. Accordingly, in
this article, the development of a workflow for detecting disease-causing variants, starting
from the sample to the variant call format (VCF) with annotated variants, was proposed
where different variant calling tools were tested on reference genome samples to evaluate
the output of each tool against “Truth” set of variants. The proposed pipeline for targeted
sequencing of the data generated from long-read sequencing technology, where the two
genes BRCA1 and BRCA2, which are recurrently mutated in breast cancer, were analyzed
as an example of this workflow and an examination of its performance was described for
future testing and implementation.

2. Materials and Methods
2.1. Targeted Sequencing Data Analysis Pipeline

The target amplicons’ reads were aligned to reference sequences based on the public
human genome build GRCh38/UCSC hg38 using Minimap2 Aligner trained on long reads
generated by ONT-MinIon sequencer (https://github.com/lh3/minimap2 (accessed on
8 August 2022) [14]. After Minimap2 finishes the alignment, it generates a SAM file that
is converted afterward to BAM format using Samtools (https://github.com/samtools/
(accessed on 8 August 2022) [15]. The resultant BAM file was sorted and indexed using
Samtools to be ready for variant calling. The minimum sequencing depth value was
found to never be below 50 X using Bedtools “coverage” (https://github.com/ryanlayer/
bedtool (accessed on 8 August 2022) [16]. Afterward, the PCR duplicate removal was
performed on the reads that have identical external coordinates, retaining only the reads
with the highest mapping quality using Samtools rmdup (with s option) that removes the
single-end reads from the sorted and indexed Bam file (https://github.com/samtools/
(accessed on 8 August 2022)) [15]. Regarding the variant calling step, six variant callers
were tested in parallel on the MinIon sequencing data: (1) Medaka (https://github.com/
nanoporetech/medaka (accessed on 8 August 2022)) [11], (2) epi2me-labs/wf-human-
snp (https://github.com/epi2me-labs/wf-human-snp (accessed on 8 August 2022)) [17],
(3) Clair3 https://github.com/HKU-BAL/Clair3 (accessed on 8 August 2022) [13], (4) Clair
(https://github.com/HKU-BAL/Clair (accessed on 8 August 2022)) [8], (5) Longshot
(https://github.com/pjedge/longshot (accessed on 8 August 2022)) [10], (6) Nanocaller
(https://github.com/WGLab/NanoCaller (accessed on 8 August 2022)) [12]. A custom-
made BED file was created to target the region of the BRCA1 and BRCA2 genes for the
variant callers to call only variants in our target regions. The ‘SNV’ (single-nucleotide
variant) and ‘INDEL’ (insertion–deletion) files were filtered by removal of non “PASS”
variants and with Quality “QUAL” below 20. The filtered VCF of variants was then
annotated using the Genetic variant annotation and functional effect prediction toolbox
SnpEff (https://pcingola.github.io/SnpEff/ (accessed on 8 August 2022)) [18], which
predicts the effects of the resultant variants on genes and amino acid changes. The ClinVar
(https://www.ncbi.nlm.nih.gov/clinvar/ (accessed on 8 August 2022)) [19] database was
used to check for the clinical significance of the annotated variants. The database is strongly
linked to the databases dbSNP and dbVar, which keep track of the site of variations
in human assembly. ClinVar is based on the phenotypic descriptions kept in MedGen
(http://www.ncbi.nlm.nih.gov/medgen (accessed on 8 August 2022)) [20] as well. The
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SNV and INDEL variants that were clinically significant are reported and stored in the
in-house database (Table 1).

Table 1. Summary of the tools used in both SNP and indel detection.

Tool Version Function

Guppy v5.0.16
data processing toolkit that contains Oxford Nanopore’s base-calling

algorithms. Guppy is integrated into MinKNOW and is also available as a
standalone version.

Minimap2 v2.22 A sequence alignment tool that aligns DNA or mRNA sequences to a vast
library of reference sequences.

