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Abstract: Land cover plays an important role in the climate and biogeochemistry of the 

Earth system. It is of great significance to produce and evaluate the global land cover (GLC) 

data when applying the data to the practice at a specific spatial scale. The objective of this 

study is to evaluate and validate the consistency of the Moderate Resolution Imaging 

Spectroradiometer (MODIS) land cover product (MCD12Q1) at a provincial scale (Anhui 

Province, China) based on the Chinese 30 m GLC product (GlobeLand30). A harmonization 

method is firstly used to reclassify the land cover types between five classification schemes 

(International Geosphere Biosphere Programme (IGBP) global vegetation classification, 

University of Maryland (UMD), MODIS-derived Leaf Area Index and Fractional 

Photosynthetically Active Radiation (LAI/FPAR), MODIS-derived Net Primary Production 

(NPP), and Plant Functional Type (PFT)) of MCD12Q1 and ten classes of GlobeLand30, 

based on the knowledge rule (KR) and C4.5 decision tree (DT) classification algorithm. A 

total of five harmonized land cover types are derived including woodland, grassland, 

cropland, wetland and artificial surfaces, and four evaluation indicators are selected 

including the area consistency, spatial consistency, classification accuracy and landscape 

diversity in the three sub-regions of Wanbei, Wanzhong and Wannan. The results indicate 

that the consistency of IGBP is the best among the five schemes of MCD12Q1 according to 

the correlation coefficient (R). The “woodland” LAI/FPAR is the worst, with a spatial 
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similarity (O) of 58.17% due to the misclassification between “woodland” and “others”. The 

consistency of NPP is the worst among the five schemes as the agreement varied from 1.61% 

to 56.23% in the three sub-regions. Furthermore, with the biggest difference of diversity 

indices between LAI/FPAR and GlobeLand30, the consistency of LAI/FPAR is the weakest. 

This study provides a methodological reference for evaluating the consistency of different 

GLC products derived from multi-source and multi-resolution remote sensing datasets on 

various spatial scales. 

Keywords: MCD12Q1; GlobeLand30; consistency evaluation; global land cover product; 

Anhui Province 

 

1. Introduction 

Land use/land cover change (LUCC) is closely related to climate change, terrestrial ecosystem, 

geophysical and chemical cycles, human life, etc. [1–6]. Nevertheless, it has always been a difficult 

problem to derive such a parameter, especially at national, continental and even global scales, since the 

emergence of remote sensing. Remote sensing technology has the ability to produce land cover products 

at different spatial resolutions, especially at a global scale. Global land cover (GLC) mapping has been 

given much attention by the international scientific community since the 1990s. Consequently, some 

scholars have paid more attention to assessing and validating the consistency, accuracy and suitability 

among different GLC products [7–12]. Meanwhile, GLC products have been distributed to the scientific 

community, non-governmental organizations, individuals and governments. Therefore, it is of great 

significance to evaluate and validate the quality and consistency of these GLC products [13]. At present, 

several GLC products have been produced, including the International Geosphere-Biosphere Programme 

Data and Information System (IGBP-DIS) DISCover of the US Geological Survey [14], University of 

Maryland Land Cover Product (UMD LC) [15], CORINE of the European Commission [16,17], 

Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5.1 Land Cover Type (thereafter 

referred to as MCD12Q1) of Boston University [18], GLC2000 of the European Commission’s Joint 

Research Centre [19], GlobCover of the European Space Agency [20,21], ECOCLIMAP of the French 

Meteorological Research Center [22] and GlobeLand30 dataset of China National Basic Geographic 

Information Center [23]. However, most of the developed GLC data have coarse resolutions, ranging 

from 300 m to 1 km, and users generally consider it far from satisfactory due to the lack of spatial details, 

low classification accuracy, and inconsistency with different products. In 2010, China launched a GLC 

mapping project, and finally produced a 30 m GLC data product (GlobeLand30) with 10 classes for 

years 2000 and 2010, within a four-year period. 

As shown in Table 1, in comparison to other GLC products, the MODIS MCD12Q1 has an annual 

updating cycle that has been updated to be more timely. Therefore, this product has an immeasurable 

significance in Earth surface research and has been widely used for different applications [24–28]. The 

MCD12Q1 contains five data layers, corresponding to five different classification schemes with the spatial 

resolution of 500 m. Consistency analysis of MCD12Q1 has been performed in some studies [29–32]. 

Nevertheless, finer resolution GLC products have never been used to evaluate the product. 
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In this study, the GlobeLand30 and MCD12Q1 are compared by analyzing the consistency of 

MCD12Q1 in Anhui Province, China by normalizing the land cover classification types between two 

products based on the knowledge rule (KR) and the C4.5 decision tree (DT) classification algorithm. In 

addition, the whole study area is divided into three sub-regions that have different dominant land cover 

types. Four evaluation indicators of area consistency, spatial consistency, classification accuracy, and 

landscape diversity indices are selected to evaluate the consistency of five land cover classification 

schemes of MCD12Q1 in the three sub-regions. The novelty of this study is depicted as the following: 

(1) The harmonization of land cover classification between both the GLC products is performed based 

on the KR and C4.5 DT classification algorithm. A total of five land cover types are categorized from 

the two datasets to evaluate the consistency of five classification schemes of MCD12Q1, specifically 

including “woodland”, “grassland”, “cropland”, “wetland” and “artificial surfaces”. 

(2) Three sub-regions of the study area with different spatial heterogeneities are used to evaluate the 

consistency of five classification schemes of MCD12Q1 at a regional scale. The results show that the 

consistency of woodland in the LAI/FPAR scheme is the worst. This can provide a methodological 

reference for selecting a classification scheme from MCD12Q1 at a regional scale. 

(3) It shows that the higher the landscape heterogeneity is, the larger the landscape diversity indices 

are and the lower the consistency is. 

