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Abstract
The purpose of this research is to select the best features to have a high rate of
motion classification for controlling an artificial hand. Here, 19 EMG signal
features have been taken into account. Some of the features suggested in
this study include combining wavelet transform with other signal processing
techniques. An assessment is performed with respect to three points of view: (i)
classification of motions, (ii) noise tolerance and (iii) calculation complexity.
The energy of wavelet coefficients of EMG signals in nine scales, and the
cepstrum coefficients were found to produce the best features in these views.

Keywords: wavelet transform, wavelet packet, cepstrum, cumulant, artificial
neural network (ANN), integral absolute value (IAV), auto regressive (AR),
principal component analysis (PCA)

1. Introduction

It has been proposed that the EMG signals from the body’s intact musculature can be used
to identify motion commands for the control of a prosthetic hand (Tucker and Liu 1999,
Christodoulou and Pattichis 1999). Researchers have been working on this issue for several
decades. The critical problem of these investigations is the choice and computation of effective
features from the signals. They must permit the amputee’s volitional muscle control to be
monitored in a way that permits accurate estimation of the state of muscle activation. Further,
the states of muscle activation must be mapped on to the desired prosthetic control operations.
In this way, Graupe and Cine showed that a fourth-order time-series model of the EMG signals
can be classified by a linear discrimination function (Graupe and Cine 1975), but this method
involves a high complexity in computation. The results of Kelly and Parker’s work illustrated
that a Hopfield neural network could produce AR coefficients from the EMG signals in a
shorter time (Kelly and Parker 1990). Furthermore, Saridis and Gootee presented integral
absolute value and zero-crossing features that could produce appropriate feature space in
order to classify arm motions (Saridis and Gootee 1983). Zardoshti et al (1995) extracted
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some features such as the integral of absolute value, variance, number of zero crossings and
auto-regressive model parameters from upper limb EMG signals and then evaluated them with
K-nearest neighbour (a non-parametric classifier). They presented a new feature, the EMG
histogram, which is very suitable for the classification of hand motions, and also showed that
this feature is appropriate to calculate both speed and noise tolerance. Chang et al (1994) used
the variance of the rectified wave envelope and IAV features and Mahalonobius distance to
classify four preshaping grasp movements. They also showed that these features could classify
movements up to 90% accuracy. Kang et al (1995) compared AR and cepstrum coefficients
and showed that the cepstrum coefficients are quite useful to improve classification rate. The
time–frequency transform has also been introduced as a new mathematical approach to the
time–frequency domain. Biomedical signals, especially EMG signals, have been processed
by time–frequency transforms in order to extract more representative features to improve
the rate of classification of motions. In this way, Jung et al (1994) imposed the Wigner–
Ville transform on the upper limb EMG signals to classify six different movements. Wellig
and Moschytz (1999) also used packet wavelet transform to decompose EMG signals and
reduced the misclassification rate. Liyu et al (1999) distinguished four forearm motions by
decomposing two channels of EMG signals with a wavelet transform in six levels, and finally
classified these coefficients by an ANN classifier. Abel et al (1998) by applying the inter-scale
local maximum method on the wavelet coefficients of EMG signals presented new features,
which improved the classification rate among neuropathic, myopathic and normal groups.
Englehart et al (1999) extracted the upper limb EMG signals from four channels and then, by
extracting wavelet coefficients, reduced their dimensions by the PCA transform, and finally
the misclassification rate was decreased. Although the literature includes many papers which
explore the extraction of features from the EMG for controlling prosthetic limbs, there have
been few works which make quantitative comparison of their quality. Overall, a high quality
EMG feature space should have the following properties:

Maximum class separability. A high quality feature space is that which results in clusters
that have maximum class separability or minimum overlap. This ensures that the resulting
misclassification rate will be as low as possible.

Robustness. The selected feature space should preserve the cluster separability in a noisy
environment as much as possible.

Complexity. The computational complexity of the features should be kept low so that the
related procedure can be implemented with reasonable hardware and in a real-time manner.

