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Abstract

Background: In studies of recurrent events, it is common to consider a person who has suffered a disease episode
and received curative treatment to be not at risk of suffering a new episode for a duration of time. It is a common
practice to deduct this duration from the person’s observation time in the statistical analysis of the incidence data.

Methods: We examined the concepts of incidence and protective efficacy from a real life point of view. We
developed simple formulae to show the relationship between the incidence rate and protective efficacy between
analyses with and without deducting the curative treatment time from the observation time. We used a malaria
chemoprevention and a malaria vaccine study, both previously published, to illustrate the differences.

Results: Applying the formulae we derived to a range of disease incidence that covered the two case studies, we
demonstrated the divergence of the two sets of estimates when incidence rate is approximately 1 per person-year
or higher. In the malaria chemoprevention study, incidence was 5.40 per person-year after the deduction of
curative treatment time from observation time but 4.48 per person-year without the deduction. The
chemoprevention offered 56.6 and 50.7% protection calculated with and without the deduction, respectively. In the
malaria vaccine study, where disease incidence was much lower than one, the results between the two ways of
analysis were similar. For answering real life questions about disease burden in the population in a calendar year
and the reduction that may be achieved if an intervention is implemented, the definition without deduction of
curative treatment time should be used.

Conclusions: The practice of deducting curative treatment time from observation time is not wrong, but it is not
always the best approach. Investigators should consider the appropriateness of the two analytic procedures in
relation to the specific research aims and the intended use of the results.
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Background
Incidence rate is defined as the number of events di-
vided by the duration of person-time [1–4]. In regression
analysis of disease incidence to evaluate intervention
effects, e.g. by Poisson regression or Negative Binomial
regression, the duration of person-time is used as an off-
set variable and the way the duration is defined affects
the estimated incidence and incidence rate ratio [5]. In

time-to-event analysis, the duration determines who is
to be included in the risk set for evaluation. While the
case definition of a disease episode (in the numerator)
and the technical aspects of statistical analysis methods
are often detailed in study reports, the issue of defining
the denominator of incidence rates has received less
attention than it should.
In prevention trials and epidemiological studies of

disease incidence, the numerator of an incidence rate is
often defined by the occurrence of a set of signs and
symptoms and objective measurements plus the fact of
presentation to a health care facility for treatment. For
example, in a malaria vaccine trial, malaria was defined
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as temperature ≥ 37.5 °C or self-report of fever in the last
24 h, malaria parasitemia ≥ 2500 per μL, and presenta-
tion to a health care facility [6, 7].
Definitions of the denominator of an incidence rate

vary subtly. Table 1 shows the denominators given in
some popular references. Some of them used the phrase
“at risk” in the definition, but some did not. Porta’s
Dictionary of Epidemiology described a “person-time
incidence rate” that used “number of person-time units
at risk” in the denominator and another definition that
does not involve time at all (the latter is not shown in
table).
It is a common practice to consider some duration of

time after each episode of disease as a time period that
the person is not “at risk” of the disease. For example, in
studies of malaria vaccines and chemoprevention, a per-
son who is known to have clinical malaria is given cura-
tive treatment. Antimalarials persist at therapeutic levels
for a variable period depending on the pharmacokinetics
of the specific drugs [6–8]. It is often assumed that mal-
aria symptoms occurring “early” (defined variably) after
initiation of curative treatment are the results of the ini-
tial infection and not the result of a new infection. The
early occurrences of these symptoms are not counted as
disease episodes in the numerator. A variable amount of
time is then deducted from the person-time in the
denominator of the incidence rate, usually 7 to 28 days
depending on the specific malaria drugs used, apparently
with the aim of excluding the period during which
the person is supposed to be not at risk. The person-
time is then said to be “adjusted for anti-malaria drug
use” [6–9]. Similar practices can be found in other
therapeutic areas, such as the management of pul-
monary exacerbations in cystic fibrosis [10, 11] and
prevention of pneumonia [12].
We define “observation time” as the total duration of