Samtools v.1.14

a collection of programs for manipulating alignments in the SAM, BAM, and
CRAM formats. It converts between formats, sorts, merges, and indexes data,
it can quickly remove PCR duplicates and calculate the mean coverage for a

target region

Medaka v1.4.4 a program that uses Nanopore sequencing data to generate consensus
sequences and calling of variants.

Clair v2.11 a tool that uses single molecule sequencing data to call germline small variants
quickly and accurately.

Longshot v0.4.1
a tool for detecting variants in diploid genomes using long error-prone reads.
It takes an aligned BAM/CRAM file as input and outputs a phased VCF file

containing variant and haplotype information.

NanoCaller v2.1.2

a computational method for detecting SNPs/indels in long-read sequencing
data that integrates long reads in a deep convolutional neural network and

generates predictions for each SNP candidate variant site by considering
pileup information from other candidate sites that share reads.

Clair3 v0.1-r11

a long-read germline small variant caller excels in two major method
categories: pileup calling, which handles most variant candidates quickly, and

full alignment, which tackles complex candidates to maximize precision
and recall.

Hap.py v0.3.15 To compare a VCF with a gold standard dataset vcf

SnpEff v5.1
Toolbox for genetic variant annotation and functional effect prediction. It

describes and estimates the effects of genetic variants on genes and proteins
(such as amino acid changes)

Epi2me-labs/wf-
human-SNP v0.3.1 includes a nextflow workflow for calling diploid variants in whole genome

data. Clair3 is used in this workflow to identify small variants in long reads.

SAM: Sequence Alignment Map, BAM: Binary Alignment Map, CRAM: Compressed Reference-oriented Align-
ment Map, VCF: Variant call format

2.2. Classification of the Pathogenicity of Variants

The information deposited in the ClinVar database and the recommendations of
the American College of Medical Genetics and Genomics (ACMG) were used to classify
the detected mutations [21,22]. The results of the BRCA1/2 gene variant detection were
classified as wild type (no harmful variants), variant of unknown significance (VUS),
pathogenic variants (PV), and likely pathogenic variants (LPV); not all the benign variants
were reported [23].

2.3. Validation Data Set

To ensure the pipeline’s usefulness and readiness, two long-read datasets based on
publicly accessible human reference samples HG001 (NA12878) (https://www.ncbi.nlm.
nih.gov/popset/?term=NA12878 (accessed on 8 August 2022)) and HG002 (NA24385)
(https://www.ncbi.nlm.nih.gov/genome/?term=NA24385 (accessed on 8 August 2022)
were provided by the ONT-open-data registry that is provided to support: (1) exploration
of the properties of Nanopore sequence data; (2) performance evaluation and replication;
(3) tool and method development. These are two of the most used reference samples. The
Fastq files provided along with the bam files for this sample were used as input to test the
validity of different tools’ output (https://registry.opendata.aws/ont-open-data/ (accessed
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on 8 August 2022)) using the benchmarking tool (https://github.com/Illumina/hap.py
(accessed on 8 August 2022)) [24].

3. Results
3.1. Data Analysis Workflow Outcome

Data analysis workflow for the HG001 and HG002 reference genomes started with
the read sequence aligner Minimap2, which aligns DNA sequences against the GRCh38
human reference genome with a SAM file as an output. Samtools “View” was used to
convert the SAM file to a BAM file, followed by Samtools “Sort” and “Index” to generate a
sorted and indexed BAM file ready for variant calling. As a part of the workflow pipeline,
a step of PCR duplicate removal from the aligned reads of the two reference samples was
included, to avoid overestimation of the coverage and overestimated variants resulting
from PCR duplication with Samtools “rmdup”. The mean coverage was calculated by
bedtools “coverage”. For the sample HG001, the mean coverage for the reads before PCR-
duplicate removal was 32.62 X and 36.89 X for BRCA1 and BRCA2, respectively, while after
removal of PCR duplicates, the mean coverage for BRCA1 and BRCA2 was found to be
the same. The mean coverage for HG002, before the PCR-duplicate removal, was 53.85 X
for BRCA1 and 70.06 X for BRCA2. After removing the duplicates, the mean coverage of
BRCA1 and BRCA2 was found to be the same, which suggested that the published reference
samples previously underwent the step of PCR-duplicate removal or it was sequenced as a
whole-genome sequencing sample, which is more logical (Table 2).

