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Abstract

Background: Robust designs of PCR-based molecular diagnostic assays rely on the discrimination

potential of sequence variants affecting primer-to-template annealing. However, for accurate

quantitative PCR (qPCR) assessment of gene expression in populations with gene polymorphisms,

the effects of sequence variants within primer binding sites must be minimized. This dichotomy in

PCR applications prompted us to design experiments to specifically address the quantitative nature

of PCR amplifications with oligonucleotides containing mismatches.

Results: We performed qPCR reactions with several primer-target combinations and calculated

ratios of molecules obtained with mismatch oligonucleotides to the average obtained with perfect

match primer pairs. Amplifications were performed with genomic DNA and complementary DNA

samples from different genotypes to validate the findings obtained with plasmid DNA. Our results

demonstrate that PCR amplifications are driven by probabilities of oligonucleotides annealing to

target sequences. Empiric probabilities can be measured for any primer pair. Alternatively, for

primers containing mismatches, probabilities can be measured for individual primers and calculated

for primer pairs.

Conclusion: The ability to evaluate priming (and mispriming) rates and to predict their impacts

provided a precise and quantitative description of assay performance. Priming probabilities were

also found to be a good measure of analytical specificity.

Background
Single nucleotide polymorphisms (SNPs) have posed a
challenge to the study of gene expression because they
affect methods based on oligonucleotide hybridization,
such as microarrays and PCR. In a recent study, Walter and
collaborators identified a large proportion of false posi-
tive and negative results when comparing two commonly
used inbred mouse strains with Affimetrix microarrays
[1]. Most of the discrepancies could be attributed to SNPs,
which affected 16% of the probe sets. These results have

highlighted the importance of considering SNPs during
the design of hybridization-based assays such as microar-
rays and PCR, depending on their occurrence or fre-
quency. Genomic diversity or the occurrence of sequence
variants in genomes can be estimated by the comparison
of any two identical chromosomes. In human genomes, a
SNP is found in an individual every 1000–2000 bases,
which constitutes a 0.1% per base rate of heterozygosity
[2]. Moreover, the overall occurrence of SNPs increases
with the addition of sequence information from new indi-
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viduals or populations. The recent sequencing of a human
genome from one individual, James D. Watson, by mas-
sively parallel DNA sequencing, identified 0.61 million
new SNPs. Interestingly, 18% of the sequence variation
found in Watson's genome was not present in dbSNP, the
Single Nucleotide Polymorphism database [3]. Other
studies have estimated similar rates of occurrence in the
coding sequences of humans, Drosophila and plants, rang-
ing from 0.4% to 2%, depending on the gene [4-7].

A further issue of concern for PCR-based assays is the fre-
quency of SNPs within populations. Current estimates
have predicted that a SNP with a population frequency of
1% occurs every 290 bases in the human genome [8].
Since most primer pairs used in qPCR span an average of
50 non-overlapping nucleotides, a significant proportion
of SNPs (17% in humans) may be predicted to fall within
primers based on chance alone. Consequently, the sensi-
tivity of PCR-based gene expression assays to SNPs must
be minimized for such assays to accurately measure tran-
script numbers in populations, especially in populations
where genotypic variation has not been determined for
the targeted genes. In a related issue, the detection of mul-
tiple sequence variants (strains) of a pathogen is particu-
larly important in molecular diagnostics for viral
quantification assays where considerable sequence varia-
tion between strains and subtypes can be observed [9].

Besides issues regarding laboratory setup [10], PCR false
positives also can arise when amplification is detected as
a result of mispriming. The term "mispriming" can be
used when PCR products are generated through primer
annealing to partially complementary sequences.
Mispriming is also of great concern in clinical molecular
diagnostics, especially when the PCR assay must discrim-
inate between closely related sequences [11,12]. It could
become even more important when the targeted sequence
is diluted in a pool of closely related interfering
sequences. Therefore, the challenge in developing PCR-
based molecular diagnostic assays is the degree of cer-
tainty with which assays may be able to detect all of the
molecules of interest without detecting interfering mole-
cules.

