
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 44, NO. 12, DECEMBER 1996 1693 

Evaluation of the Exact Union Bound for 
Tre.llis-Coded Modulations Over Fading Channels 

C. Tellambura 

Abstract--An analytical technique is presented for computing 
the exact union bound on the average bit error probability of 
trellis coded modulation schemes over Rayleigh, Rician, or shad- 
owed Rician-fading channels. To this end, an integral expression 
is derived fior the painvise error event probability (PEP). Existing 
bounds can be obtained as special cases of this expression. It 
turns out that a Gauss-Chebysev quadrature rule offers excellent 
accuracy for this integral. By extension, the exact union bound 
(Le., the weighted sum of all exact PEP’S of a code) can readily 
be evaluated. This method has the same complexity as the union- 
Chernoff hound, and a few examples are given to show its 
application. 

I. INTRODUCTION 
HE USE of trellis-coded modulation (TCM) in Gaussian T channels confers power and bandwidth efficiency [ 11, and 

its use over mobile fading channels has recently received con- 
siderable attention. Accurate performance evaluation of TCM 
schemes is often needed, and the most useful performance 
measure is8 the average bit-error probability Pb. 

The standard approach bounds Pb using a union bound (an 
infinite series) 

Z , % E C  

where le is the number of input bits per encoding interval, 
the pairwise error event probability (PEP) P(z  -+ 2) is the 
probability that the decoder selects the sequence 2 # z the 
transmitted sequence, a(z -+ z) is the number of bit errors due 
to this event, and C is the set of all legitimate code sequences. 

To evaluate the union bound requires the Chernoff bound for 
each PEP. A transfer function, derived from a state diagram, 
enumerates all possible PEP’S in a closed form, allowing the 
evaluation of an upper bound on Pb (hereafter referred to as the 
union-Chemoff bound). That is to say, one finds a Chemoff 
bound of the form 

n 

where x, and 2, are the components of z and 2, respectively. 
This, when used in conjunction with (l), yields the union- 
Chernoff Ibound. Clearly, the union-Chemoff bound bounds 
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the right-hand side of (1). For fading channels, the Chemoff 
bound is slack (e.g., 4 dB away from the exact solution for 
a length two error event in Rayleigh fading), resulting in a 
loose upper bound on Pb. This drawback leads to a search for 
tighter upper bounds. A tight bound on the PEP, derived in 
[2] and [3], is asymptotically identical to the exact PEP and 
differs from the Chernoff bound only by a multiplier less than 
unity. Another technique [4] derives an exact expression for 
the PEP. This method cannot be used with the transfer function 
approach as it involves evaluating the m most significant terms 
of the union bound (1). Since it ignores the tail (the remaining 
terms), it yields a close approximation to Pb at high SNR’s 
(signal-to-noise ratios), not an upper bound. By bouinding the 
tail with a union-Chemoff bound, [5] offers a hybrid solution. 

This paper provides a method to evaluate the exact union 
bound on Pb. That is, an exact expression for the PEP is 
used in the union bound (l), not an upper bound. To achieve 
this, a new integral expression for the PEP is derived, which 
generalizes most of the previous work. This method ilpplies to 
TCM transmitted over Rayleigh, Rician, or shadowed Rician- 
fading channels using coherent detection with ideal channel 
state information (CSI) and ideal interleaving. Special cases 
of the integral expression include the Chemoff bound [6], the 
bound [3], and an approximation [7]. Our results show that 
the bound [3] can also be extended to Rician channels. 

In the following, a rate 2/3, four-state 8PSK trellis code 
[8] is used as an example. The trellis diagram of this code 
is shown in Fig. 1. Its bitwise input ( b ,  , b,  ) and output 
(cf I, cp)  , cf)) relationship is [5 ]  

(1) ( 2 )  

c(l) - (2) 
k - b k - l  

k 
, ( 2 )  = b p )  

&3) , - - b k P l  (1) @@I. 

The following model and simplifying assumptions are used. 
For an input M-ary phase shift keying (MPSK) symbol z ,  
(i.e., x, E {exp (j27rk/M)/k = 0,1, e ,, , M - l} and 3 = 
fl), the channel output 11s [9] 

9, = a,& + v, 

where a, is a fading amplntude, and v, is a Gaussian noise 
sample. The following are assumed. 

