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ABSTRACT

Background Esophagogastroduodenoscopy (EGD) is a

prerequisite for detecting upper gastrointestinal lesions

especially early gastric cancer (EGC). An artificial intelli-

gence system has been shown to monitor blind spots dur-

ing EGD. In this study, we updated the system (ENDOAN-

GEL), verified its effectiveness in improving endoscopy

quality, and pretested its performance in detecting EGC in

a multicenter randomized controlled trial.

Methods ENDOANGEL was developed using deep convolu-

tional neural networks and deep reinforcement learning.

Patients undergoing EGD in five hospitals were randomly

assigned to the ENDOANGEL-assisted group or to a control
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Introduction

Esophagogastroduodenoscopy (EGD) is widely used to examine

upper gastrointestinal lesions [1, 2]. White-light imaging (WLI)

endoscopy is a standard protocol for examining gastric lesions;

however, the performance of endoscopists varies greatly, lead-

ing to a miss rate of 20%–40% for early gastric cancer (EGC) [3].

Endoscopy diagnosis is subjective, operator dependent, and

varies widely with experience [4], reducing the detection rate

of EGC and precursor lesions [5]. There is an urgent need to im-

prove endoscopy quality and reliability.

To achieve such improvement, a large number of guidelines

have been issued and consensus of expert opinions in specific

areas has been reached [6]. Safety and quality indicators for

EGD have been proposed by the American Society for Gastroin-

testinal Endoscopy and the American College of Gastroenterol-

ogy [7]. The first evidence-based indicator of EGD performance

was proposed by the European Society of Gastrointestinal

Endoscopy (ESGE) in 2015 [1]. The standard procedure is to ex-

amine all parts of the stomach during EGD, with a recommen-

ded examination time of 7 minutes [8–10]. However, due to the

lack of monitoring and available tools, adherence to protocols

are often not very high [11]. A practical and workable approach

should be established to implement guidelines for routine

endoscopy.

In the past few years, deep learning has made remarkable

progress in the field of medical image recognition [12]. Most

studies are dedicated to the use of computer-aided diagnosis

of lesions [13, 14]; however, whether deep convolutional neural

networks (CNNs) can be used to monitor the quality of routine

endoscopies has rarely been explored. In a previous study, our

group developed a novel artificial intelligence (AI) system,

named WISENSE, based on deep reinforcement learning (DRL)

and CNN. WISENSE demonstrated the ability to monitor blind

spots (gastric areas overlooked during EGD) and generate pho-

todocumentation in real time during EGD [15, 16]. In the pres-

ent study, we updated the WISENSE system by integrating a

previously trained real-time EGC detection model [15], and

named the updated system “ENDOANGEL.” We then carried

out a multicenter randomized controlled trial (RCT) to verify

the ability of ENDOANGEL to improve EGD quality in five hospi-

tals, and to describe its performance in detecting EGC in the

clinical setting.

Methods

Development of the AI system

Three models – model 1 for image qualification, model 2 for

gastric cancer prediction, and model 3 for gastric site classifica-

tion – were involved in ENDOANGEL. Model 1 and 3 were train-

ed as described in our previous single-center clinical trial [16],

and model 2 was trained as described in our previous technical

work [15]. Briefly, the VGG-16 CNN model was trained using

transfer learning [17] with 12220 in vitro images, 25222 in

vivo images, and 16760 unqualified images, which were filtered

to retrieve only clear in vivo frames; the model achieved an ac-

curacy of 97.6% in 3000 still images (model 1). VGG-16 and Re-

sNet-50 were respectively trained using transfer learning with

2204 EGC, 326 advanced gastric cancer, and 4791 noncancer-

ous images, and achieved an accuracy of 92.5% for predicting

EGC in 200 still images when 3 VGG-16 and 2 Resnet-50 were

combined (model 2). VGG-16 was trained using transfer learn-

ing with 34513 labeled EGD images of 26 different EGD sites,

and DRL was trained using virtual EGD videos and 30 stored vi-

deos in order to achieve human logicality; VGG-16 combined

with DRL achieved an accuracy of 90.0% for predicting the gas-

tric site in 107 real videos (model 3). Before images were fed to

the CNN, they were first stripped of black borders and then re-

sized to 224×224 pixels to suit the original dimensions of the

CNN models. For the detection of EGC, a CNN algorithm was

used. For the monitoring of blind spots, both CNN and DRL

were implemented.

