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Candida tropicalis is an emergent pathogen with a high rate of mortality

associated with its biofilm formation. Biofilm formation has important

repercussions on the public health system. However, little is still known

about its biofilm life cycle. The present study analyzed the biofilm life cycle

of Candida albicans and C. tropicalis during various timepoints (24, 48, 72,

and 96 h) through biomass assays, colony-forming unit (CFU) counting, and

epifluorescence and scanning electron microscopies. Our results showed a

significant difference between C. albicans and C. tropicalis biofilms in each

biomass and viability assay. All-time samples in the biomass and viability

assays confirmed statistical differences between the Candida species

through pairwise Wilcoxon tests (p < 0.05). C. albicans demonstrated a

lower biomass growth but reached nearly the same level of C. tropicalis

biomass at 96 h, while the CFU counting assays exhibited a superior number

of viable cells within the C. tropicalis biofilm. Statistical differences were also

found between C. albicans and C. tropicalis biofilms from 48- and 72-h

microscopies, demonstrating C. tropicalis with a higher number of total

cells within biofilms and C. albicans cells with a superior cell area and higher

matrix production. Therefore, the present study proved the higher biofilm

production of C. tropicalis.
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1 Introduction

Candida species are widely distributed in nature, normally

as a part of commensal mammalian microbiota (Graf et al.,

2019). However, alterations in the host environment, including

disruptions in commensal microbiota, might trigger the

transition from the commensal to a pathogenic phase (Alves

et al., 2020). In the last decades, fungal infections in humans

are becoming an emergent problem in the public health system

and are considered by many authors as a neglected infectious

disease (Bassetti et al., 2019; Kobayashi et al., 2020; Rodrigues

and Nosanchuk, 2020). Nowadays, more than 200 species of

Candida have been described (Pohl, 2022). Although Candida

albicans remains the most prevalent fungal pathogen, the

morbidity and mortality caused by non-albicans Candida

(NAC) species are increasing (Dhale et al., 2014; Zhang et al.,

2020). Besides C. albicans, there are four emerging NAC

species, more specifically, Candida tropicalis, Candida

parapsilosis, Candida glabrata, and Candida krusei (Atiencia-

Carrera et al., 2022). Among these, C. tropicalis is now

considered the most important emerging fungal pathogen,

and recent reports have identified several strains resistant to

standard empirical treatments, such as fluconazole (Tsay et al.,

2020; Atiencia-Carrera et al., 2022).

Both C. albicans and C. tropicalis are known to possess a

broad range of v i ru lence fac tor s and commensa l

characteristics conferring the ability to colonize and invade

host tissue (de Barros et al., 2020). These factors include the

expression of adhesins and invasins on the cell surface, ability

to damage host cells, thigmotropism (contact sensing),

phenotypic switching, secretion of hydrolytic enzymes, and

formation of biofilms (de Barros et al., 2020). Although it is

well known that biofilms represent the most prevalent growth

form of microorganisms (Nobile and Johnson, 2015; Flores-

Vargas et al., 2021) and that biofilm formation among

Candida species confers significant resistance to antifungal

therapy (Alves et al., 2020; Atriwal et al., 2021), little is still

known about the biofilm life cycle of C. tropicalis. In 2017,

Kawai and colleagues (Kawai et al., 2017) evaluated the C.

tropicalis biofilm formation and the antifungal efficacy of

liposomal amphotericin B using time-lapse imaging,

showing C. tropicalis as a fast-growing type and able to

form aggressive biofilms. However, Kawai and colleagues

only analyzed C. tropicalis biofilms for 24 h (Kawai

et al., 2017).

The ability to establish a biofilm is considered a main

virulence factor among pathogens, limiting the penetration of

substances through the matrix and protecting cells from host

immune responses (Soll and Daniels, 2016; Hall and Mah,

2017). In addition, mature biofilms can evade the host

immune system (Alves et al., 2020; Eix and Nett, 2020). It is

assumed that the formation of mature biofilms and
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subsequent production of extracellular matrix is strongly

dependent on the species, strain, and environmental

conditions (such as pH, medium composition, and oxygen,

among others) (Silva et al., 2017; Atriwal et al., 2021).

Therefore, it is important to evaluate the biofilm life cycle

among pathogens like C. albicans and C. tropicalis.

Our recent meta-analysis on the prevalence of Candida

biofilms in bloodstream infections showed that 70.0% of the

mortality rate was from biofilm-associated infections

(Atiencia-Carrera et al., 2022), evidencing C. tropicalis as

the prevalent species. Although several authors reported C.

tropicalis’ ability to establish a strong biofilm in the last two

decades (Al-Fattani and Douglas, 2006; Mohandas and Ballal,

2011; Banerjee et al., 2015; Weerasekera et al., 2016; Marak

and Dhanashree, 2018; Sahal and Bilkay, 2018), no

meticulous evaluation was carried out on the life cycle of

this spec ies over 96 h through the four c lass ica l

methodologies normally used for biofilm analysis, so the

present work aimed to compare the biofilm cycle of life

between C. albicans and C. tropicalis and characterize their

biofilm production through in vitro conditions. This study

analyzed the biofilms of these Candida species during the

time window of 24, 48, 72, and 96 h by biomass growth assays

[optical density measurement at 630 nm using crystal violet

staining and phosphate-buffered saline (PBS) suspension],

colony-forming unit (CFU) counting, epifluorescence

microscopy (EM), and scanning electron microscopy (SEM).
2 Materials and methods

2.1 Fungal isolates and growth
conditions

Two Candida species, C. albicans of the American Type

Culture Collection ATCC® 10231™ (American Type Culture

Collection, ATCC) and C. tropicalis isolate from the

microbial collection of the Institute of Microbiology

Universidad San Francisco de Quito (designated as

IMUSFQ-V546), were selected for the present study. C.