Sensitivity or the lack of sensitivity to sequence variants
represents an important dichotomy in PCR applications.
Consequently, assay performance with respect to target
and non-target molecules must be precisely described to
facilitate assay selection and/or validation. For the current
study, we designed experiments to specifically address the
quantitative nature of mispriming caused by sequence
variants. We demonstrate that PCR priming occurs with a
measurable frequency and it could be used as a mean of
quantitatively describing and evaluating PCR assay per-
formance. Experimentation was performed on genomic

DNA (gDNA) and complementary DNA (cDNA) to sup-
port these findings, and on plasmid DNA to evaluate the
impact of PCR parameters on priming frequency.

Methods
ESTs (Expressed Sequence Tags), clones, sequence 

alignments and primer design

Lim1 ESTs used in this study were from previously
described cDNA libraries [13] and have been identified in
ForestTreeDB [14]. Clones are available through the Arbo-
rea Project website http://www.arborea.ulaval.ca and
Arborea EST sequences are deposited in GenBank [Gen-
Bank: DV975691, GenBank:DV977042, GenBank:
DV976393, GenBank:DV977754, GenBank:DV977683,
and GenBank:DV976321].

Sequence alignments (See Additional file 1) were per-
formed with the BioEdit biological sequence alignment
editor, which is freely available on the web at the follow-
ing address http://www.mbio.ncsu.edu/BioEdit/
bioedit.html

The software Primer3 [15] was used to validate primer
selection and to perform Tm (melting temperature) calcu-
lations. Primer sequences are shown in Figure 1.

Plant material, DNA and RNA extractions

Plant material was taken from 37-year-old trees in a prog-
eny trial of white spruce (Picea glauca (Moench) Voss) that
had been established near Quebec City (QC, Canada).
The trial was composed of 40 half-sib families (obtained
by wind-pollination), which originated from different
areas of Eastern Canada. Three tissue samples were col-
lected from the main stem of each tree at 1.5 m above
ground level using a 16 mm leather punch. A 1-mm thick
sample of actively growing tissue was taken from either
side of the cambial zone, and represented secondary
phloem and xylem. The samples were immediately frozen
in liquid nitrogen. Frozen material was ground to fine
powder using liquid nitrogen-cooled 50 ml jars/25 mm
beads in a ball mill (MM300 Mixer Mill, Retsch GmbH,
Haan, Germany). DNA extractions were performed on
100 mg of liquid N2-ground secondary phloem using
DNeasy Plant Mini kit (QIAGEN, Germantown, MD,
USA) according to the manufacturer's instructions. RNA
extractions were performed as previously described for
white spruce [16]. RNA integrity was checked with a 2100
Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).

Genotyping

In order to determine the genotype of each tree, a portion
of the Lim1 gene was amplified from trees using forward
(ACCAGTATGCCTTCATTGTGTTC) and reverse primers
(AAAGACCAATGTCCCTAATAGTCATG). The resulting
PCR fragments were sequenced using the same primers
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Single nucleotide polymorphisms (SNPs) affect real time PCR quantificationsFigure 1
Single nucleotide polymorphisms (SNPs) affect real time PCR quantifications. (A) Oligonucleotides used in this 
study. The positions of SNPs are indicated by arrows. Perfect match cDNA clones are identified on the right with the nucle-
otides SNPs at position 440 and 615 indicated in parentheses. Tm: melting temperature calculated with Primer3 software. (B) 
Positional effect of the SNPs. The position of the SNP within the oligonucleotide is indicated: 5', middle (M) or 3'. Relative num-
bers of molecules represent the ratio of molecules detected with mismatch primers relative to the number of molecules 
detected with perfect match primer pairs.
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that were used to genotype the individuals at the Plate-
forme d'analyses biomoléculaires (Université Laval, Que-
bec City, QC, Canada). The presence of double peaks in
the sequencing reaction chromatogram identified the het-
erozygote individuals.

