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ABSTRACT 

We present our evaluation of a compact laser system made of a 795 nm VCSEL locked to the Rubidium absorption line 

of a micro-fabricated absorption cell. The spectrum of the VCSEL was characterised, including its RIN, FM noise and 

line-width. We optimised the signal-to-noise ratio and determined the frequency shifts versus the cell temperature and 

the incident optical power. The frequency stability of the laser (Allan deviation) was measured using a high-resolution 

wavemeter and an ECDL-based reference. Our results show that a fractional instability of ≤ 10-9 may be reached at any 

timescale between 1 and 100’000 s. The MEMS cell was realised by dispensing the Rubidium in a glass-Silicon preform 

which was then, sealed by anodic bonding. The overall thickness of the reference cell is 1.5 mm. No buffer gas was 

added. The potential applications of this compact and low-consumption system range from optical interferometers to 

basic laser spectroscopy. It is particularly attractive for mobile and space instruments where stable and accurate 

wavelength references are needed. 
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1. INTRODUCTION 

 

Stabilization of the output frequency of a semiconductor laser source [1] to reference etalons [2] or atomics reference 

lines [3, 4] has become a well-established tool in a wide field of research topics, and is also implemented in applications 

such as, e.g., atomic clocks and atomic magnetometers [5], interferometry [6], and wavelengths references [7].  

In this paper, we investigate the frequency stability of a new frequency standard composed of a vertical-cavity surface-

emitting laser (VCSEL) locked to a Doppler-broadened absorption resonance on the D1 line of atomic 85Rb, using either 

a micro-fabricated or a traditional cm-scale glass vapour cell. VCSEL diode lasers have the advantages of low power 

consumption, intrinsic mode-hop free single-mode operation, and a good potential for cost-effective mass production, 

making them ideal candidates for the realization of a compact, stabilized wavelength source. The Rb absorption line 

obtained from the vapour cell serves as a reference with good long-term stability, thanks to its small frequency shifts in 

response to external fields and operating conditions [8]. Recently, progress of silicon machining and anodic-bonding 

have resulted in the creation of micro-fabricated absorption cells filled with alkali vapour that allow a more radical 

miniaturization of the whole setup. Similar laser frequency stabilization techniques are employed in micro-fabricated 

atomic clocks and magnetometers [5], but not detailed studies of the obtained laser frequency stability have been 

published.  
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3. CONCLUSIONS 

 
Our results show that Doppler-broadened Rb absorption lines obtained from micro-fabricated vapour cells of mm-scale 

dimensions can be used to stabilize the frequency of a VCSEL diode laser to the level of σVCSEL = 5x10-10 at τ=1 s. This 

stability is essentially the same as obtained with a classical cm-scale vapor cell and could be obtained in spite of the 

relatively large emission linewidth of the VCSEL. Our stability results compare well to the stabilities reported or 

predicted for similar schemes, but without the need for stringent requirements on cell thickness and diameter [11, 12] or 

additional pump laser beams [13, 14]. The simplicity of the used setup and small size of the few key components used 

opens the way for the realization of a low-power frequency-stabilized laser source with an overall physics package 

volume of only a few cm3. 

We finally note that we observed similar frequency stability as reported above also for a VCSEL laser emitting at 

780nm, stabilized to the Rb D2 absorption lines obtained from the same cells. This extends the wavelength range of the 

stabilized laser, without need to change the reference cell. 

 

4.  OUTLOOK AND APPLICATIONS POTENTIALS 

 
Already with its present stability performance, the demonstrated frequency-stabilized VCSEL laser is appropriate for 

applications in miniaturized precision instrumentation requiring a stabilized frequency reference, such as, e.g., atomic 

clocks and atomic magnetometers [5]. Further improvement in short-term frequency stability may be expected when 

stabilizing the VCSEL to Doppler-free saturated-absorption lines that still can be resolved in spite of the relatively large 

VCSEL linewidth [12, 14]. Preliminary experiments on saturated-absorption lines observed with our setup show that the 

short-term frequency stability reaches σVCSEL = 2x10-10 at τ=1 s, which coincides with the resolution limit of the 

wavemeter used. 
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