time a subject is under observation, i.e. from entry to
exit from study minus temporary absence from obser-
vation (if any), e.g. due to migration. Deducting curative
treatment time from observation time gives “time at
risk”, a denominator that is smaller than that based on
observation time. For brevity, we refer to the definitions
of incidence rate with and without the deduction of treat-
ment time as “time at risk” definition and “observation
time” definition. Not much discussion has been dedicated

to the appropriateness of this practice of deducting the
curative treatment time. Some statistics textbooks briefly
mention this issue and adopt the time at risk definition
[10, 11].
We maintain that not counting the early occurrences

of symptoms in the numerator does not necessitate the
deduction of the treatment time from the denominator,
and that the practice of the deduction does not answer
the questions policy makers and health programme
managers seek to answer. From a real life point of view,
whether in terms of efficacy or effectiveness, it is useful
to know the disease burden in terms of how many dis-
ease episodes there are per calendar year in a popula-
tion and how many episodes may be prevented by the
introduction of an intervention per calendar year. In
this context, time is the observation time a health
policy or program is under evaluation. The practice of
subtracting a period of curative treatment time from
the actual observation time does not answer these
questions. As an analogy, we find the “observation
time” definition similar to intention-to-treat analysis,
while the “time at risk” definition similar to per-
protocol analysis [13, 14]. Intention-to-treat analysis
aims to obtain the fairest estimate of the intervention
benefit that would be realized in practice, and therefore
does not exclude participants who deviate from the proto-
col in ways which could occur in real life situations, such
as taking other medications or non-adherence to the
intervention. In studies of preventive interventions, cura-
tive treatment of disease temporarily reduces the risk of a
future disease episode. This is a feature of routine health
care and so excluding the curative treatment time from
the analysis is not compatible with research questions
concerning real life situations.

Methods
Relationship between estimates
For the purpose of illustration, consider a 2-arm, random-
ized controlled trial of a preventive intervention versus
placebo control.

Disease incidence
Let the observation time for subject i in group j be defined
as Tij =min(τ, Cij), where τ is the maximum follow-up
duration fixed by study design and Cij is the non-
informative right-censored total duration of time subject i
in group j is under observation, i.e. the time from entry to
exit from study minus duration of temporary absence
from observation (if any), e.g. due to migration, and j = 0
for control group and 1 for intervention group. Let Tj
= ∑iTij be the total amount of observation time summed
across all subjects in group j. Let Dijk be the curative treat-
ment time for subject i in group j after the k-th event. To
simplify notations and focus on the concepts instead of

Table 1 The denominators of incidence rate as defined in some
references

Source Denominator

Hennekens and Buring ([1], p.57) “total person-time of observation”

Smith and Morrow ([2], p.306) “person-time-at-risk”

Greenland and Rothman ([3], p.34) “time spent in population”

Porta ([4], online version]) “number of person-time units at risk”
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technicalities, we assume in this article that Di1k = Di0k =
D. However, this assumption is not central to our argu-
ment and we will revisit this in the Discussion section.
The practice of deducting curative treatment time from
observation time assumes that there is no new episode of
disease during the treatment period, D; any symptom oc-
currence observed in this period are considered relapses
and not counted in the numerator.
Let Eij denote the number of episodes for subject i in

group j. Let Ej = ∑iEij be the total number of episodes ob-
served in group j. Let Ij be the incidence rate defined as
total number of episodes divided by Tj, without deduc-
tion of the treatment time after each episode, in group j.
That is, the “observation time” definition of incidence
rate is:

Ij ¼ Ej=Tj

If the curative treatment time is deducted from the ob-
servation time after each event, the “time at risk” defin-
ition of incidence rate obtained is approximately:

I�j ¼ Ej= Tj−
X

i
EijD

� �� �

or equivalently

I�j ¼ Ej= Tj−EjD
� � ð1Þ

Equation 1 is approximate because if the last episode
occurred within duration D from the end of the observa-
tion time, the deduction for the last episode would be
smaller than D. In the Additional file 1 we show that an
improved estimate of the deduction of treatment time
after the last event in subject i of group j is
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Therefore, the “time at risk” definition of incidence
rate is

I�j ¼
Ej
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As will be seen in Fig. 1, for realistic values of Tj and

D in public health studies, Eq. 1 gives very good ap-
proximation to Eq. 2. We focus on Eq 1 in subsequent
discussion for simplicity.
If D = 0, Ij

* = Ij. Otherwise, Ij
* > Ij due to the smaller

denominator in Ij
*. In other words, the incidence rate

according to the “time at risk” definition is larger than
that of the “observation time” definition.