Table 2. The coverage difference before removing duplicates and after removing duplicates.

Sample Before Removing Duplicates After Removing Duplicates

BRCA1 BRCA2 BRCA1 BRCA2
HG001 32.62 X 36.89 X 32.55 X 36.89 X
HG002 53.85 X 70.06 X 53.85 X 70.06 X

3.2. Primary Filtering Outcomes

The BAM files were ready for the next step, which was the variant calling step. Six
tools were used to call variants in the BRCA genes in HG001 and HG002; some of these
tools were recommended by ONT and some by the ONT community for variant calling,
such as Medaka, Clair, Nanocaller, Longshot, Clair3, and wf-human-snp workflow, which
is the workflow provided by ONT employing Clair3 with pre-adjusted parameters for
accurate variant calling. All of the generated output VCFs were filtered, including the
variants with “PASS” and QUAL > 20 as a threshold for the comparison of the output of
the tools. Long-read sequencing data aligned to a reference genome are taken as an input
along with a BED file designed to target the two genes’ coordination, which restricts the
variants called in the target location into different variant callers, which output a VCF file
with predicted SNPs and indel. The output after the primary filtering for the three samples
is described in Tables 3 and 4.

Table 3. The total no. of the output variants (SNPs, INDELs, and MNPs) of the six variant callers in
comparison to both BRCA1 and BRCA2 genes in the HG001.

Tool Name Total No. of BRCA1
Variants

Total No. of
BRCA2 Variants Total

Clair 482 348 830
Longshot 124 108 232

NanoCaller 121 97 218
Medaka 221 221 442
Clair3 225 172 397

Epi2me-labs/wf-human-SNP 370 285 655

https://github.com/Illumina/hap.py
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Table 4. The total no. of the output variants (SNPs, INDELs, and MNPs) of the six variant callers in
comparison to both BRCA1 and BRCA2 genes in the HG002.

Tool Name Total No. of BRCA1
Variants

Total No. of
BRCA2 Variants Total

Clair 482 372 854
Longshot 124 108 232

NanoCaller 121 97 218
Medaka 111 98 209
Clair3 370 172 542

Epi2me-labs/wf-human-SNP 370 285 655

3.3. Comparison of the Variant Caller’s Performance

For a comparison of the variant caller’s performance, the traditional binary classifica-
tion performance assessment paradigm of simply determining true and false “positives”
and “negatives” lends itself well to evaluating the performance of variant callers [6]. By
comparing the results to the truth sets for the NA24385 sample or NA12878 sample using
the Hap.py tool that enumerates the variants between a “truth” VCF file containing the
truth set of variants and a “query” VCF file, which contains the set of output variants of the
variant caller along with a BED file that restricts the comparison to variants in the specified
target location to determine the reliability of the variant calling conducted. The hap.py
tool outputs a summary with the true positive “TP”, false positive “FP”, false negative
“FN”, Precision, Recall, or sensitivity, and finally, F1-score, which is an indication and
a representation of both precision and recall. The data generated from the comparison
tool “Happy” were summarized to include important metrics, such as Recall, Precision,
F1-score, and the time taken by the tool to call the variants in both genes (Tables 5 and 6).
With respect to the time taken for the tools to perform the variant calling on only the
coordination of BRCA1 and BRCA2 genes for each sample, Nanocaller proved to be faster
in this aspect where the time taken for Nanocaller was the lowest and Clair was proved to
take the longest time in two samples HG001 and HG002 (Tables 5 and 6).

Table 5. Summary for the benchmarking output for HG001 with 6 different variant callers, highlight-
ing the recall, precision, and F1-score.