Table 1. Temporal and spatial resolutions of the produced GLC products. 

Dataset Available Years Spatial Resolution 

IGBP-DISCover 1992–1993 1 km 

UMD LC 1992–1993 1 km 

CORINE 1990–2000 100 m 

MCD12Q1 2001–2012 500 m 

GLC2000 1999–2000 1 km 

GlobCover 2005, 2009 300 m 

ECOCLIMAP 1999–2005 1 km 

GlobeLand30 2000, 2010 30 m 

2. Study Area 

Anhui Province, China, is located in the mid-latitude zone, at longitudes ranging from 114°54′E to 

119°37′E and latitudes ranging from 29°41′N to 34°38′N. The province also lies in the transition zone 

from alternating subtropical to temperate, with a mild and humid climate characterized by four distinct 

seasons. Two major river systems—the Yangtze and the Huaihe—divide the province into the Wanbei 

region, Wanzhong region and Wannan region, which form three natural areas characterized by distinctly 

different geographical features (Figure 1). The Wanbei region consists of the area lying in the north of 

the Huaihe River, which belongs to the North China Plain. In contrast, the Wanzhong region lies between 

the Huaihe River and Yangtze River, and belongs to the agro-ecological zones of the Yangtze River 

Plain. Finally, the Wannan region lies in the south of the Yangtze River, and belongs to the Tianmu 

Mountains-Huaiyushan montane evergreen broadleaf ecological zone.  
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Figure 1. Location of Anhui Province and the Wanbei, Wanzhong and Wannan regions. 

3. Data Sources and Preprocessing 

The datasets utilized in this study are MCD12Q1 and GlobeLand30 (Table 2), with the former used 

as the verified data and the latter as the reference data. The overall accuracy of “74.8% ± 1.3%” indicates 

the accuracy ranges of the five data layers of MCD12Q1, e.g., the overall accuracy of IGBP is 74.8%. 

With the best spatial resolution of 30 m, GlobeLand30 is currently considered to be the most suitable 

GLC product for evaluating the consistency of MCD12Q1. In addition to these two datasets, shape 

format data regarding China’s provincial administrative regions and China’s state sector datasets are 

also employed. 

Table 2. Comparison of the data items between MCD12Q1 and GlobeLand30. 

Item MCD12Q1 GlobeLand30 

Data Format HDF-EOS Geotiff 

Projection Sinusoidal UTM 

Total Accuracy 74.8% ± 1.3% 83.5% 

Acquisition website http://reverb.echo.nasa.gov http://www.globallandcover.com 
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3.1. MODIS Dataset 

As Table 2 shows, land cover data are obtained from MCD12Q1, a Level 3 product of the MODIS land 

cover datasets. This product is derived from the MODIS output first released by the United States National 

Aeronautics and Space Administration (NASA) at the end of 2008, with processed yearly observation data 

from the Terra and Aqua satellites applied to depict land cover types. The chosen dataset consist of five 

land cover classification systems: IGBP global vegetation classification scheme [32]; UMD vegetation 

classification scheme based on the modified IGBP classification system [33]; LAI/FPAR scheme 

adopted by MODIS Leaf Area Index and Fractional Photosynthetically Active Radiation (LAI/FPAR) 

products (MOD15) [34,35]; NPP scheme adopted by the MODIS net primary productivity (NPP) 

product (MOD17) [36]; and Plant Functional Type (PFT) land cover classification scheme [37]. In our 

study, five MCD12Q1 data layers updated in 2014 are selected. The time period covered by the chosen 

data range from 1 January 2010 to 31 December 2010, and the track numbers are h27v05, h27v06, 

h28v05 and h28v06. 

3.2. GlobeLand30 Data 

Data from the American land resources satellite (Landsat) Thematic Mapper (TM5), an Enhanced 

Thematic Mapper Plus (ETM+) multi spectral image, China’s Environmental Disaster Monitoring and 

Forecasting Small Satellite Constellation (HJ-1A/B) and other 30 m multispectral images are applied in 

the GlobeLand30 data. These data are also subsequently improved via the use of other reference data to 

support processes such as sample selection and auxiliary classification. The integration of pixel- and 

object-based methods with knowledge (POK) is used to control quality, which combines pixel level and 

object-oriented classification [38]. The data processing is made in accordance with the order of water, 

wetland, ice and snow to reduce the synonyms spectrum phenomenon, i.e., the same object has different 

spectra. China donated this global 30 meters surface coverage dataset to the United Nations on  

23 September 2014. This product is based on the World Geodic System (WGS) 84 coordinate system 

and the Universal Transverse Mercator (UTM) projection, and comprises ten land cover types including 

“water bodies”, “wetland”, “artificial surfaces”, “tundra”, “permanent snow and ice”, “grassland”, 

“barren land”, “cultivated land”, “shrubland” and “forest” (Table 3). Furthermore, the overall accuracy 

(OA) of GlobeLand30-2010 data is 83.50% and the Kappa coefficient (K) is 0.78. Some research on the 

analysis and application of the GlobeLand30 data has been made and their results have shown good 

performance [39,40]. In the present study, the GlobeLand30 product for the 2010 reference year is 

selected, with the time period ranging from 1 January 2010 to 31 December 2010, and map numbers 

N50_25 and N50_30. 

3.3. Data Preprocessing 

As the original MCD12Q1 product is stored in hierarchical data format (HDF) and with the sinusoidal 

projection, data pre-processing is necessary, including format conversion, reprojection, resampling, 

image mosaicking, and sub-area masking. The MODIS Reprojection Tools (MRT) professional 

projection conversion system is employed for this purpose. Here, the MODIS HDF data format is 

converted into Geotiff. At the same time, the data projection is converted from SIN to WGS84/UTM 
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and the image mosaicking and subsetting are also completed. Conversely, the acquired GlobeLand30 are 

just processed by mosaicking and subsetting in ENVI 4.7 (the ENvironment for Visualizing Images 

software), due to the original Geotiff format and UTM projection. Additionally, to compare the MCD12Q1 

and GlobeLand30, the spatial resolution of GlobeLand30 is resampled at 500 m using the nearest neighbor 

resampling method, which keeps and basically does not destroy the gray values of the original image, in 

comparison with the bilinear interpolation and the cubic convolution interpolation method. 

