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The CMU Phoenix system is an experiment in understanding spontaneous 
speech. It has been implemented for the Air Travel Information Service 
task. In this task, casual users are asked to obtain information from a 
database of air travel information. Users are not given a vocabulary, 
grammar or set of sentences to read. They compose queries themselves in 
a spontaneous manner. This task presents speech recognizers with many 
new problems compared to the Resource Management task. Not only is 
the speech not fluent, but the vocabulary and grammar are open. Also, 
the task is not just to produce a transcription, but to produce an action, 
retrieve data from the database. Taking such actions requires parsing and 
"understanding" the utteraoce. Word error rate is not as important as 
utterance understanding rate. 
Phoenix attempts to deal with phenomena that occur in spontaneous 
speech. Unknown words, restarts, repeats, and poody formed or unusual 
grammar are common is spontaneous speech and are very disruptive to 
standard recognizers. These events lead to misrecognitions which often 
cause a total parse failure. Our strategy is to apply grammatical con- 
straints at the phrase level and to use semantic rather than lexical 
grammars. Semantics provide more constraint than parts of speech and 
must ultimately be delt with in order to take actions. Applying constraints 
at the phrase level is more flexible than recognizing sentences as a whole 
while providing much more constraint than word-spotting, Restarts and 
repeats are most often between phase occurences, so individual phrases 
can still be recognized correctly. Poorly constructed grammar often 
consists of well-formed phrases, and is often semantically well-formed. It 
is only syntactically incorrect. We associate phrases by frame-based 
semantics. Phrases represent word strings that can fill slots in frames. The 
slots represent information which the frame is able to act on. 

The current Phoenix system uses a bigram language model with the 
Sphinx speech recognition system. The top-scoring word string is passed 
to a flexible frame-based parser, The parser assigns phrases (word strings) 
from the input to slots in frames. The slots represent information content 
needed for the frame. A beam of frame hypotheses is produced and the 
best scoring one is used to produce an SQL query. 

I N T R O D U C T I O N  

Understanding spontaneous speech presents several problems 
not found in transcribing read speech input. Spontaneous speech 
is often not fluent. It contains stutters, filled pauses, restarts, 
repeats, interjections, etc. Casual users do not know the lexicon 
and grammar used by the system. It is therefore very difficuk for 
a speech understanding system to achieve good coverage of  the 
lexicon and grammar that subjects might use. Also, the task of  
the system is not just to produce a transcription, but to produce an 
action. Taking such actions requires parsing and "understanding" 
the utterance. Word error rate is not as important as utterance 
understanding rate. 

The Air Travel Information Service task is being used by 
several DARPA-funded sites to develop and evaluate speech un- 
derstanding systems for database query tasks. In the ATIS task, 
novice users are asked to perform a task that requires getting 

information from the Air Travel database. This database contains 
information about flights and their fares, airports, aircraft, etc. 
The only input to the system is by voice. Users compose the 
questions themselves, and are allowed to phrase the queries any 
way they choose. No explicit grammar or lexicon is given to the 
subject. 

At Carnegie Mellon University, we have been developing a 
system, called Phoenix, to understand spontaneous speech 
[1] [2] [3]. We have implemented an initial version of this 

system for the ATIS task, This paper presents the design of the 
Phoenix system and its current status. We also report system 
evaluation results for the DARPA Feb91 test. 

T H E  P H O E N I X  S Y S T E M  

Some problems posed by spontaneous speech are: 

• User noise - breath noise, filled pauses and other user 
generated noise 

• Environment noise - door slams, phone rings, etc. 

• Out-of-vocabulary words - The subject says words 
that the system doesn't  know. 

• Grammatical coverage - Subjects often use gram- 
matically ill-formed utterances and restart and repeat 
phrases. 

Phoenix address these problems by using non-verbal sound 
models, an out-of-vocabulary word model and flexible parsing. 

N o n . V e r b a l  S o u n d  M o d e l s  
Models for sounds other than speech have been shown to 

significantly increase performance of HMM-based recognizers 
for noisy input. [2] [4] In this technique, additional models are 
added to the system that represent non-verbal sounds, just as 
word models represent verbal sounds. These models are trained 
exactly as ff they were word models, but using the noisy input. 
Thus, sounds that are not words are allowed to map onto tokens 
that are also not words. 

O u t - o f - v o c a b u l a r y  W o r d  M o d e l  
This module has not yet been implemented, In order to deal 

with out-of-vocabulary words, we will use a technique essentially 
like the one presented by BBN. [5] We will create an explicit 
model for out-of-vocabulary words. This model allows any 
triphone (context dependent phone) to follow any other triphone 
(given of  course that the context is the same) with a bigram 
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probability model. The bigrams are to be trained from a large 
dictionary of English pronunciations. 