tropicalis isolate IMUSFQ-V546 was previously recovered

from a patient with invasive candidiasis and identified

through DNA sequences at multiple loci and biochemical

properties in the National Institute for Research in Public

Health (INSPI, 2021). Strains were stored at -80 or -20°C, and

24 h before each assay, a new culture in Sabouraud dextrose

agar (SDA; Dipco Cıá. Ltda., Quito, Ecuador) was made to

avoid natural mutants (Soll and Daniels, 2016). After their

growth for 24 h at 37°C, yeast cells were harvested and

suspended in PBS to obtain the cellular density using a

UV–vis spectrometer (GENESYS™ 20 Thermo Scientific™,

Waltham, Massachusetts, USA). At 540 nm, the cellular
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density was adjusted at 1 × 107 CFU per milliliter. The cellular

density was obtained with the growth curve of the two strains

(Chandra et al . , 2008; Si lva et al . , 2009) (see the

Supplementary Material).
2.2 Biofilm formation

The appropriate inoculum in PBS was centrifugated at

400 rpm for 10 min, and the pellet was resuspended in sterile

Sabouraud dextrose broth (Dipco Cıá. Ltda., Quito, Ecuador).

In each well of the six-well plate containing a sterile coverslip,

3 ml of primary biofilm inoculum (1 × 107 CFU per ml) was

added. Also, blank control was prepared in the same plate,

which also contained a cover slip but placed in a sterile

medium (Chandra et al., 2008). The plates were incubated

at 37°C for different periods (24, 48, 72, and 96 h) under static

conditions, replacing the previous medium in each well with

3 ml of fresh medium every 24 h after the biofilm samples

were washed with PBS (Lohse et al., 2018). Each assay was

performed with at least three replicates per strain and growth

period. In each replicate assay, we also prepared two samples

of biofilm by strain to perform the biomass assays separately.
2.3 Biomass quantification

2.3.1 Crystal violet staining
After a certain period of growth (24, 48, 72, and 96 h), the

biofilm samples were carefully washed with 3 ml of sterile

PBS. Then, the coverslips containing the biofilm sample were

transferred to a clean six-well plate and stained with 3 ml of

crystal violet (CV, 1% v/v) for 45 min, and the excess stain

was carefully removed from the wells. Furthermore, 3 ml of

alcohol 96% (v/v) was placed into each well for 5 min, and

finally, 200 ml of the biofilm sample was placed in a 96-well

plate and read in the ELISA Elx808 spectrophotometer

(BioTek, Winooski, USA) at 630 nm. All biofilm samples,

the blank controls, and also a well with pure alcohol were

included in the 96-well plate (Gulati et al., 2018).

2.3.2 Phosphate-buffered saline suspension
After the biofilm formation assays, the second set of

biofilm samples was also carefully washed with 3 ml of

sterile PBS. Then, each coverslip containing the biofilm

sample was placed in a sterile plastic flask with 3 ml of

sterile PBS and vortexed at maximum velocity for 5 min to

ensure the biofilm remotion off the coverslip and into the PBS

solution (Gulati et al., 2018). For each sample, 200 ml of the
previous suspension was placed in a 96-well plate and read in

the ELISA Elx808 spectrophotometer at 630 nm. All biofilm

samples, the blank controls, and sterile PBS were likewise
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measured (Gulati et al., 2018). The remaining PBS suspension

was used for the viability quantification assays.
2.4 Viability quantification

2.4.1 Colony-forming unit counting
To enumerate culturable sessile cells, a CFU counting

assay was used. At least five individual PBS suspensions of

each biofilm sample were used in a serial 10-fold dilution by

adding 100 ml of sample to 900 ml of sterile PBS. Each dilution

was thoroughly vortexed, and the pipette tips were changed

before the next dilution or experimental step. Dilutions of

10-3, 10-4, and 10-5 were plated on SDA by triplicate, resulting

in 15 plates per biofilm sample. The plates were incubated for

24 h at 37°C, after which the colonies were counted (Nailis

et al., 2010). The experiments were performed at the same

time as the biomass experiments; thus, three CFU assays per

dilution were available for analysis, and data were collected.

For statistical analysis, the dilution with a growth between 25

and 250 CFU was chosen according to previous studies

(Merritt et al., 2005; Thomas et al., 2015).

2.4.2 Fluorescence staining
After the evaluation of CFU counting and biomass

quantification assays, 48- and 72-h time samples were

chosen to be analyzed by fluorescence staining. After each

biofilm formation in six-well plates, any remaining medium

in the wells was removed, and three coverslips were

transferred to a fresh six-well plate. A working solution of

fluorescent stains was prepared by adding 10 ml of SYTO® 9

stain and 10 ml of propidium iodide (PI) stain (FilmTracer™

LIVE/DEAD® Biofilm Viability Kit, Invitrogen, Carlsbad,

CA, USA) to 10 ml of filter-sterilized water in a foil-

covered container (dead–alive working solution). In

addition, another working solution was prepared using 20

ml of 4′,6-diamidino-2-phenylindole stain (DAPI, Sigma

Aldrich #10236276001, St. Louis, Missouri, USA) in 10 ml

of filter-sterilized water in a foil-covered container (DAPI

working solution). These two working solutions were stored

at -20°C. About 200 ml of the live/dead working solution was

added onto each coverslip (biofilm sample) gently so as not to

disturb the biofilm. The samples were incubated for 30 min at

room temperature and protected from light before being

rinsed with 200 µl of PBS. Then, 200 ml of DAPI working

solution was also added to the previous biofilm sample and

incubated for 10 min at room temperature, protected from

light, and finally washed again with 200 µl of PBS. Each

coverslip was then placed face up onto a clean, dry

microscope slide, and a drop of mounting medium was

added (ProLong Gold Antifade, ThermoFisher Scientific,

MA, USA). An autoclavable 22-mm-diameter glass
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coverslip (Dipco Cıá. Ltda., Quito, Ecuador) was used to fix