A l :  The an’s are independent and identically distri- 
buted random variables (i.e., ideal interleaving/ 
deinterleaving). 

A2: Each a, remains constant during a symbol interval 
&e., nonselective slow fading). 
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Fig. 1. Rate 2/3 four-state convolutional encoder. 

A3: The receiver has ideal CSI @e., a, is known to the 
receiver). 

11. INDEPENDENT RAYLEIGH FADING 

Since each fading amplitude a,  is Rayleigh-distributed, the 
power variable u = a: has a chi-square probability distribution 
with two degrees of freedom. Thus, its moment generating 
function (MGF) E{e-""} is [lo] 

1 
M"(S) = ~ 

( S + l ) '  

Consider two codewords x = {XI, 22,. . . , XN} and 2 = 
{?I, 2 2 , .  . , , 2 ~ }  of length N.  The PEP conditional on the 
fading amplitude sequence a = { a l ,  a2, * . . , U N }  is [91 

A A whereq = - { n : ~ ,  # B,,n = l , . . . ,N},S;  = yslxn-?n12/4, 
and ys = E,/No is the average signal-to-noise ratio. Let the 
number of elements of q be L and L 5 N .  The problem is to 
find the average of the above over the {a,}. 

The complementary error function has an integral definition 
[ l l ,  7.4.111: 

d t .  (4) 

By combining (3) and (4) the conditional PEP can be expressed 
as an integral. Thus, with E ( z )  denoting the average of z, 
one gets 

r r 1 1  

TABLE I 
PEP ON RAYLEIGH FADING 

m 
2 4 5 (dB) Exact 

0 8.16 x lo-' 7.98 x lo-' 8.16 x lo-* 8.16 x 
5 1.97 x lo-' 1.96 x lo-' 1.97 x lo-' 1.97 x lo-* 

15 3.4716 x 10V4 3.4711 x 3.4716 x 3.4716 x 10V4 
20 3.6581 x 3.6581 x lo-' 3.6581 x 3.6581 x 

i o  3.0 x 10-3 3.0 x 10-3 3.0 x 10-3 3.0 x 10-3 

since the first integrand is the product of the factors 
exp [-aES2(t2 + l)], and since the average of each factor 
follows from (2). The second expression is the exact PEP 
as an integral. For a given sequence of S,, one can use 
partial factors and evaluate each integral, and that would be 
equivalent to the residue method given in [4]. 

The above can be approximated with a Gauss-Chebysev 
quadrature formula, and details are given in the Appendix, 
leading to the following: 

a where 62j = 6; sec' [ ( 2 j  - l ) r / 4m]  and m is a small positive 
integer. As m increases the remainder term R, becomes 
negligible, as demonstrated by the example below and the 
bounds in the Appendix, where it is shown that lRml 5 
~ 1 y ~ - ~ ~  as ys -+ 00 for some K ~ .  

Example 1: Consider an error event with the squared dis- 
tance set of {2,4}, which is the shortest error event of 
Ungerboeck's eight-state 8PSK trellis code [4]. Consider its 
reception in a Rayleigh fading channel with perfect CSI. For 
this error event, Table I compares the summation formula (6) 
and the exact PEP, derived in [4, eq. (29)]. The excellent 
accuracy of (6) is evident; for example, even the two-point 
sum is exact at 20 dB. Further numerical experiments for other 
error events confirm that (6) is very accurate in all cases, but 
for longer error events, (i.e., L > 2 )  it may be necessary to 
use slightly larger m values; however, m = 5 appears to be 
enough for most error events (then the error term vanishes 
with y;l0 for ys -+ m). 

Since the explicit evaluation of ( 5 )  is made difficult by the 
presence of the factors 1 + S:(t2 + 1) in the denominator, it is 
possible to simplify these factors to get some upper bounds, 
as considered in the following examples. 

A. Chernoff Bound 

from ( 5 )  
Clearly, since 1 + 6;(t2 + 1) 2 1 + 6: for real t ,  one has 
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This is tlhe familiar Chernoff bound on the PEP and was 
first derived in [6]. The atypical derivation' of this paper 
reveals why the Chernoff bound is slack. For long error events 
(L >> 1) , the integrand in (5) decays rapidly and the main 
contribution to the integral arises from the vicinity of t = 0. 
Then, neglecting t in the denominator infuses a relatively 
less error. However, for most TCM schemes Lmin = 2 and 
the Chernoff bound is, therefore, weakest for such codes, 
improving as L increases. 