Table 3. Definitions of the ten land cover types of GlobeLand30. 

Type Definition 

Cultivated land 
Lands used for agriculture, horticulture and gardens, including paddy fields, irrigated and 

dry farmlands, vegetation and fruit gardens. 

Forest 
Lands with trees, with vegetation cover over 30%, including deciduous and coniferous 

forests, and sparse woodlands with cover from 10% to 30%, etc. 

Grassland Lands covered with shrubs with cover over 10%, etc. 

Shrubland 
Land with shrubs cover over 30%, including deciduous and evergreen shrubs and deserts 

steppe with cover over 10%, etc. 

Wetland 
Lands covered with wetlands plants and water bodies, including inland marsh, lake marsh, 

river floodplain wetland, forest/shrub wetland, peat bogs, mangrove and salt marsh, etc. 

Water bodies Water bodies in the land area, including river, lake, reservoir and fish pond, etc. 

Tundra 
Lands covered by lichen, moss, hardy perennial herb and shrubs in the polar regions, 

including shrub tundra, herbaceous tundra, wet tundra and barren tundra, etc. 

Artificial surfaces 
Lands modified by human activities, including the various habitation, industrial and 

mining area, transportation facilities, and interior urban green zones and water bodies, etc. 

Barren land 
Lands with vegetation cover lower than 10%, including desert, sandy fields, Gobi, bare 

rocks, saline and alkaline lands, etc. 

Permanent snow and ice Lands covered by permanent snow, glacier and icecap. 

4. Outline and Methodology  

4.1. Arrangement of Sections 

To evaluate the consistency of MCD12Q1, the conceptual diagram and designed method are shown 

in Figure 2. When the data sources and preprocessing are conducted in Section 3, harmonization of land 

cover classification is performed based on the knowledge rule to reclassify the land cover types between 

MCD12Q1 and GlobeLand30 in Section 4.2. Meanwhile, the C4.5 decision tree classification algorithm 

is also introduced to finish the classification in Section 4.3. Finally, the evaluation of consistency is 

performed in Section 4.4 through four indicators of area consistency (Section 4.4.1), spatial consistency 

(Section 4.4.2), classification accuracy (Section 4.4.3) and landscape diversity (Section 4.4.4). 

4.2. Harmonization of Land Cover Classification 

A unified classification system is a necessary step when comparing different GLC products. Since 

the classification schemes and categorical scales vary between MCD12Q1 and GlobeLand30, it is highly 
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important to reclassify the land cover categories prior to the evaluation of consistency. Hou et al. 

proposed a novel method of land cover classification based on knowledge rule (KR), in which they 

established the accurate LULC data by the MODIS Normalized Difference Vegetation Index (NDVI), 

Digital Elevation Model (DEM) of Shuttle Radar Topography (SRTM), US Geological Survey (USGS) 

classification system and two land use maps of China [41]. Ren et al. made the integration and comparison 

for the IGBP, UMD, LAI/FPAR, NPP, PFT and terrestrial ecosystem features and land cover classification 

schemes with six types, “farmland”, “forest”, “grassland”, “water bodies and wetland”, “settlement” and 

“wilderness” [42]. Considering the land cover classification method based on KR in [41] and the 

classification system in [42], the harmonization of land cover classification is performed in our study 

(Table 4). A total of five land cover types are obtained including “woodland”, “grassland”, “cropland”, 

“wetland” and “artificial surfaces”. In addition, there are no DN (digital number) values for the “tundra” 

of GlobeLand30, and it can be removed. 

Data Acquisition 

C4.5 Decision Tree (DT) Classification 

Algorithm

Data Preprocessing

Format Conversion

Reprojection

 Image Mosaicing

Masking the Sub-regions: 

Wanbei Region, Wanzhong Region and Wannan Region

Image Registration

Harmonization of Land 

Cover Classification 

Decision Tree Classification

Consistency Evaluation

  Evaluation of Area Consistency

Analysis of Spatial Consistency 

Comparison of Classification Accuracy

 Assessment of Landscape Diversity

Knowledge Rule (KR) Based Categorization:

Woodland, Grassland, Cropland, Wetland 

and Artificial Surfaces

MCD12Q1: 

IGBP, UMD, LAI/FPAR, NPP, PFT
GlobeLand30

 

Figure 2. Conceptual diagram and the general workflow. 

Figure 3 illustrates the harmonization method of land cover classification based on KR, which is used 

to harmonize the land cover classification types between the five MCD12Q1 data layers and 

GlobeLand30. Firstly, the two datasets are prepared to produce the clustering center of each land cover 
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type. The 16-day composite MODIS NDVI dataset at a 500-m resolution of 2010 and the SRTM DEM 

at a 90-m resolution provide respectively the feature space for the classification and the auxiliary 

information for improving classification accuracy. Since the MCD12Q1 product has input features 

comprised of the nadir BRDF-adjusted reflectance (NBAR) data, the Land Surface Temperature (LST) 

data and the enhanced vegetation index (EVI) data [18]. It has the seasonal land cover region (SLCR) 

characteristics, i.e., the phonological features and the first productivity in the same SLCR are the same 

and they are distinctly different from those in other SLCR. In addition, the K-Means unsupervised 

classification method of the multi-temporal MODIS NDVI datasets express the key classification 

information and characterize the quantitative traits of each category based on SLCR. The SRTM DEM 

data improve the difference between categories by the elevation data. Moreover, the phenological 

variation characteristics of five MCD12Q1 data layers and GlobeLand30 form the feature vectors through 

the database attribute table. These feature vectors represent the clustering centers of each category. 