the sample in place. The samples were stored protected from

light at room temperature (25°C) until epifluorescence

microscopy was performed within the first hour (Rosenberg

et al., 2019; Mountcastle et al., 2021).
2.5 Epifluorescence microscopy

EM was carried out using an Olympus BX50 microscope

(Olympus Corporation, Tokyo, Japan) equipped with a ×100

oil immersion objective. Images were captured with AmScope

Digital Camera MU633-FL (AmScope, California, USA) and

digitalized with AmScope software version 1.2.2.10. As

previously descr ibed by Rosenberg and col leagues

(Rosenberg et al., 2019), for counting purposes, at least 12

images were taken per sample on the 22-mm-diameter glass

coverslip at random locations. For a more reproducible result

presentation, cell/yeast counts are given per square

centimeter. The number of Candida cells was counted from

each field to obtain the average number of cells over the total

area of the abiotic surface. Briefly, the coverslip area (4.84E +

08 mm2) was divided by the area of the picture (12,880 mm2)

and the average of cells from microscopic fields was

multiplied by the previous ratio, thus obtaining the total

number of cells over the abiotic glass surface. These results

were expressed as the number of cells ± standard deviation

per square centimeter (N cells/cm2 ± SD) by dividing the

previous total number of cells and their deviation over the

glass surface area in square centimeter (4.84 cm2). In EM,

the percentages of dead and alive cells within images were

measured through ImageJ by Fiji (Schindelin et al., 2012)

(version 1.57) using the macros Biofilms Viability checker

proposed by Mountcastle et al. (2021) and the plugin

MorphoLibJ (Legland et al., 2016), while the total cell

counting in DAPI images was processed by a sequence of

modules forming a pipeline designed for this purpose in Cell

Profiler software (Mcquin et al., 2018), an open-source

software, version 4.2.1 (available from the Broad Institute at

www.cellprofiler.org), the applied pipeline of which can be

reviewed in the Supplementary Material. The DAPI images

were used to obtain the total number of cells per image, and

the average was then calculated as the mean of yeasts per

square centimeter.
2.6 Scanning electron microscopy

Samples grown for 48 and 72 h were also selected to be

examined by SEM. For the SEM analysis, 22-mm circular cover

glasses (Heathrow Scientific, Vernon Hills, Illinois, USA) were

placed in a six-well plate, and Candida-related biofilms were
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formed as previously described. The pre-formed biofilms were

fixed by adding in the wells a solution of PBS concentration

adjusted to pH = 4.7 containing glutaraldehyde at 4% for 1 h.

Post-fixation was carried out with 1% osmium tetroxide in

cacodylate buffer for 1 h. Subsequently, the samples were

treated with 1% tannic acid for 1 h. The samples were

dehydrated with a series of ethanol washes of 30 min each,

with the solutions containing 30, 50, 70, 80, 90, and 100% of

ethanol in distilled water; the samples were further dried with

CO2 in a critical point dryer (Balzers CPD 030, Schalksmühle,

Germany) (Melo et al., 2011; Marcos-Zambrano et al., 2014).

Finally, discs with biofilm were coated with gold, and the

morphological analysis was elaborated using a Tescan Mira 3

scanning electron microscope equipped with a Schottky Field

Emission Gun (Schottky FEG-SEM, MIRA III TESCAN, Brno,

Czech Republ ic) a t the Centro de Nanociencia y

Nanotecnologıá of the Universidad de las Fuerzas Armadas

ESPE (Pilaquinga et al., 2019). The morphology of the yeast

was also obtained from the best images by Fiji ImageJ

(Schindelin et al., 2012) (version 1.57), in which the mean

yeast area (µm2) was measured through the average area of

Candida cells obtained by each picture from triplicate assays in

the SEM analysis.
2.7 Statistical analysis

All data of the present study were obtained from at least

triplicate assays performed on different days. In the case of

biomass growth and CFU counting assays, each assay was

performed with five replicates. In addition, the raw results

from biomass growth assays were subtracted by the negative

OD control values. Then, the standard deviation (SD) was

determined for each data set of the results. We assessed the

data distribution using the Shapiro–Wilk test. If the data had

a normal distribution, we used parametric hypothesis test to

compare two or more samples. If the data had a non-normal

distribution, non-parametric tests were used. Medians

between times in the same Candida species were compared

by using the Kruskal–Wallis nonparametric test, followed by

Dunn’s test using a Benjamini–Hochberg adjustment for

multiple comparisons test at a = 0.05, except between two-

time samples where pairwise Wilcoxon test was applied—

more specifically, the EM and SEM analyses. Meanwhile,

between Candida species (interspecies), the results were

compared using pairwise Wilcoxon test. Least-squares

linear regression models were used to compare the four

methods to assess biofilm development—more specifically

biomass quantification by CV staining and PBS suspension,

total cell count by EM analysis, and CFU counting assays. All

data analyses were performed in R studio version 4.0 (RStudio

Team, 2021) using several R packages (“ggpubr”, “rstatixs”,
frontiersin.org
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“openxlsx”, and the “tidyverse” set of packages) (Wickham

et al., 2019; Kassambara, 2021). Finally, all p-values <0.05

were considered significant.
3 Results

3.1 Quantification of the C. albicans and
C. tropicalis biofilms and their normality
assessment

The ability to develop a biofilm by C. albicans ATCC®

10231™ and C. tropicalis V453 was determined by comparing

biomass against viability (Table 1). A normality assessment,

through the Shapiro–Wilk test and histogram examination, was

also applied to the obtained data (see Supplementary Material

Information S1).
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As shown in Table 1, C. tropicalis biofilms had a higher

capacity to produce biomass and colony-forming unit counting

in vitro during all time samples when compared to C. albicans

biofilms. The Shapiro–Wilk tests evidenced a non-normal

distribution, showing p-values <0.05 apart from two sample

times in CV assays (72 and 96 h) and one sample time in PBS

assays (24 h). Therefore, most of the data showed a non-

normal distribution among the results, and consequently, a

non-parametrical statistical analysis was selected for

future evaluation.
3.2 Evaluation of the intraspecies
biofilm growth

Biofilm biomass and viable cells within the biofilm were

quantified and further analyzed for intraspecies statistical
TABLE 1 Summary of the results and statistical analysis obtained from the biomass and viability assays of growth with Candida albicans and
Candida tropicalis.