A few modifications were made to model 2 when it was inte-

grated into the AI system, as described in the supplementary

methods (see the online-only Supplementary material).

The three models were integrated, as illustrated in ▶Fig.1,

and frame-wise prediction was applied in a clinical setting using

client–server interaction [15]. As tested in our previous work,

the mean (standard deviation [SD]) total time to output of a

prediction using all three models for each frame was 230 (SD

60) milliseconds. Therefore, ENDOANGEL was set to process

EGD videos with 2 frames per second in real time.

The equipment used in this trial is described in the Supple-

mentary material.

group without use of ENDOANGEL. The primary outcome

was the number of blind spots. Secondary outcomes includ-

ed performance of ENDOANGEL in predicting EGC in a clin-

ical setting.

Results 1050 patients were randomized, and 498 and 504

patients in the ENDOANGEL and control groups, respective-

ly, were analyzed. Compared with the control group, the

ENDOANGEL group had fewer blind spots (mean 5.38

[standard deviation (SD) 4.32] vs. 9.82 [SD 4.98]; P <

0.001) and longer inspection time (5.40 [SD 3.82] vs. 4.38

[SD 3.91] minutes; P <0.001). In the ENDOANGEL group,

196 gastric lesions with pathological results were identi-

fied. ENDOANGEL correctly predicted all three EGCs (one

mucosal carcinoma and two high grade neoplasias) and

two advanced gastric cancers, with a per-lesion accuracy

of 84.7%, sensitivity of 100%, and specificity of 84.3% for

detecting gastric cancer.

Conclusions In this multicenter study, ENDOANGEL was an

effective and robust system to improve the quality of EGD

and has the potential to detect EGC in real time.
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RCT trial design

This was a prospective, multicenter, single-blind, randomized,

parallel-group study, approved by the Ethics Committee of Ren-

min Hospital of Wuhan University.

Patients

From October 2018 to January 2019, patients undergoing rou-

tine EGD examinations at the endoscopy centers of five tertiary

hospitals were enrolled in the study. An introduction and details

of the time period for patient enrollment in the five hospitals is

presented in the Supplementary material. The RCT was ap-

proved by the institutional review boards of each participating

hospital and performed according to the Declaration of Helsin-

ki.

Inclusion criteria were: 1) age 18 years or above; 2) American

Society of Anesthesiologists physical status score of 1, 2, or 3;

3) informed consent provided.

Exclusion criteria were: 1) patients with absolute contraindi-

cations to EGD examination; 2) history of previous gastric sur-

gery; 3) pregnancy; 4) previous medical history of allergic reac-

tion to anesthetics; 5) unsuitability for participation in the trial

at the investigator’s discretion. Withdrawal criteria were: 1)

EGD surgery not completed due to esophageal stenosis, ob-

struction, large space-occupying lesions, or ulcers in the duo-

denal bulb; 2) premature termination of the EGD due to rapid

changes in the patient’s heart rate or respiratory rate.

The patient population was not limited to specific indica-

tions, as most patients with EGC are asymptomatic [18].

Before the trial, 14 enrolled endoscopists studied the EN-

DOANGEL user interface and the Japanese systematic screening

protocol for the stomach [10]. The participating endoscopists

at the five hospitals included six from Renmin Hospital of Wu-

han University, two from Tongji Hospital, two from Central Hos-

pital of Wuhan, two from Yichang Central People’s Hospital,

and two from the First People’s Hospital of Yichang. The parti-

cipating endoscopists had 3–5 years of EGD experience, had

performed 2000–5000 EGD examinations, had diagnosed<

200 EGC cases, and had the ability to evaluate gastric lesions

with magnifying image-enhanced endoscopy (M-IEE).