HG001 (NA12878) Recall Precision F1 Score Total Time Taken

1. Human-SNP-wf

BRCA1-SNP 98.04% 95.24% 96.62%

1 hBRCA1-INDEL 94.12% 80.00% 86.49%
BRCA2-SNP 95.24% 96.15% 95.69%

BRCA2-INDEL 94.74% 75.00% 83.72%

2. Clair3

BRCA1-SNP 99.02% 96.19% 97.58%

1 h 22 minBRCA1-INDEL 94.12% 80.00% 86.49%
BRCA2-SNP 96.19% 97.12% 96.65%

BRCA2-INDEL 94.74% 81.82% 87.80%

3. Medaka

BRCA1-SNP 92.16% 89.52% 90.82%

1 h 29 minBRCA1-INDEL 58.82% 50.00% 54.05%
BRCA2-SNP 94.29% 95.19% 94.74%

BRCA2-INDEL 57.89% 50.00% 53.66%

4. Nanocaller

BRCA1-SNP 96.08% 93.33% 94.69%

42 minBRCA1-INDEL 76.47% 65.00% 70.27%
BRCA2-SNP 95.24% 96.15% 95.69%

BRCA2-INDEL 80.00% 54.55% 64.86%

5. Longshot
BRCA1-SNP 95.10% 92.38% 93.72%

48 minBRCA1-INDEL 70.59% 60.00% 64.86%
BRCA2-SNP 93.33% 94.23% 93.78%

BRCA2-INDEL 68.42% 59.09% 63.41%

6. Clair

BRCA1-SNP 96.08% 93.33% 94.69%

2 hBRCA1-INDEL 64.71% 55.00% 59.46%
BRCA2-SNP 93.33% 94.23% 93.78%

BRCA2-INDEL 63.16% 54.55% 58.54%
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Table 6. Summary for the benchmarking output for HG002 with 6 different variant callers, highlight-
ing the recall, precision, and F1-score.

HG002 (NA24385) Recall Precision F1-Score Total Time Taken

1. wf-Human-SNP

BRCA1-SNP 97.20% 99.05% 98.11%

43 minBRCA1-INDEL 93.33% 70.00% 80.00%
BRCA2-SNP 97.06% 98.02% 97.54%

BRCA2-INDEL 95.00% 90.48% 92.68%

2. Clair3

BRCA1-SNP 96.26% 98.10% 97.17%

1 h 7 minBRCA1-INDEL 86.67% 65.00% 74.29%
BRCA2-SNP 95.10% 96.04% 95.57%

BRCA2-INDEL 85.00% 80.95% 82.93%

3. Medaka

BRCA1-SNP 91.59% 93.33% 92.45%

39 minBRCA1-INDEL 60.00% 45.00% 51.43%
BRCA2-SNP 90.20% 91.09% 90.64%

BRCA2-INDEL 60.00% 57.14% 58.54%

4. Nanocaller

BRCA1-SNP 95.33% 97.14% 96.23%

28 minBRCA1-INDEL 80.00% 60.00% 68.57%
BRCA2-SNP 94.12% 95.05% 94.58%

BRCA2-INDEL 85.00% 80.95% 82.93%

5. Longshot
BRCA1-SNP 94.39% 96.19% 95.28%

38 minBRCA1-INDEL 73.33% 55.00% 62.86%
BRCA2-SNP 92.16% 93.07% 92.61%

BRCA2-INDEL 75.00% 71.43% 73.17%

6. Clair

BRCA1-SNP 93.46% 95.24% 94.34%

1 h 11 minBRCA1-INDEL 66.67% 50.00% 57.14%
BRCA2-SNP 91.18% 92.08% 91.63%

BRCA2-INDEL 65.00% 61.90% 63.41%

4. Discussion

Evaluation of BRCA1/2 molecular status has become the standard of care in the treat-
ment of individuals with breast cancer. Precision medicine has made significant progress
against this type of cancer, which accounts for one-third of all new female cancers every year.
Female breast cancer is the sixth biggest cause of mortality worldwide, with an estimate
of 685,000 deaths in 2020 [25]. One example is the development and clinical application
of PARP-inhibitor (PARPi); Poly (adenosine diphosphate-ribose) polymerase inhibitors
(PARPi) are a key arrow in the oncologist’s quiver among new therapeutics [26,27]. Indeed,
PARPi has been found to enhance the clinical outcomes of breast cancer patients with
BRCA1/2 germline or somatic mutations, which have been found to improve survival and
quality of life [28–32]. As a result, current worldwide guidelines strongly advise BRCA1/2
testing in all patients. Rapid and dependable genetic screening for BRCA1/2 germline or
somatic mutations has become critical in identifying individuals who would most likely
benefit from these treatments [3,33,34].