Time
points

Variable Candida albicans Candida tropicalis Normality
assessment

Total
samplesa

Mean Median Total
samplesa

Mean Median Shapiro–Wilk testb

(SD) (min–max) (SD) (min–max) Statistics P-value

24h Biomass PBS A630 20 0.280 0.277 20 0.667 0.702 0.9521432 8.99E - 02

(0.127) (0.101–0.596) (0.160) (0.362–0.952)

Biomass CV A630 20 0.056 0.058 20 0.151 0.146 0.8819685 5.95E - 04

(0.014) (0.023–0.077) (0.018) (0.117–0.185)

Viability CFU/ml 20 1.22E + 08 1.13E + 08 20 9.89E + 08 1.03E + 09 0.8163214 1.51E - 05

(2.23E + 07) (8.00E + 07–1.93E + 08) (1.60E + 08) (5.30E + 08–1.39E + 09)

48h Biomass PBS A630 15 0.562 0.539 20 0.936 0.968 0.9457164 8.36E - 02

(0.184) (0.271–0.928) (0.126) (0.708–11.455)

Biomass CV A630 15 0.168 0.175 20 0.270 0.270 0.8670426 5.76E - 05

(0.015) (0.145–0.194) (0.026) (0.194–0.303)

Viability CFU/ml 15 2.49E + 08 2.30E + 08 20 2.33E + 09 2.12E + 09 0.8419846 1.60E - 04

(4.59E + 07) (1.33E + 08–4.67E + 08) (2.79E + 08) (1.80E + 09–3.47E + 09)

72h Biomass PBS A630 15 0.822 0.819 15 1.170 1.184 0.6378376 2.18E - 11

(0.169) (0.548–1.116) (0.090) (0.919–1.131)

Biomass CV A630 15 0.269 0.269 15 0.328 0.333 0.9499481 1.68E - 01

(0.011) (0.221–0.291) (0.038) (0.257–0.384)

Viability CFU/ml 15 4.13E + 08 3.93E + 08 15 2.99E + 09 2.93E + 09 0.8090880 9.64E - 05

(1.09E + 08) (2.10E + 08–5.93E + 08) (3.09E + 08) (2.07E + 09–4.13E + 09)

96h Biomass PBS A630 15 1.045 1.033 15 1.290 1.419 0.251759 4.81E - 11

(0.109) (0.885–1.306) (0.130) (1.085–1.141)

Biomass CV A630 15 0.314 0.318 15 0.338 0.347 0.9697337 5.32E - 01

(0.031) (0.264–0.369) (0.045) (0.223–0.423)

Viability CFU/ml 15 4.77E + 08 4.67E + 08 15 5.58E + 09 6.00E + 09 0.7540960 1.06E - 05

(3.05E + 07) (4.23E + 08–5.83E + 08) (8.22E + 08) (3.87E + 09–6.80E + 09)
front
Evaluation of biofilm life cycle of two Candida species in vitro assays, where the values of the biomass assays are shown without the absorbance values obtained in the negative controls of
each assay.
aAt least five samples per assay and each assay was realized in triplicate on three different days.
bShapiro–Wilk tests evaluated the data distribution; more specifically, if the p-value is equal to or less than 0.05, it is a non-normal distribution and non-parametric statistical analysis must
be performed.
iersin.org
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differences during the specified time window (Figure 1). The

Kruskal–Wallis test demonstrated a significant effect between

time samples in the biomass growth and viability of biofilms

in both Candida species (p < 0.0001; see Supplementary

Material Information S1).

The C. albicans biofilms had a significant increase in

biomass and number of viable cells up to 72 h of growth,

with no difference between 72 and 96 h. The C. tropicalis

biofilms had a significant increase in the number of viable

cells from 24 to 48 h, but not from 48 to 72 h. However, the

viable cells increased in number from 72 to 96 h. It is worth

mentioning that the increment in viable cells within the C.

tropicalis biofilm during this period was surprisingly superior

to the previous periods despite the stationary biomass growth

in C. tropicalis biofilm.
3.3 Evaluation of the interspecies
biofilm growth

The overall results evidenced a significant difference between

C. albicans and C. tropicalis biofilms in each of the biomass and

viability assay. All-time samples in the biomass growth and

viability assays likewise confirmed statistical differences between

Candida species through multiple pairwise comparisons with

Wilcoxon tests (Table 2). Interestingly, it is possible to observe

that both PBS and CV assays showed the same biomass growth
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tendency, where C. albicans demonstrated a lower biomass

growth but reached nearly the same level to that of C.

tropicalis biomass at 96 h. However, the CFU counting assays

did not show the same pattern and constantly demonstrated a

higher number of viable cells within the C. tropicalis biofilm

(approximately a CFU counting difference of around 1.00E + 01

CFU/ml in all-time samples).
3.4 Live/dead cells and cell
morphologies of the C. albicans and C.
tropicalis biofilms

Next, we decided to analyze the amount of live/dead cells

and cell morphologies within biofilms between Candida

species during the exponential phase and initial stationary

phase. As shown in Table 3, the EM analysis evidenced a

significant effect between samples according to time of growth

in both Candida species. However, the SEM analysis showed

no statistical differences in the yeast cell areas between 48 and

72 h in both Candida species. When comparing species,

statistical differences were observed in 48- and 72-h

biofilms from C. albicans and C. tropicalis in both methods.