B. Asymptotic Bound 

that 
Revisiting (5 ) ,  since 1 + 6:(t2 + 1) > 6:(t2 + 1), one finds 

where 

1 I 2L-1  00 

B(L) = a - 1 .I ( t 2  + l)L+1 dt = F (  L ) 
Equation (8) is identical to [7, eq. (3)]. In [3] and [7], it is 
described as an "approximation," but clearly it is a true upper 
bound. Under asymptotic conditions (ys >> I ) ,  it is tighter 
than the Chernoff bound by the factor B ( L ) .  

C. Another Upper Bound 

x,, = inax { x n :  n E 7 ) .  Thus 
Let zn fi d m , x m i n  = min{x,:n E 7 )  and 

where 

(9) 

I + xmm k=O 

This bound (9) is derived in [2] and [3] following a completely 
different approach, with a recursive formula for I (  L ,  x) given 
in [3, (B. 3)]. Here, I ( L ,  x )  has been derived using the formula 
for the m o r  performance of binary PSK with Lth-order 

'For a continuous random variable 2 denoting the metric difference, the 
Chernoff bound is given as P( I 2 0)  5 E { e X ' }  where X 2 0 is to 
be optimized to yield the tightest bound For example, In [6 ] ,  E{ ex' Iu} is 
optimized first, and the result is averaged over the probability distribution of 
u to bound the unconditional probability, P( r 2 0 )  

diversity in Rayleigh fading [ 10, 7.4.151. Moreover, since the 
derivation of (9) rests on the inequality 

U(x,,2 + 1) 2 (xk,,t2 + qL 
ncv 

several observations about the tightness of the upper bound 
can be made, as shown below. 

1) The bound is tightest for the L = 2 case and relatively 
loosens as L increases. 

2) The tightness of the bound improves if there are repeated 
values in the set (12, - &I2:n E 7) .  

3) Asymptotically with ys, the bound is identical (regard- 
less of the value of L )  to the exact PEP. This follows 
from the fact that as ys -+ oo,xn + 1 'dn. Thus, 
xmin M x,,, M 1. 

Since x,,, < 1(xmln -+ 1 as ys -+ oo), it follows that 

This coupled with the bound (9) leads to (8). Thus, the 
differences between the bounds (8) and (9) are minor in terms 
of accuracy. 

D. Union Bound 
Consider the exact evaluation of the union bound (1). Let 

2 = (Zl, 22, . . .) be a vector of formal variables. ]Define the 
generating function of the form 

Z,2€C ncll 

where I is another formal variable. Moreover, let 

The number of distinct values that Dn( t )  can take depends 
on the size of the signal constellation. The transfer function 
T ( D ( t ) , I )  can be determined by the usual techniques.2 For 
instance, a signal flow graph may be used with the branch 
labels of the form IvD,( t ) .  By contrast, for the union- 
Chernoff bound, the branches are labeled with I" (11 + 6:)-', 
resulting in the usual transfer function bound [5 ] .  

Combining (l), (5 ) ,  and (lo), and using the standard analysis 
[14], one obtains 

It is interesting to note that the union-Chernoff bound is 
obtained by simply replacing the integral with the integrand 
evaluated at t = 0. Moreover, the use of Ostrowski's inequal- 
ity of integrals for monotonic functions [15] shows 

1 00 

T(D( t ) ,  I )  d t  5 iT(D(O) ,  111 

21n general, however, coded modulation schemes are nonlinear (i.e., Pb 
depends on the transmitted sequence). A research topic in its own right, this 
topic is not treated further here. We simply assume that the trellis code under 
consideration is uniform [12], [13]. 
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where the right-hand side is the transfer function associated 
with the union-Chernoff bound. The bound (1 1) can readily be 
evaluated via a suitable numerical method. But it is simpler 
to use the summation formula (A.3). Since T ( D ( t ) , I )  is a 
function of t2 + 1, one has 

T ( D ( t ) , I )  = $(t2 + 1,I). 

Using the method in the Appendix, the union bound is eval- 
uated as 

where the partial derivative can be computed as the normalized 
first difference [ 141. 