Interventions

Patients undergoing EGD examination were randomly assigned

to a procedure with ENDOANGEL assistance or no assistance

(control). The examination protocol consisted of WLI observa-

tion, M-IEE observation, and biopsy of suspicious lesions. In

both groups, endoscopists first screened the upper gastroin-

testinal tract using WLI. A biopsy was taken if the endoscopist

predicted that a lesion had a risk of gastric cancer. When endos-

copists could not determine the risk of the lesion using WLI, M-

IEE was used to make further observations and take targeted

biopsies. In addition to the original video, four additional pieces

of information were provided to the endoscopists in the EN-

DOANGEL group: 1) a virtual stomach model monitoring blind

spots; 2) procedure time and duration; 3) red or green frames

indicating cancerous and noncancerous lesions predicted by

ENDOANGEL; 4) scoring and grading. The score was positively

▶ Fig. 1 Illustration diagram for integrating convolutional neural network (CNN) models into the ENDOANGEL system. Consecutive frames dur-

ing esophagogastroduodenoscopy were first stripped of black borders and then resized to 224×224 pixels to suit the original dimensions of the

CNN models. Then, the fitted frames were inputted into CNN1 for image qualification (Model 1), from which the blurry and in vitro images were

discarded, and in vivo clear images were sent to Model 2 for gastric cancer (GC) detection and Model 3 for gastric site classification. The final

output contains predictions of observed sites and a box localizing gastric cancer.
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correlated with the number of observed sites; scores of 80, 90,

and 100 corresponded to “good,” “excellent,” and “perfect,”

respectively. No additional information was provided to the

endoscopists in the control group.A working example of the

ENDOANGEL system is shown in Fig.1 s , ▶Video 1, and ▶Vid-

eo 2, and a representative image for ENDOANGEL detecting

EGC is shown in Fig. 2s.

Outcomes

The main outcome of the study was the number of blind spots

(out of 26 per patient) for both the ENDOANGEL and control

groups. Blind spots were defined as the sites unobserved during

EGD, indicated as transparent areas in the gastric icon, as

shown in ▶Video 1 and ▶Video 2.

The secondary outcomes were: 1) inspection duration; 2)

the percentage of patients with missing observations (i. e. blind

spots) at each site; 3) performance of ENDOANGEL in predict-

ing EGC in a clinical setting.

The number of blind spots, inspection duration, and the per-

centage of patients with blind spots at each site were analyzed

in both groups, whereas the performance of ENDOANGEL in

predicting gastric cancer in the clinical setting was analyzed

only in the ENDOANGEL group.

The performance of ENDOANGEL in detecting gastric cancer

was analyzed using accuracy, sensitivity, and specificity. Accu-

racy was calculated as the number of true predictions divided

by the total number of lesions; sensitivity was calculated as

the number of correctly predicted gastric cancers divided by

the total number of gastric cancers; specificity was calculated

as the number of correctly predicted noncancerous lesions

divided by the total number of noncancerous lesions. Noncan-

cerous lesions included adenoma, low grade neoplasia, intes-

tinal metaplasia, atrophic gastritis, nonatrophic gastritis, be-

nign ulcer, polyps, Xanthoma, etc.

Two medical students reviewed the EGD data and recorded

the start and end times of each EGD examination. Three ex-

perts with more than 10 years of EGD experience independent-

ly reviewed the EGD data from the trial patients and recorded

the blind spots. A site was labeled as observed in a patient only

when two or more experts reached an agreement. When the

expert whose label was discarded had objections, the three ex-

perts would discuss the data together and reach a consensus.

Endoscopists who performed the EGD examination did not par-

ticipate in data evaluation.

Sample size

As the number of blind spots is a discrete variable, the sample

size was calculated using the method of two-sample superiority

tests. The mean number of blind spots in the control group and

ENDOANGEL group were estimated as 10 and 5, respectively,

with an overall SD of 4.3.With a power of 0.90, bilateral signifi-

cance level of 0.05, and superiority margin of 4.2, 495 patients

would be needed in each group. Assuming a dropout rate of 5%,

the target sample size for each group was 521.