C. tropicalis demonstrated a higher number of total cells

within biofilms at 48 and 72 h when compared to C.

albicans biofilms and as expected from previous CFU

counting assays. However, no statistical differences were
TABLE 2 Evaluation of the statistical differences in biofilm growth between Candida albicans and Candida tropicalis through biomass and
viability assays.

Biofilm growth C. albicans C. tropicalis Non-parametrical statistical
analysis (interspecies)

Assays na Mean SD na Mean SD Wilcoxon test p-value

Biomass PBS A630

24 h 4 0.280 0.127 4 0.667 0.160 4.81E - 07

48 h 3 0.562 0.184 3 0.936 0.126 1.16E - 05

72 h 3 0.822 0.169 3 1.170 0.090 1.44E - 05

96 h 3 1.045 0.109 3 1.290 0.130 3.99E - 05

Biomass CV A630

24 h 4 0.056 0.014 4 0.151 0.018 5.44E - 08

48 h 3 0.168 0.015 3 0.270 0.026 5.54E - 07

72 h 3 0.269 0.011 3 0.328 0.038 7.00E - 04

96 h 3 0.314 0.031 3 0.338 0.045 4.33E - 02

Viability CFU/ml

24 h 4 1.22E + 08 2.23E + 07 4 9.89E + 08 1.60E + 08 6.67E - 08

48 h 3 2.49E + 08 4.59E + 07 3 2.33E + 09 2.79E + 08 6.17E - 07

72 h 3 4.13E + 08 1.09E + 08 3 2.99E + 09 3.09E + 08 3.37E - 06

96 h 3 4.77E + 08 3.05E + 07 3 5.58E + 09 8.22E + 08 3.27E - 06
The standard deviation (SD) and the mean were calculated by the average values of the total number of assays (five samples per assay). The data set showed a non-normal distribution
among the results, and consequently, a non-parametrical statistical analysis was selected to evaluate statistical differences in biofilm growth between C. albicans and C. tropicalis. More
specifically, the results between Candida species were evaluated using the Wilcoxon test. aNumber of assays realized on different days for each time sample.
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found in the percentage of dead and alive cells within the

biofilm between these Candida species. Interestingly, the

mean size of C. albicans cell area at 48 and 72 h was

statistically superior when compared to that of C. tropicalis

cells in both time samples, although a decrease in cell area was

observed during the stationary phase.

As shown in Figure 2, both Candida species showed an

increase in cells and higher density within the biofilms during

the specified time window, although no significant differences

were obtained between time samples. Although optimization

of the methodology was done during the study, the images of

live and dead cells within biofilms of both species did not

show the best clarity. However, the merged images evidenced

a better clarity of the biofilms, and the macros Biofilms

Viability checker allowed us to obtain a trustful evaluation

of live and dead cells. No visual differences were detected in
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the percentage of dead and alive cells between Candida

species during the specified time window, which was in

concordance with the previous statistical analysis, and a

homogenous distribution of dead cells within the biofilms

of both Candida species was shown (see the merged pictures

in Figure 2). Interestingly, it is possible to observe water

channels in both biofilms of C. albicans and C. tropicalis,

wherein a more abundant network of channels was shown in

C. tropicalis biofilms at 48 h that progressively matured into

well-defined channels at 72 h in a similar way as observed in

C. albicans biofilms at 48 h.

In addition, both C. albicans and C. tropicalis exhibited

mature biofilms with a multilayer growth during the specified

time window, which made it difficult to evaluate the average size

of cell area in each biofilm and to compare it between the

Candida species.
TABLE 3 Evaluation of the total cell counts, live/dead cells and cell morphologies between biofilms of Candida albicans and Candida tropicalis at
48 and 72h.

Epifluorescence microscopy (EM) with DAPI Staining and LIVE/DEAD Biofilm Viability Kit

C. albicans C. tropicalis Non-parametrical
statistical
analysis

Interspecies
Assays n a Mean of

yeasts/
frame b

(SD)

Mean of
yeasts/
cm2 c

(SD)

Dead
(SD)
%

Alive
(SD)
%

Wilcoxon
test

p-value

Mean of
yeasts/
frame
(SD)

Mean of
yeasts/
cm2

(SD)

Dead
(SD)
%

Alive
(SD)
%

Wilcoxon
test

p-value

Wilcoxon test
p-value

48h 3 1.56E+03
(2.94E+02)

1.20E+07
(2.25E+06)

5.00
(0.53)

95.00
(1.00)

1.29E-08 2.18E+04
(1.41E+03)

1.67E+08
(1.09E+07)

4.30
(0.50)

95.70
(0.20)

6.19E-10 6.17E-10

72h 3 5.55E+04
(1.18E+04)

4.27E+08
(9.07E+07)

17.00
(3.18)

83.00
(3.00)

8.03E+04
(6.61E+03)

6.19E+08
(5.11E+07)

17.40
(4.50)

82.60
(5.00)

5.04E-08
Scanning Electron Microscopy (SEM) with Morphology of yeasts

C. albicans C. tropicalis Non-parametrical statistical analysis
Inter-species

Assays n a Mean size of the
yeast

cell area, µm2

(SD) d

Wilcoxon
test

p-value

Mean size of the
yeast

cell area, µm2 (SD) d

Wilcoxon
test

p-value

Wilcoxon test
p-value

48h 3 1.80E-02
(3.00E-03)

2.22E-01 1.00E-02
(2.00E-03)

4.44E-01 3.05E-05

72h 3 1.60E-02
(2.00E-03)

1.10E-02
(2.00E-03)