Subsequently, the category with the minimum Euclidean distance belongs to the corresponding land cover 

type, through computing the Euclidean distance between the feature vectors of each category and the 

clustering centers of each land cover type. Thus the mapping matrix is made through the mutual mapping 

of different classification systems and the KR is then established as shown in Table 4. A logical look-up 

table is constructed to harmonize the land cover classes. The “barren land” dose not present in Wanbei and 

Wannan and dominates a very small portion of the total area, so it is ignored when evaluating the area 

consistency and treated as “others”. Consequently, a total of five categories are harmonized between the 

five MCD12Q1 data layers and GlobeLand30: “Woodland” is defined as the woody plant community; 
“grassland” is defined as the annual or perennial herbaceous vegetation dominated by plant communities; 

“cropland” is defined as the artificial cultivated vegetation cover for the purpose of the harvest; “wetland” 
is defined as the surface with the saturated water for a long time in the vegetation area and the  

non-vegetation area; and “artificial surfaces” refers to the lands modified by human activities. 

MCD12Q1 V5.1 LCT

UMD NPPLAI/FPAR PFTIGBP

GlobeLand30-2010

Classfification Method:

Decision Tree

Clustering center

2010

MODIS

NDVI

Classification

Method:

K-Means

STRM

DEM

Elevation

Information

Minimum

Euclidean

Distance

Establishment of knolwedge rule (KR)

Clustering center

 

Figure 3. The flow chart of harmonizing land-cover classification based on KR. 
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Table 4. A total of five harmonized land cover types between MCD12Q1 and GlobeLand30. 

Type IGBP UMD LAI/FPAR NPP PFT GlobeLand30 

Woodland 

1. Evergreen Needleleaf forest 
1. Evergreen 

Needleleaf forest 
1. Shrubs 

1. Evergreen 

Needleleaf vegetation 

1. Evergreen 

Needleleaf trees 
1. Forest 

2. Evergreen Broadleaf forest 
2. Evergreen 

Broadleaf forest 

2. Broadleaf 

forest 

2. Evergreen 

Broadleaf vegetation 

2. Evergreen 

Broadleaf trees 
2. Shrubland 

3. Deciduous Needleleaf forest 
3. Deciduous 

Needleleaf forest 

3. Needleleaf 

forest 

3. Deciduous 

Needleleaf vegetation 

3. Deciduous 

Needleleaf trees 
 

4. Deciduous Broadleaf forest 
4. Deciduous 

Broadleaf forest 
 

4. Deciduous 

Broadleaf vegetation 

4. Deciduous 

Broadleaf trees 
 

5. Mixed forests 5. Mixed forests   5. Shrub  

6. Closed shrublands 
6. Closed 

shrublands 
    

7. Open shrublands 7. Open shrublands     

Grassland 

1. Woody savannas 1. Woody savannas 

1. 

Grasses/Cereal 

crops 

1. Annual Broadleaf 

vegetation 
1. Grass 1. Grassland 

2. Savannas 2. Savannas 2. Savannas 
2. Annual grass 

vegetation 
  

3. Grasslands 3. Grasslands     

Cropland 

1. Croplands 1. Croplands 
1. Broadleaf 

crops 
 1. Cereal crops 

1. Cultivated 

land 

2. Croplands/Natural 

vegetation 
   

2. Broad-leaf 

crops 
 

Wetland 

1. Water bodies 1. Water bodies 
1. Water 

bodies 
1. Water bodies 1. Water bodies 

1. Water 

bodies 

2. Permanent wetlands    2. Snow and ice 2. Wetland 

3. Snow and ice     
3. Permanent 

snow and ice 

Artificial 

Surfaces 
1. Urban and built-up 

1. Urban and built-

up 
1. Urban 1. Urban 

1. Urban and 

built-up 

1. Artificial 

Surfaces 

Others 1. Barren or sparsely vegetated 
1. Barren or 

sparsely vegetated 

1. Non-

vegetated land 
1. Non-vegetated land 

1. Barren or 

sparse 

vegetation 

1. Barren land 

4.3. C4.5 Decision Tree Classification 

The decision tree classification technique is one of the important toolsets in data mining and has been 

widely used in many fields, such as biology, computer science and technology, clinical medicine, 

geology, management science and engineering [43–47]. In accordance with the top-down induction of 

decision tree, a DT consists of some root nodes, which are then split into more branches [48]. The 

univariate decision trees like C4.5 algorithm, using only one feature at an internal node, are the most 

popular methods due to their low computational complexity [49]. In this study, we adopted the C4.5 

algorithm to achieve our goal based on expert knowledge. 



ISPRS Int. J. Geo-Inf. 2015, 4 2528 

 

The classification process is divided into four steps: defining classification rules, constructing 

decision tree, implementing decision tree and evaluating the classification results. Here, the 

classification rules are obtained using the KR in Section 4.2 (Table 4). The new land cover types are, 

respectively, extracted by the supervised decision tree operation. Specially, DT is built by the 

corresponding DN values in the datasets and the classification scheme is performed in ENVI. 

4.4. Evaluation of Consistency 

The “consistency” is defined as the similarity characteristics of classification results for both the land 

cover products. Four evaluation indicators are selected to evaluate the consistency between MCD12Q1 

and GlobeLand30.  