Video 1 Representative video of the use of ENDOANGEL for

monitoring blind spots and detecting noncancerous lesions. The

system presented the covered gastric sites synchronized with the

process of endoscopy to verify that the entire stomach was map-

ped. A cartoon gastric icon was set to be transparent before the

examination. As soon as the scope was inserted into the stom-

ach, the observed sites were colored in the corresponding part

of the icon. Any transparent area indicated that the correspond-

ing sites had not been observed (i. e. the blind spots). Meanwhile,

ENDOANGEL successfully detected the gastric polyp and recog-

nized it as a noncancerous lesion (in green box).

Online content viewable at:

https://doi.org/10.1055/a-1350-5583

Video 2 Representative video of the use of ENDOANGEL for

detecting cancerous lesions. A pathologically confirmed early

gastric cancer was shown in the video. ENDOANGEL successfully

detected the lesion and recognized it as a suspicious cancerous

lesion (in red box).

Online content viewable at:

https://doi.org/10.1055/a-1350-5583

1202 Wu Lianlian et al. Evaluation of the… Endoscopy 2021; 53: 1199–1207 | © 2021. Thieme. All rights reserved.

Original article

T
h
is

 d
o
c
u
m

e
n
t 
w

a
s
 d

o
w

n
lo

a
d
e
d
 f
o
r 

p
e
rs

o
n
a
l 
u
s
e
 o

n
ly

. 
U

n
a
u
th

o
ri
z
e
d
 d

is
tr

ib
u
ti
o
n
 i
s
 s

tr
ic

tl
y
 p

ro
h
ib

it
e
d
.



Randomization and blinding

A computer-generated random numerical series was used to

generate a random allocation sequence, with the ENDOANGEL

group encoded as “0” and the control group as “1.” Stratified

randomization based on endoscopists was conducted in blocks

of four in a 1:1 ratio. Endoscopists and statisticians were unblin-

ded, whereas patients and all image data evaluations were per-

formed blindly.

Statistical analysis

A chi-squared test was used to compare the ENDOANGEL and

control groups in terms of baseline characteristics and the per-

centage of patients with blind spots at each site. The Mann–

Whitney U test with a two-sided significance level of 0.05 was

used to compare the other main and secondary outcomes be-

tween the two groups. The 95% confidence intervals (CIs) with

accuracy, sensitivity, and specificity were calculated using the

method of Wilson procedure, with a correction for continuity.

The receiver operating characteristic curve (ROC) was used to

evaluate the performance of the CNN model for detecting

EGC. The ROC curve was developed by plotting the sensitivity

against the false-positive rate (i. e. 1-specificity) by varying pre-

diction thresholds (Fig. 3 s). Statistical analysis was performed

using StatsDirect version 3.1.20 (StatsDirect Ltd., Birkenhead,

UK).

Results

Recruitment

A total of 1239 patients were invited to participate in the trial,

189 of whom were excluded because they were ineligible (n =

127) or declined to participate (n=62); therefore 1050 patients

were recruited and randomized (▶Fig.2). A total of 498 pa-

tients in the ENDOANGEL group and 504 in the control group

were included in the final analysis of number of blind spots

and other outcomes. Patient characteristics were comparable

in both groups (▶Table 1).

Blind spots and inspection duration

In the ENDOANGEL group, the mean number of blind spots was

less than that in the control group (5.38 [SD 4.32] vs. 9.82 [SD

4.98]; P <0.001) (▶Table 2). Mean inspection time of the EGD

procedure was longer in the ENDOANGEL group than in the

control group (5.40 [SD 3.82] minutes vs. 4.38 [SD 3.91] min-

utes; P<0.001) (▶Table 2).

The median percentage of patients with blind spots at each

site was 21.0% (range 1.6%–40.2%) in the ENDOANGEL group

and 38.9% (range 0.8%–68.3%) in the control group. For 88.5

% of gastric sites (23/26), the percentage of patients in whom

the site was overlooked was significantly lower in the ENDOAN-

GEL group than in the control group (▶Table 3).

The number of blind spots, with or without AI, were compar-

ed among the 14 endoscopists (Fig.4 s,Table 1 s). With the

assistance of ENDOANGEL, the number of blind spots of 11

endoscopists significantly decreased, while that of the other 3

endoscopists had no significant change.