3.00E-05

48 and 72h time samples were selected to compare the total cell counts, number of live/ dead cells, as well as biofilm structure and cell area for each Candida species using epifluorescence
microscopy (EM) and scanning electron microscopy (SEM) analysis, respectively. In EM, the percentages of dead and alive cells within images were measured through ImageJ by Fiji version
1.57 (Schindelin et al., 2012) using the macros Biofilms Viability checker (see methods); while, the total cells counting in DAPI images were processed by a sequence of modules forming a
pipeline in Cell Profiler software (Mcquin et al., 2018), which the applied pipeline can be revised in the Supplemental Material. DAPI images were used to obtain total cells per image and the
average was then calculated as the mean of yeasts per cm2. Morphology of the yeast was also obtained from the best images by Fiji ImageJ version 1.57 (Schindelin et al., 2012). Wilcoxon test
was applied to evaluate statistical differences between 48 and 72h samples in each Candida species (Intraspecies). In non-parametrical statistical analysis (Interspecies), the Wilcoxon test
was calculated using the results between C. albicans and C. tropicalis at 48 and 7h samples. aNumber of assays realized on different days; in each assay, we collected at least 12 photographs
for cell counting. bAverage of Candida cells obtained by pictures from triplicate assays and their standard deviation (SD). cThe estimation of yeast/cm2 calculated by the following formula:
average of Candida cells (SD)* (1E+08/12880). dThe mean of yeast area (µm2) measured through the average area of Candida cells obtained by each picture in SEM analysis and their
standard deviation (SD).
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As shown in Figure 3, the biofilm comparisons between

the Candida species using SEM analysis were also performed

at different magnifications (1.67, 3.33, 16.7, and 66.7 kx). In

the lower magnifications, it was possible to observe biofilms

with a highly ordered structure of cell assemblages, with

multilayer growth, and exhibiting interconnectivity between

cell assemblages. At 48 h, both Candida biofilms evidenced

larger spaces without adhering cells that became shorter in

their biofilms of 72 h, thus achieving a mature phase of

biofilm. However, at 72 h, the density of cells within the

biofilm was notoriously higher in the biofilms of C. tropicalis.

Meanwhile, at higher magnifications, we were able to analyze

the cell areas and morphologies in both biofilms, thus

perceiving visible differences in cell area and matrix
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production between the Candida species. As previously

indicated in Table 3, C. albicans showed a significant and

superior cell area when compared to C. tropicalis biofilm cells

in both time samples. A decrease of 12.5% of its mean yeast

area was also found for C. albicans between 48 and 72 h;

meanwhile, for the same time period, an increase of 10% was

evidenced for C. tropicalis. Moreover, at high magnification

(66.7 kx), an irregular texture on the surface of C. albicans

cells was observed. The frequency of these structures was

more prominent at 72 h than at 48 h. This could be caused by

the higher production of matrix or extracellular polymeric

substance (EPS) during the biofilm stage. However, the C.

tropicalis biofilm cells did not evidence the same rate of EPS

production, at least visually, as those of C. albicans.
FIGURE 2

Illustration of the biofilms of C. albicans and C. tropicalis at 48 and 72 h of growth by epifluorescence microscopy using 4′,6-diamidino-2-
phenylindole fluorescent stain and LIVE/DEAD Biofilm Viability Kit. Time samples of 48 and 72 h were used to compare the total cell and live/
dead cells in the biofilms using an Olympus BX50 microscope, and pictures were obtained by AmScope software at ×100 magnification. Then,
the pictures from each filter were merged in Fiji-ImageJ version 1.57 (Schindelin et al., 2012).
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3.5 Comparison of the four
methodologies to assess biofilm
development

After the conclusion of the experimental assays, we

compared the most common methods used for biofilm

development assessment, which were used in the present

study (Figure 4). Least-squares linear regression models

were applied using CFU counting assays as reference or

gold standard methodology, and R-squared values were

observed as a goodness-of-fit measure for the biofilm analysis.
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As expected, the EM analysis evidenced the lowest R-

squared values for both Candida-re la ted biofi lms

(R2 = 0.61–0.62), followed by biomass quantification with CV

staining (R2 = 0.75–0.88) and then PBS suspension (R2 = 0.84–

0.87). The extra procedure steps (such as stain, fixation, and

washing steps) on CV staining particularly showed a loss of

goodness-of-fit measurement on C. tropicalis biofilms.

In CV and PBS assays, four-time intervals were analyzed in

contrast to two intervals for the EM analysis. Even when each

repetition is independently measured, the reduction in the

number of points because of the reduced time intervals can
FIGURE 3

Illustration of the biofilms of C. albicans and C. tropicalis at 48 and 72 h of growth by scanning electron microscopy using different
magnifications (1.67, 3.33, 16.7, and 66.7 kx). Time samples of 48 and 72 h were used to compare the biofilm structure as well as cell
morphology and area of the biofilms using a Tescan Mira 3 scanning electron microscope equipped with a Schottky field emission gun
(Schottky FEG-SEM). Yeast cell area was calculated from the best pictures by Fiji ImageJ version 1.57 (Schindelin et al., 2012).
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affect the statistical estimation and thus impact the comparison

with this methodology. Therefore, we re-calculated the R-

squared as well as the p-value restricting all assays for only

two time intervals. After these considerations, we found that (1)

C. albicans showed R = 0.66, 0.65, and 0.61 for the PBS, CV, and

EM methodologies, respectively, while (2) C. tropicalis showed R

= 0.60, 0.70, and 0.62 for the PBS, CV, and EM methodologies,

respectively. In all cases, the p-value was inferior to 0.01.
4 Discussion

The ability to establish biofilm is considered a main

virulence factor in bacterial and fungal infections due to

several intrinsic biofi lm-associated factors, such as

antimicrobial resistance, immune system evasion, and

horizontal gene transfer mechanisms in multispecies biofilms

(de Barros et al., 2020; Eix and Nett, 2020; Pinto et al., 2021). The

formation of Candida biofilms has been observed on multiple

surfaces, including blood, mucosal surface, and most medical

devices (i.e., nonliving objects in contact with patients’ bodies)