Example 2: Consider the reception of rate 112, two-state 
trellis-coded QPSK in Rayleigh fading. This coded modu- 
lation is analyzed in [16, Example 9.11, which treats both 
asymmetric and symmetric QPSK signal sets. However, for 
simplicity, only the symmetric case (i.e., signal points are 
exp ( jnn/2) , j  = a, n = 0 , .  . . , 3 )  is considered here. 
Using branch label gains, Dn(t) ,  the transfer function becomes 

Substituting this in (11), carrying out the integration, and 
evaluating the derivative at I = 1, one has 

This is the exact union bound for this coded modulation. By 
contrast, the union-Chernoff bound for this case is found to 
be [16, eq. (9.45)] 

Asymptotically, the right-hand side of (13) tends to 3/87;, 
while that of (14) tends to 217;. This implies that the union- 
Chernoff bound is away from the exact union bound by 3.6 dB 
at high SNR's, and about a 4 dB difference can be observed 
between the union-Chernoff bound and the simulation results 
[16, Fig. 9.71. 

Example 3: Consider the trellis-coded 8PSK scheme, 
whose trellis diagram is shown in Fig. 1. Since the modified 
transfer function (based on the union-Chemoff bound) is 
derived in detail elsewhere [5] ,  the same results can be used, 
the only difference being that the weight profiles are obtained 
using D n ( t ) ,  not Dn(0).  The modified transfer function is 
given as 

where 

Chernoff bound 

Simulation 

I 
8 10 12 14 16 18 20 22 24 26 

10.~1 
- 
Eb/No (dB) 

Fig 2. 
with perfect CSI and ideal interleaving 

The performance of the four-state 8PSK TCM [SI In Rayleigh fading 

and the branch gain are given as 

Q 1  = I D 4 ( t )  = /D1 ( t )  
a2 = a5 = /D2(t)  0110 = I  
a3 =12Dz(t) ail ~ / ~ D 2 ( t )  
a4 = /D3( t )  a13  D1 ( t )  

=Cy7 1 0.5I2(D1(t) + D3(t ) )  0 1 4  = D ~ j ( t )  
ag =a12 = 0 .5 I (Dl ( t )  + 0 3 ( t ) )  ai5 = D s ( t ) .  

Recall the definition 6: yslz, - i , I2/4. For this code, the 
set of values of / z ,  - in 1' is (2 - a, 2,2 + a, 4}, and 
Dn(t )  (n = 1, . . . , 4 )  have been calculated using this set of 
squared distances. Based on the above, the exact union bound 
on Pb is plotted in Fig. 2 as a function of Eb/No (for this code, 
E,  = 2Eb).  For this calculation, the two expressions have 
been compared: (1 1) evaluated using numerical integration 
(seven-figure accuracy) and the summation formula (12) with 
m = 5. Both methods yield virtually the same answer for 
the considered range of SNR's. Simulation results, the union- 
Chernoff bound, and the bound (9) with the transfer function 
approach [2, Theorem 21 are also shown in this figure. The 
general weakness of the Chernoff bound is clearly evident. 
However, the union-Chernoff bound is almost parallel to the 
exact union bound. Thus the gap can be bridged by some sort 
of tightening factor. (9) achieves this goal. Finally, the exact 
union bound itself becomes rather loose for low signal-to-noise 
ratios (SNR's). 

- 

111. RICIAN FADING 

Now the distribution of the variable u = u i  relates to the 
noncentral chi-square distribution. Its MGF can be shown to 
be [lo] 

where K represents the ratio of average power in the line- 
of-sight (LOS) over that in the scattered component. Typical 

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 23, 2009 at 18:10 from IEEE Xplore.  Restrictions apply. 



TELLAMBURA: EVALUATION OF THE EXACT UNION BOUND FOR TRELLIS-CODED MODULATIONS I697 

\ 
- \  

values of K for the mobile satellite channel are 5 N 10 dB. By 
employing a derivation similar to that used for (3, one finds 

As previously, this is the exact PEP as an integral, and for 
K = 0, it reduces to the Rayleigh case (5). 