Flexible Parsing 
Our concept of flexible parsing combines ~ame based seman- 

tics with a semantic phrase grammar. We use a frame based 
parser similar to the DYPAR parser used by Carbonell, et al. to 
process ill-formed text, [6] and the MINDS system previously 
developed at CMU. [7] Semantic information is represented in a 
set of frames. Each blame contains a set of slots representing 
pieces of information. In order to fill the slots in the frames, we 
use a partitioned semantic phrase grammar. Each slot type is 
represented by a separate finite-state network which specifies all 
ways of saying the meaning represented by the slot. The gram- 
mar is a semantic grammar, non-terminals are semantic concepts 
instead of parts of speech. The grammar is also written so that 
phrases can stand alone (be recognized by a net) as well as being 
embedded in a sentence. Strings of phrases which do not form a 
grammatical English sentence are still parsed by the system. The 
grammar is compiled into a set of finite-state networks. It is 
partitioned in the sense that, instead of one big network, there are 
many small networks. Networks can "call" other networks, 
thereby significantly reducing the overall size of the system. 
These networks are used to perform pattern matches against input 
word strings. This general approach has been described in earlier 
papers. [1] [3] 

The operation of the parser can be viewed as "phrase spotting". 
A beam of possible interpretations are pursued simultaneously. 
An interpretation is a frame with some of its slots filled. The 
f'mite-state networks perform pattern matches against the input 
string. When a phrase is recognized, it attempts to extend all 
current interpretations. That is, it is assigned to slots in active 
interpretations that it can fill. Phrases assigned to slots in the 
same interpretation are not allowed to overlap. In ease of overlap, 
multiple interpretations are produced. When two interpretations 
for the same frame end with the same phrase, the lower scoring 
one is pruned. This amounts to dynamic programming on series 
of phrases. The score for an interpretation is the number of input 
words that it accounts for. At the end of the utterance, the best 
scoring interpretation is output. 

In our system, slots (pattern specifications) can be at different 
levels in a hierarchy. Higher level slots can contain the infor- 
mation specified in several lower level slots. These higher level 
forms allow more specific relations between the lower level slots 
to be specified. In the utterance "leaving denver and arriving in 
boston after five pro", "leaving denver" is a [deparUloc] and 
"arriving in boston" is an [arrive loci, but there is ambiguity as to 
whether "after 5 pro" is [depart_time_range] or 
[arrive_timejange]. The existence of the higher level slot 
[ARRIVE] allows this to be resolved. One rewrite for the slot 
[ARRIVE] is ([arrive loc] [arrive_time range]) in which the two 
lower level slots are specfically associated. Thus two interpreta- 
tions for this utterance are produced, 

leaving denver and arriving 
in boston after 5 pm 

i 
[ depart_loc ] leaving denver 
[arrive_loc] arriving in boston 
[depart time_range] after 5 pm 

2 
[depart_loc ] leaving denver 
[ARRIVE] 

[arrive_loc] arriving in boston 
[arrive time range] after 5 pm 

In picking which interpretation is correct, higher level slots are 
preferred to lower level ones because the associations between 
concepts is more tightly bound, thus the second (correct) inter- 
pretation is picked here. 

Our strategy is to apply grammatical constraints at the phrase 
level and to associate phrases in frames. Phrases represent word 
strings that can fill slots in frames. The slots represent infor- 
mation which, taken together, the frame is able to act on. We 
also use semantic rather than lexical grammars, Semantics 
provide more constraint than parts of speech and must ultimately 
be delt with in order to take actions. Applying constraints at the 
phrase level is more flexible than recognizing sentences as a 
whole while providing much more constraint than word-spotting. 
Restarts and repeats are most often between phases, so individual 
phrases can still be recognized correctly. Poorly constructed 
grammar often consists of well-formed phrases, and is often 
semantically well-formed. It is only syntactically incorrect. 

System Structure 
The overall structure of our current system is shown in Figure 

1. We use the Sphinx system as our recognizer module [8]. 
Sphinx is a speaker independent continuous speech recognition 
system. 

Curremly the recognizer and parser are not integrated. The 
speech input is digitized and vector quantized and then passed to 
the Sphinx recognizer. The recognizer uses a bigram language 
model to produce a single best word string from the speech input. 
This word string is then passed to the frame-based parser which 
assigns word slxings to slots in frames as explained above. 