(Vitális et al., 2020; Ponde et al., 2021; Pohl, 2022). Both C.

albicans and non-albicans Candida (NAC) species have been

found in the developed biofilm stage at several medical devices,

such as stents, shunts, implants, endotracheal tubes, pacemakers,

and multiple types of catheters (Ponde et al., 2021). Recently, our

metanalysis on the prevalence of Candida biofilms in
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bloodstream infections showed that the mortality rate in these

infections was 37.9%, of which 70.0% were from biofilm-

associated infections (Atiencia-Carrera et al., 2022), showing

C. tropicalis as the most prevalent species among the biofilm-

forming organisms (67.5%), even more than C. albicans (30.3%).

Therefore, the present study aimed to use multiple methods to

compare the biofilm cycle of life between C. albicans and C.

tropicalis and evaluate their ability to establish biofilms. To the

authors’ best knowledge, this is the first study to analyze

biofilms of these Candida species during time by these

methodologies as well as evaluate the accuracy in the

assessment of biofilm development.

The standard optical density measurement assays offer a

quick and relatively high-throughput way to screen

microorganisms with the ability for biofilm formation with

minimal equipment requirements (Govaert et al., 2019; Fan

et al., 2020). In 2022, Castro and colleagues already

demonstrated the useful application of biomass assays (such as

crystal violet staining) on biofilms, reporting the accuracy in the

results obtained in monospecies biofilms, but this method was

not able to properly evaluate multispecies biofilms (Castro et al.,

2022). The present study showed that, at least for Candida-

related biofilms, the PBS and CV assays have similar correlations

with CFU counting and, in general, are higher than using EM

methodology. However, the number of time samples should be

increased in future studies to obtain a more reliable

statistical analysis.
FIGURE 4

Comparative analysis of biofilm development through crystal violet (CV) staining and phosphate-buffered saline (PBS) suspension for biomass
quantification by optical density assays, total cell count by epifluorescence microscopy (EM) analysis, and colony-forming unit (CFU) counting
assays. Least-squares linear regression models were used to compare the four methods to assess biofilm development using R studio version
4.0 (RStudio Team, 2021).
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As expected, both Candida species exhibited their ability to

form biofilms. Upon evaluation of their biofilms, our results

showed a continuous biomass growth until 72 h in both Candida

species. Our results are in accordance with the typical life cycle

described in yeast biofilms (Atriwal et al., 2021), more

specifically as follows: (1) attachment and colonization of

round yeast cells to a surface, (2) growth and proliferation

of yeast cells creating a basal layer of anchoring cells, (3)

growth of pseudohyphae (oval yeast cells joined end to end)

and hyphae (long cylindrical cells) accompanying the

production of extracellular matrix, and eventually (4) dispersal

of cells from the biofilm to find new sites to colonize.

Regarding interspecies comparison, it was noted that C.

tropicalis showed a better ability to form biofilms than C.

albicans. Our results agreed with the observations from

previous studies (Vitális et al., 2020; Konečná et al., 2021).

Zuza-Alves et al. reported that a biofilm positivity occurred

most frequently in the isolates of C. tropicalis (Zuza-Alves et al.,

2017). Furthermore, Vitális et al. demonstrated that all C.

tropicalis isolates from fatal infections were intermediate/high

biofilm producers (Vitális et al., 2020). In 2021, Konečná et al.

described that C. tropicalis could be categorized as a strong

biofilm producer due to the biomass production observed in this

species (Konečná et al., 2021). The results of the present study

are likewise in agreement with our meta-analysis (Atiencia-

Carrera et al., 2022). In these studies, C. tropicalis was

associated with a higher mortality rate when compared with C.

albicans and other NAC species. This propensity of C. tropicalis

for dissemination and higher mortality rate could be related to

its high biofilm formation as one of the main intrinsic virulence

factors exhibited by this species (Zuza-Alves et al., 2017; Kulig

et al., 2022). The higher biomass growth of C. tropicalis biomass

could also provide an advantage to the cells within the biofilm,

enabling better protection against antifungal or antimicrobial

agents (Sharma et al., 2019).

In the present study, the CFU counting results showed a

continuous increment of viable cells over time in the biofilms of

both species, but only C. tropicalis demonstrated a significant

increment of viable cells between 72 and 96 h. Our results on the

cycle of life from C. albicans biofilms are in agreement with

previous studies (Chandra and Mukherjee, 2015; Cavalheiro and

Teixeira, 2018; Pohl, 2022) but also demonstrated a longer

biofilm cycle of life in C. tropicalis species through active cell

proliferation within the stationary biomass of the biofilm.

Therefore, further studies should be performed to confirm the

extension of the C. tropicalis biofilm cycle of life (such as the

dispersal of cells from the biofilm) and to evaluate the survival

rate of cells when exposed to several antifungal treatments by

themselves or combined with alternative compounds as recently

realized by Galdiero et al. in C. albicans biofilms (Galdiero

et al., 2020).

Furthermore, C. tropicalis biofilms exhibited a continuously

and statistically higher CFU counting when compared with C.
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albicans. These results corroborated recent studies proposing the

classification of C. tropicalis as a strong biofilm producer

(Konečná et al., 2021) and its association with a higher

mortality rate in hospitalized patients (Vitális et al., 2020). The

infectivity of yeasts depends on specific virulence mechanisms

that confer the ability to colonize host surfaces, invade deeper

host tissue, or evade host defenses (Eix and Nett, 2020). C.

tropicalis’ ability to produce steady biofilms demonstrated

an important clinical impact once biofilm-associated

infections are currently difficult to treat, representing a serious

source of reinfections (Zuza-Alves et al., 2017; Marak and

Dhanashree, 2018).