Gastric cancer detection

Lesion characteristics in the ENDOANGEL group

In the 498 patients in the ENDOANGEL group, 819 lesions were

reported by endoscopists. Of these lesions, 210 (25.6%) had

biopsy samples taken (196 gastric, 12 esophageal, and 2 duo-

denal lesions). The remaining 609 lesions, without biopsies, in-

cluded 437 gastric, 90 esophageal, and 82 duodenal lesions.

Lesion characteristics are described in Table 2 s. The number

of images used per patient was 600 (interquartile range [IQR]

Allocation

Enrollment

Follow-up

Assessed for eligibility (n = 1239)

ENDOANGEL group
Allocated to intervention 
(n = 524)
▪ Received allocated 
 intervention (n = 524)
▪ Did not receive allocated 
 intervention (n = 0)

Control group
Allocated to intervention 
(n = 526)
▪ Received allocated 
 intervention (n = 526)
▪ Did not receive allocated 
 intervention (n = 0)

Lost to follow-up (n = 0)
Discontinued intervention 
(esophageal stenosis, 
obstruction or huge 
occupying lesions) (n = 14)
Discontinued intervention 
(rapid change in patient’s 
heart rate or breathing 
rate) (n = 4)

Lost to follow-up (n = 0)
Discontinued intervention 
(esophageal stenosis, 
obstruction or huge 
occupying lesions) (n = 11)
Discontinued intervention 
(rapid change in patient’s 
heart rate or breathing 
rate) (n = 5)

Analysis

Analyzed (n = 498)
▪ Excluded from analysis 
(unable to recognize 
anatomical landmarks due 
to solid food) (n = 2)
▪ Excluded from analysis 
(unable to recognize 
anatomical landmarks due 
to severe lesions ) (n = 6)

Analyzed (n = 504)
▪ Excluded from analysis 
(unable to recognize 
anatomical landmarks due 
to solid food) (n = 3)
▪ Excluded from analysis 
(unable to recognize 
anatomical landmarks due 
to severe lesions ) (n = 3)

Randomized (n = 1050)

Excluded (n = 189)
▪ Not meeting inclusion 
 criteria (n = 127)
▪ Declined to participate 
 (n = 62)
▪ Other reasons (n = 0)

▶ Fig. 2 Trial flow diagram.
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369–710) in the ENDOANGEL group and 485 (IQR 247–626) in

the control group.

Real-time performance of ENDOANGEL in predicting

gastric cancer in clinical practice

The two advanced gastric cancers and three EGCs confirmed by

pathology in the ENDOANGEL group were positively predicted

by ENDOANGEL. Among 302 692 EGD frames from 498 pa-

tients in the ENDOANGEL group, 2107 (0.7%) red boxes indicat-

ing suspicious gastric cancer were included in the ENDOANGEL

outputs. Of these, 357 (16.9%) were diagnosed by endos-

copists to have lesions, and the remaining 1750 red boxes con-

tained “noise,” including reflections, foam, mucus, and folds, as

summarized in Table 3 s. For 196 gastric lesions with patholog-

ical results, ENDOANGEL correctly predicted all 5 gastric can-

cers (2 advanced gastric cancer, 1 mucosal carcinoma, and 2

high grade neoplasia), with a per-lesion accuracy of 84.7% (95

%CI 78.7%–89.3%), sensitivity of 100% (95%CI 46.3%–100%),

and specificity of 84.3% (95%CI 78.2%–89.0%). For 437 gastric

lesions with no pathological results, 31 (7.1%) were positively

predicted by ENDOANGEL, with the highest positive prediction

rates shown for hemorrhagic gastritis (16.7% [1 /6]), protrud-

ing lesions (15.8% [3 /19]), and erosive gastritis (11.7% [19 /

163]).

Discussion

Gastric cancer is the third leading cause of cancer death from a

global perspective [19]. Early detection is the key strategy to

improve patient survival. However, the quality of endoscopy

varies significantly, impairing the health outcome of patients.