The slots in the best scoring frame are then used to build 
objects. In this process, all dates, times, names, etc. are mapped 
into a standard form for the routines that build the database 
query. The objects represent the information that was extracted 
from the utterance. There is also a currently active set of objects 
which represent constraints from previous utterances. The new 
objects created from the frame are merged with the current set of 
objects. At this step ellipsis and anaphora are resolved. Resolu- 
tion of ellipsis and anaphora is relatively simple in this system. 
The slots in frames are semantic, thus we know the type of object 
needed for the resolution. For ellipsis, we add the new objects. 
For anaphora, we simply have to check that an object of that type 
already exists. 

Each frame has an associated function. After the information is 
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I % No Weighted 
Input % True % False Answer Score 

Transcript 80.7 16.6 2.8 64.0 

spe h 61.4 26.9 11.7 34.5 

Table 1: Phoenix results for Feb91 Class-A test set 

S r c  

Word 

String 

S u b s  Del Ins Error 

19.3 6.8 2.6 28.7 

79.1 79.1 

Table 2: Recognition error rates for Class-A 

extracted and objects built, the frame function is executed. This 
function takes the action appropriate for the frame. It builds a 
database query (if appropriate) from objects, sends it to SYBASE 
(the DataBase Management System we use) and displays output 
to the user. 

R E S U L T S  

Our current system has a lexicon of 710 words and uses a 
bigram language model of perplexity 49. Six noise models are 
included in the lexicon. We used the version of Sphinx produced 
by Hun [9], which includes between-word triphone models. The 
vocabulary-independent phone models generated by Hon 
[9] were used to compile the word models for the system. No 

task specific acoustic training was done. We have not yet added 
the out-of-vocabulary models to the system. 

The DARPA ATIS0 training set consists of approximately 700 
utterances gathered by Texas Instruments and distributed by 
NIST. This data was gathered and distributed before the June 
1990 evaluations. The data was gathered using a "wizard" 
paradigm. Subjects were asked to perform an ATIS scenario. 
They were given a task to perform and told that they were to use 
a speech understanding computer to get information. A hidden 
experimenter listened to the subjects and provided the appropriate 
information from the database. The transcripts from this set were 
used to train our language model. This includes the bigram 
model for the recognizer and the grammar for the parser. Since 
this amount of data is not nearly enough to train a language 
model, we chose to "pad" our bigrams. Bigrams were generated 
based on tag pairs rather than word pairs. Words in our lexicon 
were put into categories represented by tags. The June90 training 
corpus was tagged according to this mapping. We then generated 
a word-pair file from the Phoenix finite-state ATIS grammar, 
This file was used to initiafize the tag bigram counts. The tagged 
corpus was then used to add to the counts and the bigram file was 
generated. It is a "padded" bigram in the sense that the grammar 
is used to insure a count of at least 1 for all "legal" tag pairs. This 
procedure yielded a bigrarn language model which has perplexity 
39 for the ATIS0 test set. 

The DARPA ATIS1 test (for the February 1991 evaluations) 
has two mandatory test sets, the class A set and the class D1 set. 

Structure of  Phoenix  
A Spoken Language Understanding System 

;,, .-h,--- 
speech: "show me...ah.,.l want to see all the flights to 

Denver after two pro" 

digitize: 16 KHz, 16 bit samples 

DSP 

VQ codes: A vector of 3 bytes, each 1O ms 

S~ax 

words: "show me I want to see all flights to 
Denver after two pro" 

Error Correcting 
Parser [list]: I want to tee 

| frame: [flights]: all flights 
[arrive loci: to Denver 

Dialog-Based [depart_time range]: after two pm 

can~r~m,~: [mlOt, l: mght, 
[errive_loc]: "DEN" 

ATIS [depart Joe]: "PIT" 
Application [depar t_time._range]: 1400 2400 

~ ¢ ~  SQL: select airline_code, flight_nmnber 
from flight_table 

Travel where (from_alrport = ' l iT 'and toairport ='DEN') 
Database 

and (departure_time > 1400) 

Figure 1: Structure of the Phoenix system 

The class A set contains 145 utterances that are processed in- 
dividually without context. All utterances in the test set were 
"Class-A", that is, answerable, context independent and with no 
disfluencies. The class D1 set contains 38 utterance pairs. These 
are intended to test dialog capability. The first utterance of a pair 
is a Class-A utterance that sets the context for the second. Only 
scores for the second utterance are reported for this set. 

We processed both transcript and speech input for each set. 
Tables 1-4 show the results of this evaluation. 