This paper is aimed at selecting the best features from the three viewpoints mentioned above.
The result of this evaluation can be widely used in some applications such as EMG control of
robots, prostheses and neuroprostheses. For this purpose, we evaluate features that have been
used in the EMG signal processing methods and some new combined features in the wavelet
domain. We first extract 19 features from EMG signals and evaluate them with evaluation
criteria (i.e., Davies–Bouldin and scattering). Next, we propose the data acquisition method
and, finally, we will show the results.

2. Feature parameters

Though a few features are defined in the time domain, most of them are defined in the frequency
and time–frequency domains. The features used in this research are listed below:
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Integral of absolute value (IAV). The IAV of EMG is calculated as

IAV = 1

N

N∑
i=1

xi (1)

where xi is the ith sample and N is the number of samples in each segment.

Variance (VAR). The variance is a measure of the signal power and is calculated as

VAR = 1

N − 1

N∑
i=1

x2
i (2)

where xi is the ith sample and N is the number of samples in each segment.

Wilson amplitude (WAMP). This is the number of times that the difference between two
consecutive amplitudes in a time segment becomes more than threshold (Hui and Park 1998).
The threshold value is 50 µV. It can be formulated as

WAMP =
N∑

i=1

f (|xi − xi+1|)

where

f (x) =
{

1 if x > threshold

0 otherwise.
(3)

This feature is an indicator of firing motor unit action potentials (MUAP) and therefore an
indicator of the muscle contraction level.

Zero crossing (ZC). Zero crossing is the number of times that the signal passes the zero
amplitude axes (Chang et al 1996). It is calculated as

ZC =
N∑

i=1

sgn(−xixi+1)

sgn(x) =
{

1 if x > 0

0 otherwise.
(4)

The number of turns (NT). This feature determines the number of changes in the sign of
the slope in a time segment; in other words, the number of signal peaks in a time segment
(Zardoshti et al 1995).

Mean of amplitude (MA). This feature determines the mean value of the difference in
amplitudes of two consecutive samples in a time segment (Zardoshti et al 1995).

Wavelength. This feature estimates the length of the waveform in a segment and is defined as

W(n) =
n∑

i=n−N+1

|�xi| (5)

where �xi is defined as �xi = xi − xi−1.

Mean frequency. This feature estimates the mean frequency of the signal in a time segment
(Park and Meek 1993).

Histogram. This feature determines the number of signal samples in different amplitude levels
in a time segment, and was introduced by Zardoshti et al (1995). This feature is an extension
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of the ZC and WAMP measures, both of which compare a single threshold to the EMG signal
or a closely related function. In this work the number of levels was set to 9 because the
performance improved significantly as the number of levels was increased to 9.

Auto-regressive coefficients (AR). The simplest time-series model is the AR model, in which
signal samples are estimated by linear combination of their earlier samples. It has been shown
that the EMG spectrum changes with muscle contraction state, resulting in changes in AR
coefficients (Graupe et al 1985). To define the order of the model, various experimental and
theoretical approaches have been proposed (Philipson and Larsson 1988). In the experimental
approach, the order P is considered adequate when an increase in P causes an empirically
insignificant reduction in residual noise. Graupe and Cine showed that the model order P = 4
is suitable for EMG signals (Graupe and Cine 1975), and we therefore used it in our research.

Auto-regressive coefficients were extracted from third-order cumulant. AR coefficients of order
4 are extracted from the third-order cumulant of the signal in a time segment. In this method,
auto-correlation functions are replaced with the third-order cumulant in the Levinson–Durbin
algorithm (Nikias 1993) that is computed as follows:

ckx(m, n) =
p∑

j=1

ajckx(m − j, n) (6)

where P is the model order, m and n are lag elements in two dimensions and K is the interval
index.

Auto-regressive coefficients were extracted from fourth-order cumulant. We extract AR
coefficients of the fourth order from the fourth-order cumulant. The reason for calculating
the AR coefficients by the third- and fourth-order cumulants is to obtain them in more
representative features, which can determine the relations among samples in higher orders
and also contain phase information on the signal.