Technically, complete observation is an essential prerequisite

for detecting EGC; however, although protocols for mapping

the entire stomach have been widely proposed, they are often

not followed closely in clinical practice. Cognitively, EGC lesions

are difficult to recognize because the mucosal changes are of-

ten very subtle, requiring endoscopists to have thorough

knowledge and extensive experience [4, 7]. In the current

study, we developed ENDOANGEL, a real-time AI assistance sys-

tem for the detection of EGC, with no blind spots, to specifically

address these two problems. In this multicenter RCT of blind

spot monitoring, we validated effectiveness and robustness of

ENDOANGEL in improving EGD quality; in addition, we prospec-

tively evaluated the performance and feasibility of ENDOANGEL

for the detection of EGC in clinical practice.

Gastric cancer may occur in every part of the gastric cavity

[20]. Endoscopist competence is an essential prerequisite for

the detection of EGC lesions during EGD. In our previous work,

we developed an AI system to classify different gastric sites and

monitor blind spots in real time during EGD, and verified the ef-

fectiveness of the system in improving EGD quality in a single-

center RCT [15, 16]. Results from this single-center study

showed that the number of blind spots dropped from 5.84 to

1.52 with the assistance of AI. In the current multicenter RCT,

we further verified the effect of improving EGD quality in five

different hospitals, and the number of blind spots dropped

from 9.82 to 5.38 with the assistance of ENDOANGEL. The find-

ings of the two studies are consistent; however, in the present

study, the number of blind spots was higher in both the EN-

DOANGEL and control groups compared with that in the pre-

vious single-center study, possibly as a result of variability in

the operation quality across the hospitals. The effect of AI on

endoscopist practice may be influenced by endoscopists’ ex-

perience with AI systems and their personal views and accep-

tance of AI technology, according to a previous report [21]. In

order to avoid possible center effects, several measures were

implemented in the present study. First, the five hospitals in-

cluded were all tertiary hospitals and the participating endos-

copists were senior endoscopists with an EGD experience of 3–

5 years and EGD volumes of 2000–5000 examinations. Second,

to unify the endoscopic observation procedures the 14 partici-

pating endoscopists were trained to use the Japanese systema-

tic screening protocol for the stomach before the trial. More

importantly, results from each hospital, including the number

of blind spots, were evaluated and analyzed by the same data

analysis team; for cases in which the endoscopic results were

inconsistent with the pathological results, data were reviewed

▶Table 1 Baseline characteristics.

Characteristics ENDOANGEL

(n=498)

Control

(n =504)

Age, mean (SD), years 51.5 (13.2) 51.6 (13.1)

Female, n (%) 273 (54.8) 277 (55.0)

Indications for EGD, n (%)

▪ Abdominal discomfort 359 (72.1) 366 (72.6)

▪ Acid reflux 36 (7.2) 33 (6.5)

▪ Anemia 2 (0.4) 5 (1.0)

▪ Belching 4 (0.8) 4 (0.8)

▪ Bowel habit change 6 (1.2) 2 (0.4)

▪ Constipation 3 (0.6) 3 (0.6)

▪ Diarrhea 8 (1.6) 11 (2.2)

▪ Dyspepsia 13 (2.6) 11 (2.2)

▪ Dysphagia 3 (0.6) 4 (0.8)

▪ Emaciation 3 (0.6) 4 (0.8)

▪ Health examination 19 (3.8) 18 (3.6)

▪ Poor appetites 2 (0.4) 2 (0.4)

▪ Suspected GI bleeding 18 (3.6) 20 (4.0)

▪ Suspected malignancy 14 (2.8) 17 (3.4)

▪ Vomiting 8 (1.6) 4 (0.8)

Recruitment, n (%)

▪ Inpatient 165 (33.1) 175 (34.7)

▪ Outpatient 333 (66.9) 329 (65.3)

EGD, esophagogastroduodenoscopy; GI, gastrointestinal.
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by a single expert pathologist, to reduce differences within and

between centers.