The technology used in BRCA 1/2 gene testing held an important impact on getting
the full picture of the two genes. Traditional Sanger sequencing is expensive and takes
a long turn-around time (TAT). Next-generation sequencing (NGS) is a game-changing
high-throughput nucleotide sequencing approach that produces rapid, cheap, and accurate
genomic data. NGS developed the clinical methodology for genetic examination across
various fields of medicine [34]. NGS can massively sequence millions of DNA reads,
allowing for accurate characterization of the “status” of multiple genes; in this context, NGS-
targeted gene sequencing enables the detection of driver mutations, which are responsible
for progression and relapse and might be employed as predictive or prognostic biomarkers
in breast cancer [33,34]. When compared to Sanger sequencing, NGS can offer doctors
comparable genetic information at a cheaper cost and shorter time to results [2,34], yet the
NGS limitations are the small read size and the difficulty in analyzing large alterations
as structural variants. Many studies employed the NGS as a technology in the detection
of BRCA1/2 gene variants in various ethnic groups to implement the detection of gene
variants using NGS in the routine line of diagnostics and may allow doctors to make more
prompt and informed decisions about surgery or neo-adjuvant chemotherapy in breast
cancer patients [35–42].
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However, the use of NGS technologies in clinical diagnostics necessitates a large
initial investment in the sequencer, which is a barrier for local research institutions in
underdeveloped nations, as well as small research institutes and hospitals. MinION, the
first commercially available sequencer based on Nanopore technology, might be a viable
alternative [43,44]. MinION has previously been utilized effectively to identify mutations
in TP53 and ABL1 genes in CLL and CML patients [45–48], respectively. Furthermore, the
cheap cost, ease of use, and length of the reads make MinION a perfect instrument for
targeted gene sequencing; the long read can enable researchers to detect and phase genetic
variants, as well as thoroughly define new isoforms and fusion transcripts, using Nanopore
technology. Nanopore technology sheds new light on health and disease, ranging from
cancer to immunology and neurology [48].

In the current study, the main focus was on the data analysis of data generated using
Nanopore technology, as there are many proposed tools by the Nanopore community, a hub
for all the Nanopore technology users (https://community.nanoporetech.com/ (accessed
on 8 August 2022)) for every step along the way in data analysis. The in-house targeted
gene sequencing workflow was divided into two parts: (1) design a data analysis pipeline
for SNV/INDEL/SV detection and how to validate this pipeline and (2) design an in-house
primer panel for BRCA1/2 genes as a prototype for future implementation. The pipeline
design started with a set of tools designed and trained on long-read data generated from
the MinIon ONT sequencer; the reference samples used as the input data for validation
of this workflow are the publicly published “NA12878” (HG001) reference sample [49]
and “NA24385” (HG002) dataset that contain whole-genome sequencing of well-known
human cell lines, sequenced using Nanopore technology [50]. Each, therefore, serves as
a helpful benchmark sample. The HG002 cell line was used as a “seen” sample in the
current (PrecisionFDA Truth Challenge V2) competition [51]. The method of validating
the performance of workflows and especially the variant callers is called “Benchmarking”,
where a reference sample is used either as DNA to be sequenced and undergo the workflow
or using the data for this reference sample from the public repository in-silico for a data
analysis step, a method that was recommended by Global Alliance for Genomics and
Health (GA4GH) [52].