Cepstral coefficients (Ceps). Cepstrum coefficients are a very powerful tool for speech
applications (Cohen 1986). This feature can be calculated as

c1 = a1 cn = −
n∑

k=1

(
1 − k

n

)
akcn−k − an (7)

where ci is the ith cepstrum coefficient and ai is the ith auto-regressive coefficient. The most
important characteristic of this feature is the deconvolution of a signal into two main parts so
that each can be extracted by imposing a lifter in the cepstrum domain. It has been shown that
this feature is very suitable for motion classification (Kang et al 1995).

Energy of wavelet coefficients of the EMG signal in nine scales. EMG signals were decomposed
by wavelet transform into up to nine scales and the signal energy was then determined in nine
scales as components of the feature vector. In this way, we used a bi-orthogonal mother
wavelet, because this basis function had good matching with EMG signals. The reason for
choosing nine scales is that the number of decomposition levels has a direct relation (dyadic)
with the number of samples in each segment. In real-time functions, such as the control of a
prosthetic hand, we are restricted to selecting a limited time for processing. In this paper the
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length of time segments has been selected as 200 ms and the number of samples in this time
interval is 512. Therefore, we decomposed segments into the nine scales.

Energy of wavelet packet coefficients of the EMG signal in nine scales. EMG signals were
decomposed by the wavelet packet transform into up to nine scales and signal energy was
determined in nine scales as components of the feature vector. The advantage of the packet
wavelet in comparison with the wavelet is that the wavelet packet transform decomposes the
signal into both high and low frequencies in dyadic forms. Therefore, the number of feature
components is increased, but the computation complexity is also increased.

Zero crossing of the wavelet coefficients of the EMG signal in nine scales. This feature is the
number of base-line crossings in the wavelet domain in nine scales (Mallat 1991). Therefore,
we have nine dimension vectors as the feature vectors. This feature is suggested in our
approach.

IAV and ZC of wavelet coefficients of the EMG signal in nine scales. Mallat (1991) showed
that the zero-crossing feature in the wavelet domain is a very unstable feature. Therefore to
compensate for this defect, he suggested that if the area between each two crossings of the
base level in the wavelet domain is added, we will have a stable feature. So we used IAV and
zero-crossing features in nine scales in the wavelet domain as a feature vector which has 18
components.

Auto-regressive coefficients calculated by the third-order cumulant of wavelet coefficients.
This feature is used in the time domain and its cluster situations are examined in the wavelet
domain.

Auto-regressive coefficients which are calculated by the fourth-order cumulant of wavelet
coefficients.

3. Evaluation criteria

Generally, the methods of feature evaluation are divided into two: (i) imposing features onto
the classifier and measuring the misclassification rate, and (ii) evaluation of the feature space
by statistical criteria. The first method has the disadvantage that the evaluation of the features
depends on the classifier type (neural network, statistical classifier, neuro fuzzy classifier, etc).
The second method is not problematic in this sense and tries to quantify the suitability of
the feature space. There are many methods for feature evaluation in feature space such as
Mahalonobius distance, Battacharia distance and maximum entropy (Fukunaga 1993). We
used two parametric methods, which can evaluate features straightforwardly, and directly
address the issue of class separability in the feature space. The most important advantage of
these methods is that there is no need to suppose that the clusters have a normal distribution
in the feature space.

3.1. Davies–Bouldin (DB) criterion

This criterion can estimate feature space quality. This parametric method is based on the
scatter matrices of data (Davies and Bouldin 1979). It requires the computation of the cluster-
to-cluster distance. Then the worst condition for each cluster is determined and finally the DB
index is obtained through averaging the worst case separation of each cluster from the others,
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Table 1. List of electrode positions and their specific muscles.

Channel 1 Flexor Carpi Ulnaris
Channel 2 Flexor Digitorum
Channel 3 Flexor Carpi Radialis
Channel 4 Brachio Radialis
Channel 5 Extensor Carpi Radialis Longus
Channel 6 Extensor Carpi Radialis Brevis
Channel 7 Extensor Digitorum
Channel 8 Extensor Carpi Ulnaris

Table 2. List of movements.