Furthermore, from (1), it can be shown that Ej = (Ij
*Tj)/

(1 + Ij
*D). Therefore,

Ij ¼ I�j = 1þ I�j D
� �

ð3Þ

From Eq. 3, it can be seen again that Ij is smaller than Ij
*

unless D equals zero.

Protective efficacy
Protective efficacy (PE) is defined as 1 minus incidence
rate ratio [15, 16]. We use the phrase here statistically to
mean 1 – incidence rate ratio, without making a distinc-
tion between the contexts of efficacy or effectiveness
studies.
Let R = I1/I0 and R* = I1

*/I0
* , i.e. the incidence rate ratio

comparing the intervention to control group based on
the “observation time” and “time at risk” definitions,
respectively. By substituting I1

* = R*I0
* into Eq. 3:

I1 ¼ R�I�0
� �

= 1þ R�I�0D
� � ð4Þ

Let PE = 1 − R and PE* = 1 − R*.
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Fig. 1 Incidence rates defined with and without the deduction of
curative treatment time
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PE ¼ 1− R�I�0
� �

= 1þ R�I�0D
� �� 	

= I�0= 1þ I�0D
� �� 	

¼ PE�= 1þ I�1D
� �

ð5Þ
As such, PE* > PE unless D equals zero. The equality

in Eq. 5 also holds if PE = 0. As such, for the purpose of
testing a null hypothesis of no intervention effect, using
PE or PE* does not matter. However, the “time at risk”
definition tends to give a stronger estimate of protective
efficacy than the “observation time” definition unless
there is no intervention effect at all.

Results
Figure 1 illustrates the discrepancy between the inci-
dence rates defined with and without the deduction of
curative treatment time. This figure covers the range of
incidence rates that includes the two case studies we
will discuss. The x-axis is the number of episodes
observed in one calendar year. The incidence rates
based on “observation time” (solid line) formed a 45°
line to the x-axis. In contrast, the incidence rates based
on “time at risk” after deduction of 14 days or 28 days
of treatment time (typical in malaria studies) following
each episode had an accelerating slope. They began to
depart visibly from the rates based on the “observation
time” definition when incidence was about 1 per year.
The gap expanded as incidence increased. Furthermore,
the approximate (Eq. 1) and precise (Eq. 2) versions of
the incidence rate estimates based on the “time at risk”
definition were practically identical when 14 days were
deducted. There was visible but minor difference be-
tween the approximate and precise versions when
28 days were deducted. This demonstrates the useful-
ness of Eq. 1.
Figure 2 contrasts the two definitions of protective ef-

ficacy in the cases of incidence in the control group be-
ing 0.1, 2, and 5 episodes in one calendar year of
observation time, which roughly correspond to the range
in the two case studies below. The lines for deduction of
14 and 28 days were practically identical at low inci-
dence (0.1 per year), and hence only the line for deduc-
tion of 14 days was shown for 0.1 per year. For low
incidence (0.1 per year), PE* and PE almost exactly
formed a 45° line, indicating strong agreement. As inci-
dence became higher, PE* became larger than PE. The
deduction of 28 days generated bigger difference be-
tween PE* and PE than the deduction of 14 days did.
We use two different malaria prevention studies to

illustrate.