The pipeline went as follows: (1) mapping for the reads stored in the fastq file that
outputs the reads into a SAM file format using “Minimap2” mapper for long reads against
reference sequences based on the GRCh38/UCSC hg38 public human genome build, (2) sort-
ing and indexing using Samtools as a versatile tool as it was heavily used in many pipelines
proposed by other studies, used to convert a SAM file to BAM file, sort and index the BAM
output, (3) removing the PCR duplicates even though the reference data samples used
to validate this workflow were whole-genome sequencing, not including a PCR step but
were included in the workflow as this workflow will be used on targeted gene sequencing
data, (4) calculating the mean coverage of the targeted genes using Bedtools, (5) variant
calling step, which is the main event in the workflow and the focus of our study; there
are many variant callers both recommended by ONT and the Nanopore community, so
the output variants were filtered based on “PASS” and QUAL > 20 as a threshold for the
comparison of the tools output, (6) annotating the variants using SnpEff as an annotation
tool, and (7) checking the clinical significance of the annotated variants using ClinVar
clinical database.

The focus of the current study was to evaluate this workflow as well as compare the
performance of the commonly used software pipelines for variant calling, which is another
key element in variant discovery. The comparison is based on how well the tool calls the
“True” variants when compared to the benchmarking VCF file; the tools analyzed in this
study are Medaka, Clair, Nanocaller, Longshot, Clair3, and ONT’s wf-human-snp workflow
for variant calling, which employs Clair3 with pre-adjusted parameters for the accurate
calling of variants.

Recent studies attempted to enhance variant calling by using phasing information
from long-read sequencing data. Longshot calls SNPs on long-read data using a pair-

https://community.nanoporetech.com/
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hidden Markov Model (pair-HMM) for a small local window surrounding candidate sites
and then improves genotyping of identified SNPs using Hap-CUT2 [53] based on the
most probable pair of haplotypes given the present variant genotypes, but on the other
hand, is incapable of detecting indel. Medaka was provided by ONT, an SNP/indel caller
that uses deep learning on long-read data. Medaka predicts SNPs from unphased long
readings before using WhatsHap [54] to phase the data Medaka eventually makes SNP
and indel calls for each phased read group. Clair, the successor of Clairvoyante, is a
tool for detecting germline minor variants quickly and accurately using single-molecule
sequencing data. Clair outperforms several competing systems for ONT data, including
Clairvoyante, Longshot, and Medaka, in terms of precision, recall, and speed. As a deep
learning approach, Nanocaller detects SNPs using long-range haplotype information, then
phases long reads with identified SNPs and calls indels using local realignment.

Two key designs differ greatly in terms of performance and speed either employ-
ing pileup or full alignment as the input of the decision-making neural network. Clair
and Nanocaller are pileup-based calling networks that aggregate read alignments into
features and counts before sending them into a variant calling network. PEPPER-Margin-
DeepVariant5 (PEPPER) [55] is fully alignment based. The DeepVariant variant calling
network input is retained with spatial information in the full alignment method and is tens
of times greater in size than the pileup method. Medaka is consensus based, using pileup
input to generate a diploid consensus in the first iteration and two haploid consensuses
in the second. Variants are formed by identifying and combining differences between the
reference and consensus. To fill the void, Clair3 was created, which combines the best
of both designs. It is as quick as pileup-based callers and performs just as well as full
alignment callers. First, the pileup calling network goes through all the variant candidates
that met a coverage and alternative allele frequency criterion. The high-quality pileup
calls are then used to phase the alignments and generate the final output. Then, for each
low-quality pileup call for full-alignment calling, the alignments phased by WhatsHap are
utilized to create full-alignment input that is 23-times greater in size than the pileup input.
Finally, as the final output, the full-alignment calls are combined with the high-quality
pileup calls.

For performance validation of the pipeline along with the variant callers, the process
started with the genome in a bottle (GIAB) reference samples HG001 and the Ashkenazi son
sample HG002 ONT reads that were used as an input for mapping with Minimap2, sorting
and indexing with Samtools, calculating the mean coverage within the BRCA1/2 gene bed
file with coordination. for the variant calling step, the default parameters were used for all
the variant callers to ensure uniformity in the output variants. The benchmarking variant
VCF “Truth set” used was the GIAB v.4.2.1 for each reference genome sample to compare
the output of different variant callers. The hap.py [24] tool was used for benchmarking,
which is a reference implementation of the GA4GH recommendations for variant caller
benchmarking with the “vcfeval” engine for comparison; it generated metrics as “False
positive”, “False negative”, “True positive”, “Precision”, “Recall”, and “F1 score”. It was
found that three metrics are the most important for variant caller performance evaluations,
which are “Precision”, “Recall”, and, most importantly, “F1 score”, which is the mean of
precision and recall and is commonly used to test the performance of the callers [56–58].