To evaluate the exact union bound follows the same ap- 
proach as in Section 11. Either (11) or (12) can be used, and 
the only difference is that the branch gains now take the form 

A l + K  
1 + K + S:(P + 1) Dn(t)  = 

.exp (- 
Before proceeding further, note that an upper bound akin to 

(9) can be obtained. For t 2 0 

and the first factor on the right-hand side is reminiscent of 
the Rayleigh fading case. This is evident if 6: is replaced 
by (1 + K)S:. Thus, (17) can be bounded by the product of 
an integral expression similar to ( 5 )  and constant exponential 
factors. In other words, t is set to zero in the exponential 
factors in the integrand (17) to yield a bound similar to (9). 
By following the method in Section 11, one has 

A where Z n  = JS:/(l + K + 6;). Note that the definition of 
2n encompasses the previous definition of 2,. 

The integral (17) can be expressed as a sum by using a 
Gauss-Chabysev m-point integral formula, and the details are 
given in the Appendix. It follows that 

m 

A where S$ = 6: sec2 [ ( 2 j  - 1 ) ~ / 4 m ] .  The remainder term R, 
is negligible, as demonstrated by the example below and the 
bounds evaluated in the Appendix . 

Example4: Consider the shortest error event of Unger- 
boeck’s eight-state 8PSK trellis code [4], used in Example 
1, and its reception in a Rician fading channel ( K  = 5 dB) 
with perfect CSI. The exact expression for the PEP (17) 
is numerically computed to seven-figure accuracy in Table 
11, along with the summation formula (19). The excellent 
accuracy of (19) is evident; for example, even the two-point 
sum has an accuracy of for SNR’s greater than 10 dB. 
Further numerical experiments for other error events have 
confirmed that (19) is very accurate in all cases. 

TABLE I1 
PEP ON RICIAN FADING 

m 
2 4 5 ys (dB) Exact 

0 6.04 x 5.96 x 6.04 x lo-’ 6.04 :I( lo-’ 

10 4.19 x W4 4.203 x 4.19 x 4.19 .x 
15 2.079 x 2.078 x 2.079 x 2.079 x 
20 1.4365 x 1.4362 x 1.4365 x 1.4365 x 

5 7.8 x 10-3 7.9 x 10-3 7.8 x 10-3 7.8 10-3 

Bound Eq. (la) 
Exact Union 

Simulation 

- _ _ _ _  
- - _ _  

Fig. 3. 
(IC = 5 dB) with perfect CSI and ideal interleaving. 

The performance of the four-state 8PSK TCM [8] in Rician fading 

Example 5: Following a method similar to that of Example 
3, the exact union bound on Pb for the same four-state 
8PSK TCM scheme in Rician fading is plotted in Fig. 3. It 
is computed using the summation formula (12) with m = 
5 .  Simulation results, the union-Chernoff bound, and the 
bound (18) with the transfer function approach [2, Theorem 
21 are also shown in this figure. The general weakness of 
the Chernoff bound is evident. In this section (9) has been 
extended to the Rician case (17). In both Rayleigh and Rician 
cases, the bound achieves improved accuracy, but to a lesser 
degree for the Rician case. 

IV. SHADOWED RICIAN FADING 

The pdf of a shadowed Rician variable is [ 5 ] ,  [l7] 

a > O  

where q ( 2 )  = (lnz - po) ’ / (2do) + (u2 + z2) /bo ,z  is the 
log-normal LOS component, i.e., z = eu and ‘u is Gaussian 
with mean po and variance do. The scattered component in 
the signal is Rayleigh distributed with a mean squared value 
of bo/2 .  I o ( z )  is the zero order modified Bessel function. 
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As before, our development needs the MGF. Thus 

where dl = l/d27rdo 

Rp is a remainder term and p is a small positive integer. By 
integrating over a ,  the middle term in (20) is obtained. The 
third step is in fact the Gauss-Hermitian integral formula [ 11, 
25.4.61 obtained by the substitution t = (In z - p o ) / f i .  The 
weights w3 and abscissas t, for p 5 20 can be found in the 
same reference. Rp vanishes for large p values (e.g., p N 10). 

Now the performance evaluation can proceed as before. The 
exact PEP is obtained via (17) or (19), and the branch gains 
take the form Dn( t )  = Mu(6:(t2 + 1)) from (20). 