4.4.1. Area Consistency 

The Pearson’s correlation coefficient (R) [50] and the percentage disagreement (PD) [51] are used to 

evaluate the area consistency. Specifically, R (Equation (1)) represents the overall correlation degree 

and PD (Equation (2)) represents the correlation degree on each type. It is a method of measuring the 

correlation degree between two datasets and used to identify a linear correlation for a number of features 

between the validated MCD12Q1 data, based on the five different classification schemes and 

GlobeLand30 reference data. Similarly, the PD is used to depict the ratio of the different classification 

results of the same classification type shared by the verified five data layers of MCD12Q1 and the 

GlobeLand30 reference data, i.e., the degree of consistency between the two datasets. Thus, the smaller 

the value of |𝑃𝐷|, the closer the results and the better the consistency. 
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2 2

1 1
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k k
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n n
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 (2) 

where n is the classification number; xk and yk are, respectively, the total area of type k in MCD12Q1 

and GlobeLand30; and �̅�  and �̅� are, respectively, the average area of all land cover categories in 

MCD12Q1 and GlobeLand30. 

4.4.2. Spatial Consistency 

The pixel-by-pixel comparison method is here adopted in order to verify the accuracy of spatial 

positions. The spatial consistency of “woodland” is just considered in this study. First of all, the five 

types of classification datasets are divided into the two categories of “woodland” and “non-woodland” 

via a binarization processing method, with the five classification results of MCD12Q1 product, 

respectively, superimposed with those of the GlobeLand30 product in space. Following this process, 

four new types of classification data are obtained: “woodland/woodland”, “woodland/non-woodland”, 
“non-woodland/woodland” and “non-woodland/non-woodland”. These new types depict the features of 
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the spatial consistency of “woodland” between the two datasets. Secondly, the spatial similarity of the 

five MCD12Q1 classification results and those of the reference data is analyzed in the three sub-regions 

and two levels (provincial and regional), as expressed by the following formula [52]. 

100%
A

O
A B C

     
 (3) 

where O is the spatial similarity coefficient, and A, B and C are, respectively, the total number of  

pixels of three types of classification data: woodland/woodland, woodland/non-woodland, and  

non-woodland/woodland, respectively. 

4.4.3. Accuracy Verification  

Accuracy verification in the present study consists of the producer accuracy (𝑝𝐴𝑖), user accuracy (𝑝𝑢𝑖) and 

overall accuracy (OA) in the confusion matrix [53]. The 𝑝𝐴𝑖 is a measure indicating the probability that the 

classifier has labeled an image pixel into Class i given that the ground truth is Class i. (Equation (4)). The 𝑝𝑢𝑖 is a measure indicating the probability that a pixel is Class i given that the classifier has labeled the 

pixel into Class i (Equation (5)). The OA is calculated by summing the number of pixels classified 

correctly and dividing by the total number of pixels (Equation (6)). The formulas used to calculate the 𝑝𝐴𝑖, 𝑝𝑢𝑖 and OA are as follows: 

A /
i ii i

p p p  (4) 

/
iu ii i

p p p   (5) 

1

/
n

ii

i

OA p p


  (6) 

The Kappa coefficient (K) measures data coincidence via a discrete multivariate technique [54]. 

Moreover, considering the possibility of accidental consistency between two groups of data sets, the K 

reflects the classification accuracy of land cover products more exactly (Equation (7)).  
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 (7) 

where pii is the constituents in which the type i of the classification results of MCD12Q1 is consistent 

with the type i of GlobeLand30, i.e., the number of the correctly classified pixels; P is the sum of all 

pixels in the GlobeLand30 classification result; pi+ is the sum of the type i in the classification result of 

MCD12Q1 in line i; p+i is the sum of the type i in the classification result of GlobeLand30 in column i; 

and N is the number of the pixels used for the accuracy evaluation. 

4.4.4. Landscape Diversity 

In the present paper, two landscape diversity indices are selected [55], including the modified 

Simpson’s diversity index (MSIDI) (Equation (8)) and the modified Simpson’s evenness index (MSIEI) 

(Equation (9)), in order to analyze the characteristics of the landscape mosaic. The landscape diversity 
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indices of both the five MCD12Q1 layers and the GlobeLand30 are measured and compared. MSIDI is 

applied for calculating the ecological community and landscape diversity, with the stronger sensitivity 

for rare patch types. MSIEI, as a supplement of patch dominance, reflects the equilibrium ratios of the 

area proportions of different patch types and their maximum values in the landscape. The classification 

results of the MCD12Q1 and GlobeLand30 products are recorded in 8-bit unsigned integer format using 

the Fragstats 4.2 software program. The diversity index shows the species diversity of animals and plants 

in an area and is widely used in landscape ecology. Diversity index values are mainly affected by the 

richness and evenness of landscape composition, which, respectively, illustrate the diversity of landscape 

composition and landscape structure. In the present study, the landscape diversity metric in Fragstats is 

applied for the comparison of the Wanbei, Wanzhong and Wannan regions. The Simpson’s diversity 
index is based on the establishment of information theory, in view of the measurement of biological 

communities. A widely applied method, Simpson’s diversity index values represent the probability that 
two randomly selected grid units belong to different patch types. 

The MSIDI is expressed by 

2

1

ln
m

i

i

MSIDI p


    (8) 

The MSIEI is given by 

2

1

ln

ln

m

i

i

p

MSIEI
m







 

(9) 

where pi is the area proportion of patch type i in the landscape, with the total area of the landscape not 

including background values; and m is the number of patch types in the landscape. All these indicators 

have no units. Index value ranges are MSIDI ≥ 0 and 0 ≤ MSIEI ≤ 1. When the whole landscape contains 

only one patch, MSIDI = 0 and MSIEI = 0. With an increasing number of landscape patches and the 

continuous equalization of their area proportions, the value of MSIDI increases. When the proportion of 

each patch in the landscape is the same, MSIEI = 1. With a more and more unbalanced proportion of 

different patch types in the landscape, the values of MSIEI approach zero. 