Based on the metrics obtained in our results, it is suggested that Clair3 as a stand-
alone or incorporated into a workflow as Human-SNP-wf by ONT, was found to be
outperforming other variant callers concerning performance. The Clair3 method’s efficiency
is based on its ability to effectively distinguish between true and false calls during pileup
calling, allowing only essential candidates to be transferred to the considerably more
computationally costly full alignment calling. Following that comes Nanocaller, which
performed in a better way than the rest of the variant callers, Longshot, Clair, and Medaka,
respectively, agree with the findings of another study. Even though Clair is supposed to
outperform Longshot, it was found to have lower F1 scores in both reference samples
and that may be because Clair was outdated and was succeeded by Clair3 in May 2021
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(https://github.com/HKU-BAL/Clair (accessed on 8 August 2022)). Although Medaka
was, up until the release of Clair3, the recommended variant caller for SNP calling using
the “medaka_variant” argument, which was formerly implemented inside the medaka
package, it has been exceeded in accuracy and computing performance by alternative
approaches and is, thus, deprecated and it is advised to utilize Clair3 either directly or
through the Oxford Nanopore Technologies offered Nextflow implementation (Human-
SNP-wf) (https://github.com/nanoporetech/medaka (accessed on 8 August 2022)) and
that may explain the low performance. It was intentional not to test Nanopolish [59], which
is also capable of variant calling on ONT data since it requires fast5 raw signals file as
input, which are not publicly accessible for HG002, so it was excluded from the variant
callers’ comparison.

Targeted gene panels are one of the most frequent ways of enriching the genomic
areas to be sequenced and they are widely utilized in NGS technology. Using Nanopore
technology, we were able to enrich all the gene areas of interest without being limited
by the read length. MinION real-time sequencing allows reads to be evaluated as they
are produced, considerably speeding up analysis and allowing for the modification of
experimental conditions as needed. Another benefit of MinION over second-generation
sequencers is its mobility and ease of use for library preparation and sequencing, as well
as its low cost. There are currently many custom/academic or commercial BRCA1/2
target panels that have been established in recent years because of investigations on the
use and impact of NGS in breast/ovarian cancer [56,60–62], the majority of which are
based on the amplicon sequencing technique. There are currently many commercial short-
read amplicon-based BRCA gene panels available that detect SNV and/or copy number
variation. Nonetheless, efforts to create a complete gene panel useful for BRCA prognosis
and medication impact prediction are ongoing. The design of a primer panel targeting
different oncology biomarkers will be incorporated into our future plan for trial on different
cancer sample types.

5. Conclusions

In this study, six variant calling tools, including Human-SNP-wf, Clair3, Clair, NanoCaller,
Longshot, and Medaka, were evaluated regarding their performance and accuracy in the
detection of genetic variants. The tested genetic variants were single-nucleotide polymor-
phisms (SNPs) and short insertions and/or deletions (indel) of BRCA1 and BRCA2 genes,
where two reference genome sample datasets (NA12878) and (NA24385) were used. The
set of high-confidence variant calls provided by Genome in a Bottle (GIAB) was used to
allow for the evaluation of the performance of six variant calling tools. The obtained results
provide important insights for identifying accurate variants from third-generation sequenc-
ing of personal genomes using different variant detection tools available for long-read
sequencing. The evaluation of the results was expressed in terms of Precision, Recall, and
F1-score using Hap.py tools for the comparison. Both Clair3 and Human-SNP-wf tools
accomplished the highest performance rates and should be implemented for evaluating the
prognosis of breast cancer in humans.
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