Study 1. Chemoprevention of malaria in Ugandan
children
Three hundred and ninety three infants at 6 months of
age were randomized to no chemoprevention, monthly

sulfadoxine-pyrimethamine (SP), daily trimethoprim-
sulfamethoxazole (TS), or monthly dihydroartemisinin-
piperaquine (DP) [8]. Chemoprevention ended at the age
of 24 months. Passive surveillance of malaria incidence
was conducted. A malaria diagnosis was defined as
temperature at least 38.0° Celsius or history of fever in
the previous 24 h and a positive thick blood smear.
Malaria was treated according to local clinical guidelines
using either artemether-lumefantrine or quinine. The
study deducted 14 days after each malaria attack from
the denominator. Negative binomial regression was used
to analyze the incidence data.
Pooling four groups, the overall incidence was 5.404

per person-year at risk (PYAR) after the deduction of
curative treatment time from the observation time
(Table 2). Using Eq. 3, the incidence based on observa-
tion time would be 4.477 per year. The former estimate
of incidence was about 1 episode per time unit higher
than the latter. DP was found to offer the highest
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Fig. 2 Differences in estimates of protective efficacy with and without
the deduction of curative treatment time - PE(time at risk) and
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Table 2 Chemoprevention of malaria in Ugandan children,
2010–2013

Trial arm Sample
size

Number of
events

Person-year
at riska

Event/
PYAR

Event/observation
timeb

Control 98 760 109.3 6.953 5.490

SP 98 725 107.8 6.725 5.347

TS 99 609 116.8 5.214 4.346

DP 98 366 121.3 3.017 2.704

Overall 393 2460 455.2 5.404 4.477
aObservation time minus malaria curative treatment time
bEstimated using Eq. 3
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protection: based on the “time at risk” definition this
was 1–3.017/6.953 = 56.6%, but using Eq. 5, the PE based
on observation time was lower: 0.566/[1 + 3.017 × (14/
365.25)] = 0.507, or 50.7%.

Study 2. RTS,S malaria vaccine in Mozambican children
One thousand four hundred ninety three children aged
1 to 4 years were recruited and randomized to receive
either control vaccines or RTS,S malaria vaccine [6, 7].
The surveillance period started at 14 days after the third
dose of vaccine, which was 2.5 months post-enrollment.
Surveillance continued to 21.0 months post-enrollment.
Malaria was defined as temperature ≥ 37.5 °C or report-
ing fever in the last 24 h and malaria parasitemia ≥ 2500
per μL. After exclusion of 3 children from per-protocol
analysis, 1490 were included in the main analysis.
Several drugs were used in the treatment of malaria. In
the analysis of multiple episode data, a child was
considered not at risk for 28 days after the onset of the
previous event due to treatment [6, 7].
The overall disease incidence was 0.351 events per

PYAR according to the “time at risk” definition
(Table 3). Using Eq. 3 to estimate the incidence based
on observation time, the incidence was 0.342. The PE
based on the definition with deduction of curative
treatment time was 1–0.309/0.395 = 21.9%. Using Eq. 5,
based on observation time, a similar PE of 21.4% was
obtained. The PE in the trial report was adjusted for
age, bednet use, and other covariates, and therefore was
somewhat different [7].

Discussion
Epidemiological studies and clinical trials typically are me-
ticulous about case definitions and statistical analysis tech-
niques. Less attention has been given to the denominator
of an incidence rate. The definitions of the numerator and
denominator are two distinct matters. We considered the
denominator while taking the numerator definition as
given. While some textbooks and references do use the
phrase “at risk” in the definition, it is not clear what
exactly “at risk” means. Some investigations, such as the
malaria prevention trials we discussed, consider a person
not at risk while they were receiving curative treatments
because the curative treatments were supposed to tempor-
arily make the person non-susceptible to the target

disease. This definition appears to interpret “at risk” to
mean “biologically susceptible”. However, it is possible to
interpret “at risk” as being under observation. For ex-
ample, in the RTS,S vaccine trial in Mozambique, children
were also considered not at risk if they were absent from
the study area for at least 2 weeks [6, 7]. Perhaps the chil-
dren were biologically susceptible to malaria during their
absence, but they were not under observation by the study
team and this was the ground for excluding the duration
of time from the statistical analysis. Interpreting this way,
time at risk is equivalent to observation time.
In our opinion, both the definitions of incidence rate