Recently, several studies have tried to use deep learning for

EGC recognition. Hirasawa et al. developed a CNN to detect

gastric cancer, which achieved a sensitivity of 92.2% [14]. Li et

al. achieved a sensitivity of 91.2% for detection of EGC in 341

still images [22]. Our group also developed a CNN model for de-

tecting EGC, which achieved a sensitivity of 94.0% in 200 still

images [15]. However, the images chosen for testing in the pre-

vious studies were retrospectively selected, and the types of

noncancerous lesions were limited. In the real world, plenty of

lesions are difficult to distinguish from EGC, such as erosive

gastritis and ulcers, and such lesions were uncommon in the

testing datasets in the previous work. Such selection of lesions

may lead to a bias in accuracy in favor of CNN models. In addi-

tion, there is a mass of “noise” during endoscopy in real clinical

setting, such as reflections, blurring, and foam, whereas most

retrospective images are of good quality. Therefore, we pro-

spectively applied our previously trained EGC detection model

in a multicenter clinical trial, evaluated its performance in com-

plex clinical environments, and provided suggestions for fur-

ther work in the development of EGC detection models.

Our results revealed two prominent problems when apply-

ing EGC detection models to clinical practice. First, “noise”

greatly impacts the accuracy of the model and is bothersome

to endoscopists. Images showing “noise” from consecutive

frames in videos could be collected to train the model to recog-

nize and filter out “noise.” Methods including localization [23]

and segmentation [24] could be explored to solve this problem

by targeting and shielding the image “noise.” Second, some

endoscopists argue that it is almost impossible to accurately

predict EGC in white-light view because other lesions such as

erosive gastritis and ulcers share similar characteristics with

EGC. The same point is also presented in the guidelines from

ESGE [25]. Our results showed that a small proportion of be-

nign lesions such as erosive gastritis, ulcers, and polyps were in-

correctly diagnosed as gastric cancer, and they are difficult to

distinguish from EGC even for experienced endoscopists. The

quantity and diversity of training datasets could be further in-

creased to improve the performance of the CNN model in order

to extend the limits of human visualization and interpretation.

In addition, we may change our minds and adjust the aims of

the AI model from detection of EGC to recognition of abnormal

lesions in WLI that need further observation with IEE. Further

studies should be conducted to explore the supposed solutions

and to improve the EGC detection model.

In the past few years, the performance of CNN models has

been generally improved by increasing the depth and fitting

parameters [24, 26]. In 2016, He et al. proposed the concept

of residuals, and it was proved to be easier for optimization

and achieved better performance with fewer parameters [27].

Nowadays, deeper models and smaller kernels are preferred

over single layer and larger kernels [28]. Liu et al. elaborately

compared different CNN models, with or without transfer

learning, on classifying EGC and gastritis, and found that Re-

sNet-50 achieved a top accuracy of 95% when using transfer

learning [29]. In the present study, we trained both ResNet-50

and VGG-16 using transfer learning for predicting EGC, and

their combined results achieved an accuracy of 92.5% in still

images. The results of two types of CNNs were combined to re-

duce the rate of miss-selection of a single classifier [30]; how-

ever, in clinical practice, although all EGC lesions were success-

fully diagnosed, the false-positive rate increased. Some scho-

lars have explored 3D-CNNs [31], segmentation, and long

short-term memory network with CNN to improve prediction

results [23]. These experiences are valuable for further re-

search.

There are some limitations to our study. First, we only con-

ducted a feasibility analysis on real-time detection of gastric

cancer based on deep learning in a clinical setting. Whether

the AI system can achieve a good performance in gastric cancer

detection and help improve the detection rate of EGC remains

to be investigated in larger multicenter studies. Second, the en-

rolled patients were not followed up for a long time, and this

may lead to false-negative lesions missed by endoscopists, and

the diagnostic ability of the endoscopists may have an impact

▶Table 2 Primary and secondary outcomes for all patients compared with results from our previous single-center trial.

End point Mean (SD) P value Mean (SD) P value

ENDOANGEL

(n=498)

Control

(n=504)

WISENSE

(n=153)

Control (n=150)

Primary end point

▪ No. of blind spots*

5.38 (4.32) 9.82 (4.98) < 0.001 1.52 (1.79) 5.84 (3.73) < 0.001

Secondary end point

▪ Inspection time, minutes

5.40 (3.82) 4.38(3.91) < 0.001 5.03 (2.95) 4.24 (3.82) < 0.001

SD, standard deviation.