1. Strong palmar flexion of wrist 2. Weak palmar flexion of wrist
3. Strong extension of wrist 4. Weak extension of wrist
5. Strong grasping 6. Weak grasping
7. Strong abduction 8. Weak abduction
9. Strong adduction 10. Weak adduction

11. Pinch 12. No motion
13. Thumb extension 14. Supination
15. Pronation

which is calculated as follows:

Ri,j = Si + Sj

Di,j

(8)

where Ri,j is the value of the cluster-to-cluster distance and K is the number of clusters (Davies
and Bouldin 1979). Si and Sj are the dispersions of the ith and j th clusters, respectively, and
Di,j is the distance between their mean values. The DB index is defined as

DB = 1

K

K∑
i=1

max(Ri,j ) i �= j. (9)

In essence, the DB index shows how badly the clusters may have overlap with their nearest
neighbours. Lower values of the DB index imply a higher degree of cluster separability. The
DB index is related to the performance of the linear Fisher discriminant classifier to pairwise
clusters.

3.2. Scattering criterion

This criterion estimates the feature space quality but it differs essentially from the previous
criterion, which compared the cluster situations two by two. This means the previous criterion
cannot assess all clusters simultaneously, and can only give an averaging of the worst situation
distances of two by two clusters. On the other hand, the scatter criterion considers clusters
altogether, but it cannot report the exact situation of a cluster in comparison with the others. In
order to calculate a formula that offers this criterion, first, the covariance matrix of between-
cluster means is determined and then the covariance matrix of the classes is determined. To
achieve the value of the scattering criterion, the trace of the covariance matrix of between-
cluster means is divided into the trace of the summation of the covariance matrix of all classes
(Fukunaga 1993). We define the matrix as follows:

Sw =
k∑

i=1

piE((x − mi)(x − mi)
T ). (10)
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Table 3. The results of the feature evaluation from the three view points.

Results of Results of
evaluation by evaluation by Sensitivity of Calculation
scattering Davies–Bouldin feature space time in

Features criterion criterion to noise seconds

1. IAV 1.3505 × 10−4 40.9646 1.1392 0.00001
2. Variance 0.0016 66.9789 0.7976 0.0047
3. Wilson points 1.0223 × 10−4 30.6471 0.3168 0.0180
4. Zero crossing 3.1223 × 10−4 457.8970 0.7319 0.0133
5. NT 1.6992 × 10−4 69.9430 0.5749 0.0707
6. MA 1.6973 × 10−4 69.6420 0.6240 0.0733
7. Wavelength 1.1195 × 10−4 51.5342 0.7781 0.0260
8. Median frequency 0.0268 35.6197 0.8955 0.0593
9. Histogram 0.0013 38.8624 0.3954 0.5860

10. AR coefficients 4.8073 × 10−4 962.0877 1.5487 0.5740
11. AR coefficients from 0.0451 16.1158 0.8341 0.1493

third-order cumulant
12. AR coefficients from 0.0578 11.9674 3.8201 0.2427

fourth-order cumulant
13. Cepstrum coefficients 0.6774 1.9789 0.7231 0.0067
14. The energy of wavelet 2.7831 1.7843 0.1942 0.1100

coefficients of EMG signal
in nine scales

15. The energy of wavelet 67.3726 0.1247 0.1134 10.2431
packet coefficients of EMG
signal in nine scales

16. Zero crossing of wavelet 0.3229 5.0129 122.1186 0.1747
transform of signals
in nine scales

17. IAV and ZC of wavelet 1.3505 × 10−4 10.3295 3.0186 0.0001
coefficients of EMG signal
in nine scales

18. Auto-regressive coefficients, 0.0071 21.3787 15.1732 0.7580
extracted from third-order
cumulant of wavelet coefficients

19. Auto-regressive coefficients, 0.0169 12.3694 25.3436 1.1680
extracted from fourth-order
cumulant of wavelet coefficients

Sw is the covariance matrix of all classes in which mi is the mean of the ith class and x is the
sample vector.