Utterances were scored correct if the answer output by the 
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No Weighted 
Input True False Answer Score 

Transcript 60.5 34.2 5.2 26.3 

Speech 39.4 55.2 5.2 -15.8 

Table 3: Phoenix results for Feb91 Class-D1 test set 

Src Subs 

Word 17.6 

String 77.6 

Table 4: Recognition error rates for Class-D1 

Del 

8.6 

Ins 

0.7 

Error 

26.9 

77.6 

Source % of Total Errors 

Grammatical Coverage 

Semantic Coverage 

Wrong CAS Field 

Unanswerable 

Application Coding Errors 

25 

20 

25 

10 

20 

Table 5: Analysis of Errors for Class-A NL 

system matched the reference answer for the utterance. The refer- 
ence answer is database output, not a word string. Systems are 
allowed to output a NO_ANSWER response, indicating that the 
utterance was misunderstood. Any output that was not correct or 
NOANSWER was scored incorrect. The Weighted Score is 
computed as ( 1- ( 2*percent false + percentNO_ANSWER) ). 

Table 1 shows the results for class A utterances. For these, the 
system produced the correct answer for 80.7 percent of the 
transcript input and 61.4 percent of the speech input. The perfor- 
mance for transcript input reflects the grammatical and semantic 
coverage of the parser and application program. The perfor- 
mance for the speech input reflects additional errors made in the 
recognition stage. Recognition performance for these utterances 
is shown in Table 2. Word substitutions, deletions and insertions 
are summed to give the word error measure of 28.7 percent. A 
string error rate of 79 percent means that only twenty one percent 
of the utterances contained no errors. However, 61 percent of the 
utterances gave correct answers. This illustrates the ability of the 
parser to handle minor misrecognitions in the recognized string. 

The D1 test set is designed to provide a test of dialog 
capability. The utterances are specified in pairs. The first ut- 
terance is processed normally and is used to set the context for 
the second utterance of the pair. Missing the first utterance can 
lead to incorrectly interpreting the second. Tables 3 and 4 show 
the understanding performance and speech recognition rates for 
the D1 test set. While the recognition results are comparable to 
those for set A, the understanding performance is significantly 
worse. This is due in large part to utterances in which we missed 
the first utterance, causing the context for the second to be wrong. 

We feel that recognition error rates for spontaneous input will 
improve considerably with the addition of out-of-vocabulary 
models and with better lexical and grammatical coverage. 

E R R O R  A N A L Y S I S  

In order to interpret the performance of the system, it is useful 
to look at the source of the errors. Table 5 shows the percentage 
of errors from various sources. 

Twenty five percent of our errors were a result of lack of 
grammatical coverage. This includes unknown words for con- 
cepts that the system has. For example, the system knew day 
names (Monday, Tuesday, ere) but nov plural day names (Mon- 
days, etc) since these had not been seen in the training data. This 
category also contains errors where all words were known but the 
specific word sequence used did not match any phrase patterns. 

Twenty percent of the errors were due to a lack of semantic 
coverage. In this case, there were no frames for the type of 
question being asked or no slots for the type of information being 
provided. For example, one utterance requested "a general 
description of the aircraft". Our" system allows you to ask about 
specific attributes of an aircraft but does not have the notion of 
"general description" which maps to a subset of these attributes. 

Twenty five percent of the errors were due to outputting the 
wrong field from the database for the CAS answer. In these cases, 
the utterance was correctly understood and a reasonable answer 
was output, but it was not the specific answer required by the 
CAS specifications. For example, when asked for cities near the 
Denver airport, we output the city name "DENVER" rather than 
the city code "DDEN" as required by CAS. 
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Ten percent of the errors were due to utterances that our 
system considered unanswerable. For CAS evaluation runs, we 
map all system error messages to a NO_ANSWER response. For 
example, one utterance asked for ground transportation from At- 
lanta to Baltimore. Our system recognized that this was outside 
the abilities of the database and generated an error message that 
was mapped to NO~kNSWER. The reference answer was the 
null list "0". 

The other twenty percent of the errors were due to coding bugs 
in the back end. 

The first two categories (grammatical and semantic errors) are 
errors in the "understanding" part of the system. Forty five per- 
cent of our total errors were due to not correctly interpreting the 
input. The other fifty five percent of the errors were generation 
errors. That is, the utterance was correctly interpreted but the 
correct answer was not generated. 

F U T U R E  P L A N S  

Our next step in the evolution of the Phoenix system will be to 
integrate the recognition and parsing. We will use the pattern 
matching networks to drive the word Izansifions in the recog- 
nition search rather than a bigram grammar. 
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