The EM and SEM findings confirmed the higher biofilm

production of C. tropicalis when compared with C. albicans. C.

tropicalis also demonstrated a higher number of total cells within

biofilms through DAPI staining. The EM analysis with DAPI is a

useful and cheap methodology that allows total cell count within

biofilms as previously described in studies by Castro and

colleagues (2022; Castro et al., 2021). Meanwhile, live/dead

staining provided information on how many of the total cells

were dead and alive within biofilms through their capacity to

exclude, accumulate, and metabolize the fluorophores Syto-9

and PI (Rosenberg et al., 2019; McGoverin et al., 2020).

Therefore, live/dead staining was the most variable of the

methodologies used in this work. As expected, no statistical

differences were found in the percentage of dead and alive cells

within the biofilm between C. albicans and C. tropicalis. The

reason for the absence of a statistical difference could be that a

greater biofilm growth in C. tropicalis was reached but it

maintained a similar proportion between dead and alive cells

when compared to C. albicans biofilm, although the amount of

dead and alive cells within C. tropicalis biofilm was statistically

significant. Therefore, further studies with metabolic assays and

gene expression/genetic analysis should be conducted to

demonstrate similar and divergent phenotypic expression and

its relationship with these Candida species’metabolism. Another

explanation could be the intrinsic variability of live/dead staining

with Syto-9 and PI, so further studies should be performed to

minimize the previously cited limitations and optimize the

resolution of this methodology.

It is well known that biofilms formed by different Candida

species may vary in morphology and density, showing a

polymeric extracellular matrix that protects the biofilm cells

and water channels, as previously described in bacterial biofilms

(2019; Handorf et al., 2018). The extracellular matrix

components also differ from those found in the Candida cell

wall, and these moieties are proposed to modulate host

recognition by concealing the cell wall that typically interacts

with the immune system (de Barros et al., 2020; Eix and Nett,

2020). The EM analysis also evidenced water channels within the

biofilms of C. tropicalis that progressively matured until 72 h in

well-defined channels as reported in C. albicans biofilms at

approximately 38–72 h (Cavalheiro and Teixeira, 2018) and
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Staphylococcus aureus biofilms at 24 h (Konduri et al., 2021). In

the SEM analysis, both Candida species strongly adhered to the

abiotic surfaces (glass slide) and then subsequently developed

into a mature biofilm within 48 h. However, when assessing the

cell morphologies between these Candida species, C. albicans

demonstrated a superior cell area when compared to C. tropicalis

cells. Another visual difference was the irregular texture on the

surface of C. albicans biofilm cells indicating a higher production

of EPS when compared to C. tropicalis at 72 h, which is in

agreement with the literature (Corte et al., 2019; Pohl, 2022).

Although C. albicans visually showed a higher amount of EPS,

both Candida species evidenced a confluent basal blastospore

layer covered by a matrix of EPS and a few hyphal elements,

similar to the findings described by Cavalheiro and Teixeira

(2018). These hyphal elements are believed to play an important

role in fungal infection as previously described in C. albicans

(Gulati et al., 2018; Lohse et al., 2018), being also identified in

biofilms of C. tropicalis in the present study.

Some authors reported that Candida biofilms begin to

disintegrate at 72 h (Seneviratne et al., 2009; Rodrıǵuez-

Cerdeira et al., 2020); however, we observed mature biofilms

without signs of disintegration and a low number of dead cells

within the biofilm. Concerning cell morphologies, cell

differentiation to opposite mating types and switching from

yeast to filamentous form (hyphae or pseudohyphae) are

examples of individual yeast cell differentiation. Both processes

have been investigated using different yeast species, and they can

contribute to the virulence and invasiveness of pathogenic

Candida species (Alves et al., 2020; Ponde et al., 2021; Pohl,

2022). In this study, it was only possible to analyze the adhering

cells that formed a multilayer consortium in the biofilm, and

therefore the lack of yeast germination (pseudohyphae/hyphae

forms) constituted one limitation of the present work that

should be rectified in further studies by optimizing several

factors (such as pH conditions and carbon sources). The

characterization of C. tropicalis biofilms is currently an

important research field due to the emerging cause of hospital-

acquired infections worldwide (Alkharashi et al., 2019; Zhang

et al., 2020; Atiencia-Carrera et al., 2022; Kulig et al., 2022).

However, the present study has additional shortcomings,

such as the absence of analyses based on metabolic or gene

expression, flow cytometry, confocal microscopy, and

quantitative polymerase chain reaction to assess the differences

between C. albicans and C. tropicalis biofilms, and only one

specimen of each Candida species was evaluated, although each

strain belonged to a reference microbial collection culture

(ATCC and INSPI).
5 Conclusions

The present study demonstrated the ability of C. tropicalis to

produce a strong biofilm by comparing its biofilm cycle of life
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with C. albicans. To the authors’ best knowledge, this is the first

study to simultaneously analyze the biofilms of these Candida

species during the specified time window (until 96 h) by biomass

assays (crystal violet staining and PBS suspension), colony-

forming unit counting, epifluorescence microscopy, and

scanning electron microscopy. Our results evidenced a higher

biomass growth, viable cell production, and total cell count in C.

tropicalis biofilms. Water channels in biofilms C. tropicalis

progressively matured in well-defined channels at 72 h as

observed in C. albicans biofilms at 48 h. Meanwhile, C.

albicans biofilms showed a superior cell area and higher

matrix production. Finally, when evaluating the applied

methodologies, the PBS suspension was shown to be similar to

CV staining for biomass quantification by optical density assays.

From our results, new questions about the physiology of these

biofilms and the forces that modulate yeast behavior remain

unanswered; therefore, further studies should analyze the gene

expression and metabolic network that influence the evolution of

the biofilm formed by different Candida species.
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