SB =
k∑

i=1

pi(mi − mmean)(mi − mmean)
T . (11)

SB is the covariance matrix of between-classes means in which mmean is the mean of all the
classes means. Finally, the value of the scattering criterion is calculated as

J = trace(Sw)/trace(SB). (12)

It is obvious that the quality of the space feature will improve when the value of the criterion
decreases.
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Figure 1. The evaluation of 19 features by scattering criterion. To show the differences on a better
scale, the non-linear transform (log) is imposed on the scattering values.

Figure 2. The evaluation of 19 features by the Davies–Bouldin criterion. To show the differences
on a better scale, the non-linear transform (log) is imposed on the scattering values.

4. Data acquisition and data processing

The signals were taken from ten disabled people. Each person had a hand amputated at the
wrist and their ages ranged from 25 to 35. They were asked to sit at the platform and try to
imagine some movements, which are listed in table 2. During this procedure, EMG signals
were taken from eight gold electrodes that contacted anatomically on eight effective muscles of
their forearms (which are involved with the related movements). The set-up in the laboratory
of the Medical Physics faculty of Tarbiat Modares University was used to take the signals.
The muscles and related channels are listed in table 1.
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Figure 3. The sensitivity of 19 features against simulated noise.

Figure 4. The evaluation of features from the complexity of computation view point.

To avoid cross talk between channels, the diameter of the electrodes selected was 6 mm.
The instrument had eight channels and the sampling rate was selected to be 2975 Hz. Both
the first and the final parts of the signals were truncated to obtain reliable signals. The latter
improvement was achieved through avoidance of fatigue effects. Signals were passed through
the nine-order Butterworth low pass filter to enhance their quality. The patients were asked to
repeat each motion 20 times in order to get significant results. This resulted in a statistically
significant set from the samples. The F-test was performed to assure that there was significant
difference between the results of the evaluation features. The T-test was then imposed between
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every two sets of feature evaluations. Finally, the patients were asked to perform 15 defined
movements, which are listed in table 2.

To have significant results from feature evaluation, the F-test and T-test were performed
on scattering and Davies–Bouldin results. All results were significant, which means in other
words that the p value has been lower than 0.05 for all evaluation results. For processing
the data, we first considered 512 samples or 200 ms for window length. Window overlap
was considered to be 50%, and features were extracted from segments, and finally the above
criteria were applied to the features.

5. Results

The results of the feature evaluation from the three view points of movement classification,
noise tolerance and calculation complexity are given in table 3. Four graphs are depicted to
clarify results from table 3 in figures 1, 2, 3 and 4 respectively on different scales. Noise
sensitivity of a feature space is described through noise tolerance. Noise usually involves
disturbance movements with low frequency and also line noise. If the value of this sensitivity
is very low, it could be judged that the feature is very robust against the noise. To simulate
real noise, two different noises are considered, where one of them simulates the electrical
power supply (50 Hz), and another one is a random noise. The amplitude of each noise
is one tenth of the amplitude of the peak-to-peak range of the EMG signals. Calculation
complexity is an important factor in online applications, particularly in artificial hand control.
The results illustrate that the features of energy of wavelet packet coefficients, energy of
wavelet coefficients and cepstrum coefficients of EMG signals present the best results from
the classification and noise tolerance view points respectively (table 3). Although wavelet
packet transform leads to the best results for these two approaches, it drops dramatically
through calculating run time. Over all, the energy of wavelet coefficients of EMG signal in
nine scales shows the best result through averaging compared to the others.

6. Conclusion

High rates of classification of movements with respect to the classification rate, noise tolerance
and computational complexity were evaluated from the optimum and effective features view
points. Nineteen features are used to evaluate EMG signals in order to control a prosthetic hand.
The results presented here have also important implications to other applications controlled by
EMG such as robotics or neuroprosthetic devices. Two statistical criteria including Davies–
Bouldin and scattering criteria were used to increase estimation of feature space quality. The
Davies–Bouldin criterion considers cluster situations two by two, and the scattering criterion
covers all cluster situations together. Both criteria yielded similar results.

The F-test and T-test were applied to features to assure result validation. The p value was
less than 0.05 in all results.

The results indicate that the energy of wavelet coefficients in nine scales and cepstrum
coefficients, which were selected in the evaluation procedure, lead to the best features.
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