5. Results and Discussion 

5.1. Validation of Classification Accuracy of GlobeLand30 

Since GlobeLand30 data are used as the reference data, it is highly necessary to firstly evaluate the 

classification accuracy for ensuring the reliability. The statistics of primary land cover types are selected, 

including the crop and forest area from the Anhui Statistical Yearbook [56] and the wetland area from 

the second China wetland survey [57]. The fractional error is used to validate the accuracy of 

GlobeLand30, which represents a ratio of the absolute value of the differences between the actual area 

and estimated area and the actual area.  

As shown in Table 5, in addition to the “woodland” in Wanbei and “wetland” in Wanbei and Wannan, 
all the other fractional errors are less than 30%. Furthermore, “woodland” is taken as a study case to 
compare the MCD12Q1 and GlobeLand30. The “woodland” area derived from the five classification 



ISPRS Int. J. Geo-Inf. 2015, 4 2531 

 

schemes of MCD12Q1 is, respectively, 42.75 km2 of IGBP, 53.50 km2 of UMD, 8.75 km2 of LAI/FPAR, 

52.75 km2 of NPP and 57.00 km2 of PFT in Wanbei, while it is 106.25 km2 of GlobeLand30 and is much 

closer to the yearbook statistics. Therefore, the GlobeLand30 have higher classification accuracy and 

can be used as the reference data for evaluating the consistency of MCD12Q1. 

Table 5. Accuracy validation for “woodland”, “cropland” and “wetland” of GlobeLand30. 

Region Land Cover Type Area (km2) Yearbook Statistics Fractional Error (%) 

Anhui Province 

Woodland 36711.25 38042.20 3.50  

Cropland 82294.50 90865.91 9.43  

Wetland 7346.50 10418.00 29.48  

Wanbei 

Woodland 106.25 5628.60 98.11  

Cropland 25786.00 35316.03 26.98  

Wetland 326.00 1230.47 73.51  

Wanzhong  

Woodland 15549.50 14104.50 10.24  

Cropland 44284.50 45209.74 2.05  

Wetland 5610.25 6271.95 10.55  

Wannan 

Woodland 21056.75 18309.10 15.01  

Cropland 12239.50 10340.14 18.37  

Wetland 1416.00 2915.58 51.43  

5.2. Evaluation of Area Consistency  

Table 6 compares the R values of IGBP, UMD, LAI/FPAR, NPP and PFT in Wanbei, Wanzhong, 

Wannan and Anhui Province, respectively. Significantly, all the R values of IGBP, UMD and PFT are 

more than 97% in the three sub-regions. Their consistency shows pretty good on the whole. Considering 

the R values vary slightly from 98.22% to 99.61% in the three sub-regions and the whole Anhui Province, 

the compatibility and robustness of IGBP is best, indicating that the consistency of IGBP is best on a 

regional scale. The obtained result is the same with the reference [42], which shows that the area of land 

cover types of IGBP are more close to the land cover classification schemes based on the terrestrial 

ecosystem features and remote sensing (TEFRS). 

On the other hand, the R of LAI/FPAR and NPP has poor performance, which shows that the regional 

variation is obvious. For the LAI/FPAR, the R decreases from 56.40% of Wannan to −17.78% of 

Wanbei. The R of the NPP scheme varies from −31.47% of Wanbei to 69.26% of Wannan. To analyze 

the high regional variation of LAI/FPAR and NPP, PD is used to provide the correlation degree on each 

type in the five schemes. Combining the R and PD, more detailed consistency evaluation of the five 

schemes can be presented.  

Figure 4 shows the comparison of area consistency of five types derived from the five schemes. As shown 

in blue and orange columns, the PD of IGBP and UMD are smaller than that of the other three schemes on 

each type in the three sub-regions, showing their consistency are better. The “woodland” and “grassland” 

(orange column) in the three sub-regions show particularly the best performance among the five schemes, 

which highlights that the consistency of UMD is best for “woodland” and “grassland”. The study [58] shows 

the same result that UMD is best to reflect the temporal and spatial distribution of grassland. 
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The grey column illustrates the PD of LAI/FPAR and it shows that the classification results of 

“woodland” in the three sub-regions are worst among the five schemes, particularly in Wanbei with less 

forest resources. The result is also similar with the conclusion of the reference [58]. Moreover, the 

consistency of “artificial surfaces” in the three sub-regions is also worst among the five schemes. 

Due to the lack of “cropland” of NPP, the consistency of this type is obviously poor, as shown in 

green column. Similarly, the consistency of “grassland” is also poor. Conversely, the PD of “woodland”, 

“wetland” and “artificial surfaces” has a similar performance to UMD and PFT. 

The purple column shows that the consistency of “grassland” of PFT is worse than the other four 

land-cover types. The regional variation is obviously high due to the big difference of PD in the three 

sub-regions, while the values of the PD of all the other land-cover types present to be low in the three 

sub-regions. Specifically, the PD in Wannan is the best among the five schemes but it is the worst  

in Wanzhong. 

Table 6. Comparison of R values of the five classification schemes of MCD12Q1. 

Region IGBP (%) UMD (%) LAI/FPAR (%) NPP (%) PFT (%) 

Wanbei 98.44 98.43 −17.78 −31.47 98.43 

Wanzhong 99.61 99.58 −28.02 −42.55 99.80 

Wannan 98.22 97.27 56.40 69.26 97.98 

Anhui Province 99.35 99.27 −27.89 −38.72 99.53 

 

Figure 4. Comparison of percentage disagreement of the five schemes in (a) Wanbei, (b) 

Wanzhong, and (c) Wannan. 