and protective efficacy with or without the deduction of
treatment time are legitimate. However, they concern
different research questions. We maintain that, from a
real life and public health point of view, the observation
time definition tends to be more appropriate, because a
policy maker or programme manager is likely more con-
cerned about what would occur in the community in a
calendar year if an intervention is or is not implemented.
In this context, time refers to observation time in the real
life situation. The choice between the two denominators
may or may not make a practically important difference.
This depends on the disease incidence in the population.
When disease incidence is high, from a real life perspec-
tive, disease incidence and protective efficacy can be
substantially over-estimated by the common practice.
When disease incidence is low, the difference may not be
noticeable. These issues should be considered in study
designs and in planning analyses.
It is good that many studies do present enough informa-

tion that allows reconstruction of the incidence rate from
one definition to another. The equations we presented
should facilitate this. The equations do not directly pro-
vide confidence intervals because that would require indi-
vidual level data instead of published estimates. But they
can be applied to both the point estimates and the lower
and upper limits of their confidence intervals in published
reports to obtain the reconstructed point and interval esti-
mates. However, this conversion based on published infor-
mation is only possible for crude incidence. It is not
possible for covariate (or random effects) adjusted analysis
as the individual level data is typically not available to
readers. As such, it is important for investigators to con-
sider the appropriateness of the two analysis approaches
in relation to the specific research context and accordingly
provide the adjusted analysis to readers if needed. It is
quite common that clinical trials present both intention-
to-treat analysis and per protocol analysis results. Simi-
larly, investigators may consider presenting both versions
of incidence rate and protective efficacy. They are not
mutually exclusive. In the derivation of the conversion
formulae in the Methods we made an assumption of con-
stant curative treatment time. The assumption was made

Table 3 RTS,S Malaria vaccine in Mozambican children, 2003–2005

Trial
arm

Sample
size

Number of
event

Person-year
at riska

Events/
PYAR

Events/observation
timeb

Control 745 384 972.1 0.395 0.383

RTS,S 745 310 1004.5 0.309 0.301

Overall 1490 694 1976.6 0.351 0.342
aObservation time minus malaria curative treatment time
bEstimated using Eq. 3
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primarily for brevity of exposition. It is not central to the
conclusions we made. Similar to the paucity of discussion
on the present topic, there is also a paucity of information
about the constant curative treatment time assumption. It
will be helpful if studies on disease prevention also provide
information on curative treatments. The accuracy of the
conversion formulae developed in the Methods section
would be affected if the distribution of curative treatment
time is neither constant nor random. We can imagine the
possibility that curative treatment may depend on number
of previous disease episodes or disease severity, possibly
leading to unequal distribution of curative treatment times
across intervention groups. If that occurs, the results
based on the “time at risk” definition would be difficult to
interpret, regardless of using the conversion formulae or
not. In our opinion, that would strengthen the motivation
for using the “observation time” definition.
If the “time at risk” definition is chosen, it is import-

ant to present the operational details, which have not
been always clear in the literature. For example, it is
quite common in vaccine studies to start observation
when a participant is enrolled, but the analysis time
starts only when the series of vaccination (e.g. three
doses) is completed. If a disease episode is observed be-
fore the date of completion of vaccine series but the
curative treatment time extends beyond this date, we
believe the logic behind the choice of the “time at risk”
definition should mandate deduction of the part of
curative treatment time that is after this date. Insuffi-
cient description hinders understanding and reproduci-
bility. An alternative approach, which avoids making
specific assumptions about at-risk status during curative
treatment, is to use a time-varying covariate [10, 11] for
the preventive intervention variable so that the protective
efficacy may change according to curative treatment
history.

Conclusions
The practice of deducting treatment time from obser-
vation time is not wrong, but it is not always the best
approach. It is important for investigators to consider
the appropriateness of the two forms of analysis in rela-
tion to the specific research aims and the intended use
of the results.
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Additional file 1: “Time not at risk” and its approximation. Derivation of
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