* The number of blind spots per patient out of a total of 26 gastric sites; Results for WISENSE were cited from our previous single-center clinical trial [16]. It should be

noted that the primary outcome in the previous study is “blind spot rate,” and the number of blind spots shown in the table (1.52 and 5.84) were converted from

the rate of blind spots (5.86% and 22.46%) by multiplying by 26.
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on the evaluation of the ENDOANGEL performance. To avoid

this bias, further study in which all patients are followed up or

biopsied should be conducted in order to evaluate the precision

of ENDOANGEL in detecting gastric cancer in a clinical setting.

Third, patients and all image data evaluations were performed

blindly in this trial, whereas statisticians were not blinded. Un-

blinded statisticians may induce potential bias in analysis; more

attention should be paid to this issue in our future research.

Fourth, in addition to IEE, chromoendoscopy is also one of the

major tools used for tumor detection and characterization. In

our previous work, a deep learning method was developed to

delineate EGC margin under chromoendoscopy [32]; use of AI

to detect and diagnose EGC under chromoendoscopy is still a

valuable direction that could be tried in the future.

In conclusion, ENDOANGEL, a system for improving endos-

copy quality based on deep learning, achieved real-time moni-

toring of endoscopic blind spots, timing, and EGC detection

during EGD. ENDOANGEL greatly improved the quality of EGD

in this multicenter study, and showed potential for detecting

EGC in real clinical settings.

Acknowledgments

We thank our endoscopists and machine-learning engineers for

their hard work. We express gratitude to all patients and hospi-

tal staff for support of our trial.

▶Table 3 The median percentage of patients with blind spots at each site compared with results from our previous single-center trial.

Overlooked sites ENDOANGEL

(n=498)

Control (n=504) P value WISENSE

(n=153)

Control (n=150)

Esophagus 1.6 0.8 0.237 0 0

Squamocolumnar junction 6.2 9.3 0.067 0 1.33

Antrum (G) 9.0 14.1 0.012 0 3.33

Antrum (P) 21.1 39.3 < 0.001 2.61 10.00

Antrum (A) 23.3 37.5 < 0.001 2.61 6.67

Antrum (L) 16.1 31.7 < 0.001 3.92 9.33

Duodenal bulb 4.8 7.1 0.121 0.65 4.00

Duodenal descending 1.6 5.4 0.001 0 6.00

Lower body (G) 8.2 21.6 < 0.001 2.61 17.33

Lower body (P) 26.9 56.2 < 0.001 13.07 29.33

Lower body (A) 20.9 43.3 < 0.001 7.19 18.67

Lower body (L) 18.7 43.5 < 0.001 5.23 30.00

Middle-upper body (F, G) 14.1 20.4 0.008 2.61 5.33

Middle-upper body (F, P) 35.3 60.7 < 0.001 13.07 34.67

Middle-upper body (F, A) 40.2 68.3 < 0.001 13.07 42.67

Middle-upper body (F, L) 38.8 64.3 < 0.001 8.50 56.00

Fundus (G) 5.8 12.1 0.001 2.61 8.67

Fundus (P) 17.1 35.7 < 0.001 8.50 21.33

Fundus (A) 21.3 38.5 < 0.001 14.38 17.33

Fundus (L) 36.3 63.1 < 0.001 18.95 40.67

Middle-upper body (R, P) 34.7 58.7 < 0.001 6.54 17.33

Middle-upper body (R, A) 32.1 57.7 < 0.001 19.61 40.67

Middle-upper body (R, L) 33.5 50.0 < 0.001 13.73 24.00

Angulus (P) 33.1 63.7 < 0.001 27.45 64.00

Angulus (A) 27.5 56.7 < 0.001 12.42 53.33

Angulus (L) 9.8 22.4 < 0.001 3.27 19.33

A, anterior wall; G, greater curvature; F, forward view; L, lesser curvature; P, posterior wall; R, retroflex view.
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