5.3. Analysis of Spatial Consistency  

The spatial consistency of “woodland” is just considered in this study. Firstly, the spatial distribution 

of woodland shows highly different in the three sub-regions. It occupies only a little in Wanbei; but 

accounts for nearly one fifth in Wanzhong and most of Wannan is covered by this type. The classification 
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results indicate the there is a significant difference for “woodland” in the five schemes. It shows that the 

O of LAI/FPAR is the worst of 58.17% (Table 7), indicating that the spatial consistency is weak for 

“woodland”. The O of NPP reaches up to 86.70%, followed by 85.68% of PFT, which shows that NPP 

has the best spatial consistency of “woodland” among the five schemes.  

Table 7. Spatial similarity of five classification schemes of MCD12Q1 in Anhui Province. 

Classification Schemes IGBP UMD LAI/FPAR NPP PFT 

Spatial Similarity O (%) 78.66 80.62 58.17 86.70 85.68 

Figure 5 compares the spatial consistency of “woodland” between the five data layers of MCD12Q1 

and GlobeLand30 at provincial and regional scales (Anhui Province and three sub-regions). It illustrates 

the change of land cover types in the same area from the GlobeLand30 data to five data layer of 

MCD12Q1, respectively. According to the pixel-by-pixel comparison of the results, the classification 

errors of “woodland” appear mainly in Wannan and the south of Wanzhong with most forest area. As 

shown in Figure 5, “cropland” is misclassified into “woodland” in many areas, which results in serious 

influence on the consistency of these schemes. In the reference [42], the same reason is investigated that 

the forest area is increasing of NPP, PFT and LAI/FPAR, while the forest areas show a decreasing trend 

of IGBP and UMD from the year of 2001 to 2009, in Gansu Province, China. Moreover, Figure 5 reveals 

that NPP eliminates the potential causes of the misclassification from “woodland” to “cropland” due to 

the lack of “cropland” in NPP, but “woodland” is categorized into “grassland” in some certain places. 

Consequently, another driving factor affecting the consistency of “woodland” are analyzed. The 

“woodland” of IGBP, UMD, LAI/FPAR and PFT are categorized into “cropland” in Wanbei and 

Wanzhong to a great degree. Considering both the factors, it reveals that the misclassification between 

“woodland” and “cropland” exhibits a big influence on the consistency of “woodland” in IGBP, UMD, 

LAI/FPAR and PFT. Moreover, other inconsistent areas of IGBP, UMD, NPP and PFT of “woodland” 

are mainly concentrated around the Yangtze River and Huaihe River Basin - two natural dividing lines 

of the three sub-regions of Anhui Province. The “wetland” of these four schemes is classified into 

“woodland” in the area. As shown in Table 7, the consistency of “woodland” of LAI/FPAR is the 

weakest in accordance with Figure 5. Significantly, in addition to the above driving factors, the 

misclassification between “others” and “woodland” is also the main cause leading to the worst 

consistency of LAI/FPAR. Since the above Section 4.2 has presented the harmonization of land cover 

classification by treating “barren land” as “others”, the “woodland” type is distinctly misclassified into 

the “barren land” and it accounts for the main cause leading to the poor performance of LAI/FPAR. 
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Figure 5. Analysis of spatial consistency of “woodland” under the (a) IGBP, (b) UMD, (c) 

LAI/FPAR, (d) NPP and (e) PFT schemes using the MCD12Q1 and GlobeLand30 data. 
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5.4. Comparison of Classification Accuracy  

The OA of IGBP, UMD and PFT in the three sub-regions are more than 71%, while it is less than 

57% of LAI/FPAR and NPP (Table 8). Considering the absent “cropland” of NPP, the accuracy of the 

other types is still similar with that of IGBP, UMD and PFT. In general, it indicates that the OA of 

LAI/FPAR is the worst and the extremely low accuracy of “artificial surfaces” leads to the weak 

consistency due to the smallest K value. Moreover, the OA values of NPP vary from 1.61% in Wanbei 

to 56.23% in Wannan, while they are less than 10% of other schemes in the three sub-regions, indicating 

that the consistency of NPP is the worst among the five schemes. Meanwhile, it shows that all the 𝑝𝐴𝑖 
of “wetland” of the five schemes are good, but the difference of “woodland” is large in the three  

sub-regions. Reference [59] refers to the same situation that the uncertainty of MODIS data is small for 

water body but large for forestland.  

Table. 8 Comparison of the classification accuracy of five classification results. 

Land cover type 

(%) 

IGBP UMD LAI/FPAR NPP PFT 𝑝𝐴𝑖  𝑝𝑢𝑖  𝑝𝐴𝑖  𝑝𝑢𝑖  𝑝𝐴𝑖  𝑝𝑢𝑖  𝑝𝐴𝑖  𝑝𝑢𝑖  𝑝𝐴𝑖  𝑝𝑢𝑖  

W
an

b
ei

 

Woodland 1.75 0.74 1.46 0.74 9.38 0.74 1.49 0.74 1.40 0.74 

Grassland 2.02 0.29 10.00 0.29 0.50 78.46 0.56 97.29 0.90 0.14 

Cropland 81.99 98.19 82.00 98.20 80.00 11.92 0 0 82.01 98.18 

Wetland 57.78 2.10 64.00 1.30 64.00 1.37 64 1.29 64.00 1.29 

Artificial 

Surfaces 
42.42 6.24 42.42 6.26 8.47 0.02 42.42 6.24 42.42 6.24 

 
OA = 80.82% 

K = 6.88 

OA = 80.86% 

K = 6.73 

OA = 10.23% 

K = -0.30 

OA = 1.61% 

K = 0.66 

OA = 80.80% 

K = 6.91 

W
an

zh
o
n

g
 

Woodland 74.50 66.40 71.20 69.38 78.27 56.06 70.17 75.89 70.03 74.78 

Grassland 5.02 4.47 5.22 4.95 2.49 52.28 2.82 65.49 5.07 2.15 

Cropland 77.26 91.1 78.15 91.02 71.60 11.98 0 0 78.09 90.84 

Wetland 71.65 42.25 88.60 37.10 88.60 37.88 88.60 36.25 88.04 36.53 

Artificial 

Surfaces 
48.34 10.04 48.30 10.28 4.49 0.39 48.30 10.04 48.30 10.04 

 
OA = 73.76% 

K = 49.11 

OA = 74.15% 

K = 49.86 

OA = 23.97% 

K = 13.62 

OA = 21.68% 

K = 15.33 

OA = 74.89% 

K = 51.25 

W
an

n
an

 