Example 6: As previously, the exact union bound on Pb 
for a rate 213, eight-state 8 PSK TCM scheme in shadowed 
Rician fading is plotted in Fig. 4 as a function3 of Eb/No. This 
code is a well-known Ungerboeck code [l], and its encoder 
transfer function is derived in [5]. In developing the transfer 
function, the appropriate branch gains must be used (see above 
and Section 111). For this computation, the summation formula 
(12) with m = 5 and a 20-point Hermite rule [i.e., p = 20 
in (20)] have been applied. Simulation results and the union- 
Chernoff bound are also shown in this figure. Once again the 
general weakness of the Chernoff bound is evident. The exact 
union bound is very tight for Pb 5 l op3 ,  but gets rather loose 
for low SNR’s. 

V. CONCLUSION 

In this paper, the exact union bounds on average bit- 
error probability of TCM schemes over Rayleigh, Rician, and 
shadowed Rician channels have been derived. To achieve this, 
the PEP has been expressed as an integral, and some existing 
results have been derived as special cases. The quadrature 
formula for this integral turns out to be remarkably accurate. 
The same formula can be used to compute the exact union 
bound on the performance. 

The exact union bound is very accurate for Pb 5 lop3, but 
for low SNR’s it gets rather loose. Surprisingly, some previous 
bounds [2], [7] are as good as the exact union bound for high 
SNR’s. The evaluation of the exact union bound, however, 
is no more complex than these methods. Our results can be 
extended to the diversity reception of TCM, in particular, for 
maximal ratio combining with ideal CSI [ 181. 

Unlike the case of Rayleigh or Rician-channel models, the mean 7 is not 
equal to unity for this model This factor has been taken into account when 
the results were computed 

- 
Eb/No (dB) 

Fig 4 The performance of an eight state 8PSK TCM scheme [l] in a 
shadowed Rician fading channel with perfect CSI and ideal interleaving The 
shadowed Rician fading parameters are [17] = 0 115,bo/2  = 0 158, 
and p = 0 115 

APPENDIX 

error bounds. Consider the integral 
Here, the approximation (6) is developed along with some 

Using the substitution y = l / ( t2  + l), one has 

This can be reduced to [11, 25.4.381 using 2y - 1 = x, which 
can be approximated by a Gaussian quadrature formula, using 
orthogonal Chebysev polynomials of first kind. Accordingly, 
one has 

where R, is a remainder term. It can be upper bounded [ 11, 
25.4.381 to give 

Applying (A.3) to (5) can be done with the function 

for a given error event. 
Using Maple, a popular computer algebra system, the bound 

(A.4) is calculated for error events with squared distance sets 
{2,4} and {2,4,4} in Table I11 and Table IV, respectively. 
These values confirm the excellent accuracy of (A.3) in this 
case. 

The right-hand side in (A.4) can also be bounded using the 
theory of analytic functions. Consider the complex x (= z+zy) 
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TABLE I11 
BOUND ON R,  

m 
7 8  (dB) 2 4 5 

5 5.46 x 10-4 3.87 x 10-7 9.74 x 10-9 
10 5.46 x 3.87 x lo-” 9.74 x 
15 5.46 x lo-’ 3.87 x 9.74 x lo-’’ 

TABLE IV 
BOUND ON R,,, 

m 
Ys (dB) 2 4 5 

5 3.12 x 1 0 - ~  3.66 x 1 0 - ~  9.57 x io-g 
10 3.12 x lov6 3.66 x lo-” 9.57 x 
15 3.12 x lo-’ 3.66 x lO-I5 9.57 x lo-’’ 

plane and let p = min (26: + 1: n E 7 7 ) .  Then f ( x )  (A.5) is 
analytic in the region ( z (  < p .  It can be shown that [19] 

where C is any contour that contains the real line -1 5 x 5 1 
in its interior, L(C)  is the length of C , M c  is the maximum 
modulus of f ( z )  along C,  and 6 is the minimum distance from 
points of C to points of the segment -1 5 2 I 1. Take C 
as the circle 1x1 = p, 1 < p < p .  Then it can be shown that 
M c  = max l f ( z ) I  occurs at x = h p .  The peak at x = - p  
becomes larger than the other as p -+ p .  Therefore, since 
6 = p - 1, one finds that 

assuming 2m + 1 > L. Selecting p = j3 that maximizes the 
denominator, then ((2m + 1)b = p ( 2 m  + I - L )  + L ) ,  and 

where the: constant 

Recalling the definition of 3, as ys + 00 implies p + 00, 

one has 
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