Woodland 80.89 85.86 79.98 87.30 79.60 58.43 77.55 92.56 77.73 91.62 

Grassland 4.10 15.69 3.98 16.72 3.01 48.02 2.84 41.36 4.29 6.52 

Cropland 72.49 58.1 74.34 56.81 68.96 8.49 0 0 74.23 57.10 

Wetland 53.64 36.99 84.34 29.72 84.34 30.95 84.34 28.39 83.36 28.86 

Artificial 

Surfaces 
57.38 19.24 57.32 20.93 4.60 1.29 57.32 19.24 57.32 19.24 

 
OA = 71.77% 

K = 48.33 

OA = 71.99% 

K = 47.92 

OA = 39.32% 

K = 16.36 

OA = 56.23% 

K = 25.72 

OA = 74.29% 

K = 49.74 

5.5. Assessment of Landscape Diversity  

Figure 6 illustrates the landscape diversity indices of MSIDI and MSIEI of the five MCD12Q1 data 

layers and GlobeLand30 in Wanbei, Wanzhong and Wannan, respectively. The values of diversity 
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indices of GlobeLand30 are significantly larger in comparison with those of five MCD12Q1 data layers. 

Since the GlobeLand30 data present the finer spatial resolution, its increasing number of landscape 

patches and the continuous equalization of area proportions lead to the larger diversity indices. It 

indicates that the number of landscape patches of GlobeLand30 for the same area is higher than that of 

five MCD12Q1 data layers. Meanwhile, GlobeLand30 has a more balanced proportion of different patch 

types in the landscape. In comparison with other schemes, the LAI/FPAR shows the higher values and 

the difference between the results of the LAI/FPAR scheme and the GlobeLand30 data is the lowest in 

the three sub-regions, which reveals that the consistency of LAI/FPAR is the best on the number of 

landscape patches and the equalization of area proportions. 

More significantly, the values of diversity indices for the three sub-regions are ordered as follows: 

Wanbei < Wanzhong < Wannan. In Section 5.3, the same result can be found that the K values of Wanbei 

are the smallest in the three sub-regions (Table 8), which corresponds to the same rank of the values of 

diversity indices for the three sub-regions. Specifically, “cropland” is distinctly characterized by a large 

proportion in Wanbei, and the other types present a fragmentized distribution. For example, as Figure 6 

shows, the classification results of “grassland” and “wetland” of Suzhou City of Wanbei in the five 

MCD12Q1 data layers are distinctly different from the GlobeLand30. It can be concluded that the higher 

the landscape heterogeneity, the larger the diversity indices and the weaker consistency. 

  

Figure 6. Comparison of landscape diversity indices of MSIDI and MSIEI in (a) Wanbei, 

(b) Wanzhong and (c) Wannan. 

6. Conclusions 

An evaluation of the consistency of five land cover classification schemes of MCD12Q1 are 

performed based on the 30 m Chinese GlobeLand30-2010 GLC product in Anhui Province. Two primary 

methods are specifically used, including harmonization of the land cover classification based on the 

knowledge rule and C4.5 decision tree classification algorithm. In general, there is a strong consistency 

of area percentage, spatial consistency, classification accuracy and landscape diversity among the five 

classification schemes of MCD12Q1 based on GlobeLand30. 

(1) The R of IGBP is found to be slightly different, ranging from 98.29% to 99.63%, in the three  

sub-regions and in Anhui Province. Thus, IGBP shows the best compatibility and robustness, indicating 
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IGBP UMD LAI/FPAR NPP PFT GlobeLand30
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that the consistency of IGBP is the best on a regional scale. The PD of IGBP and UMD are the smallest 

on each type in the three sub-regions, indicating that both IGBP and UMD present the best consistency. 

(2) The O of LAI/FPAR has the lowest value, 58.17%, and its spatial consistency of “woodland” is 

weak. Conversely, NPP has the best spatial consistency of “woodland” among the five schemes with an 

O of 86.70%. Specially, the misclassification between “others” and “woodland” is the main cause 

leading to the worst consistency of LAI/FPAR; that is, the “woodland” type of GlobeLand30 is largely 

misclassified into the “barren land of LAI/FPAR. 

(3) The 𝑝𝐴𝑖  and 𝑝𝑢𝑖  of “artificial surfaces” of LAI/FPAR scheme are the lowest in the three  

sub-regions in comparison to the four other schemes of MCD12Q1 (Table 8). Furthermore, the OA of 

NPP varies greatly in the three sub-regions, indicating that the consistency of NPP is the worst among 

the five schemes. 

(4) Since the landscape diversity indices of Wanbei, Wanzhong and Wannan are different from each 

other, it shows the obvious spatial heterogeneity of the three sub-regions. The consistency of LAI/FPAR 

is found to be the best on the landscape diversity in the three sub-regions. Meanwhile, the more 

heterogeneous the landscape is, the weaker the consistency of the five land cover classification results 

of MCD12Q1 become. 

Given the great significance to evaluate and validate the quality and consistency of different GLC 

products, this study evaluates the consistency of 500 m MCD12Q1 based on 30 m GlobeLand30 on a 

provincial scale. This study can provide a methodological reference for evaluating the consistency of 

different GLC products derived from multi-source and multi-resolution remote sensing datasets on 

various spatial scales. 
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