cDNA preparation and quantitative PCR

Complementary DNAs were prepared from 500 ng of
total RNA using the first strand cDNA synthesis system
(Invitrogen, Carlsbad, CA, USA). PCR mixtures that con-
tained QuantiTect SYBR Green PCR kit (QIAGEN), Quan-
tiFast SYBR Green PCR kit (QIAGEN) or LightCycler 480
SYBR Green I Master (Roche, Basel, Switzerland) were as
follows: 1× master mix, 300 nM of 5' and 3' primers, and
target DNA or cDNA (10 ng) in a final volume of 15 μl.
Reactions were setup using an epMotion 5075 pipetting
robot (Eppendorf, Hamburg, Germany) and amplifica-
tions were carried out in a LightCycler 480 (Roche).
Cycling for both QuantiTect and QuantiFast mixtures was
performed as follows: an initial 15-min activation step at
95°C, followed by 50 cycles of 94°C for 10 s and 62°C for
2 min (QuantiTect) or 1 min (QuantiFast); a single fluo-
rescent read was taken after each cycle immediately fol-
lowing the annealing and elongation step at 62°C. Three-
step cycling (50 cycles) was performed for the Roche mas-
ter mix, according to instructions provided by the manu-
facturer. Melting curve analysis was performed at the end
of cycling to ensure single product amplification of the
appropriate melting temperature. Experiment description
and data presentation follow the guidelines on the mini-
mal information for publication of quantitative PCR
experiments (MIQE) [17].

Determination of the number of molecules (LRE method)

The methodology described here is a slight modification
of the procedure elaborated by Rutledge and Stewart [18].
Insertion of equation (2) into equation (1), both
described in Rutledge and Stewart, served to derive a new
equation (3) that was used to quantify molecules.

In these equations, F0 is the initial target quantity
expressed in fluorescence units, Fmax is the maximal fluo-
rescence reached at the plateau phase where the efficiency
of the PCR reaction reaches 0, Emax is the maximal effi-
ciency that occurs at the beginning of cycling, C1/2 is the

reaction cycle located at the inflection point of the fluores-
cence curve where the fluorescence is half of Fmax and the
efficiency is half of Emax, and ΔE represents the rate of loss
in efficiency. For each amplification reaction, ΔE and Emax
were determined using the linear regression of efficiency
(LRE) method [18] and C1/2 was calculated by taking the
first derivative of the fluorescent readings. F0 values were
then transformed to molecules (N0) with equations
described in Rutledge and Stewart [18]. Fluorescence
background was removed prior to LRE analysis and C1/2
determination. Optical calibrations of the master mixes in
the LC480 were performed with lambda DNA as previ-
ously described [18]. An Excel spreadsheet designed to
accommodate the 384 sample output from the LC480 was
created to automatically convert fluorescent reads to mol-
ecules. Excel formulas, macros and tutorial are available
from the Arborea website publication section http://
www.arborea.ulaval.ca/publications/index.html.

Results
To evaluate the effect of sequence variants on quantifica-
tion by qPCR, we designed primers against polymorphic
sites within the coding sequence of a single gene in white
spruce (Figure 1A). This gene was represented by 6 cDNA
clones (12 reads) in our EST database [13], and three
SNPs were identified within a 700 bp region of the EST
sequences (i.e., 1 every 233 bp). Two of the SNPs were
located 165 bp apart and were represented in three differ-
ent alleles (clones), which constituted ideal templates for
studying the impact of SNPs on qPCR (see Additional file
1 for the sequence alignment). Amplifications were per-
formed with these three cDNA clones and 24 primer pairs
designed to have melting temperatures between 62–
67°C. Seven concentrations of each plasmid were used
with all 24 primer pairs; reactions were run in duplicate
wells and in duplicate runs (4 quantifications for each
plasmid/primer pair/concentration). Each clone had 6
perfect match primer pairs and 18 mismatch combina-
tions (a mismatch in one or two primers).

Conversion of raw fluorescence data to molecules

To quantitatively assess the impact of primer mismatches,
the qPCR data must be converted to numbers of mole-
cules. Two methods were used to convert the raw fluores-
cence data to molecules: (1) the commonly used method
based on quantification cycle (Cq) values and standard
curves, and (2) the linear regression of efficiency method
(LRE) developed by Rutledge and Stewart (2008). Ampli-
fications from serial dilutions of target molecules were
used to build standard curves (see Additional file 1). The
standard curves were then used to convert Cq values to
molecules. Standard curves depend upon two things: the
positioning of the amplification profiles (Cq) and the
input number of molecules. As a consequence, standard
curves always reported numbers of molecules based on

F
Fmax
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+ +1 ( max ) /1 1 2
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max
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the input number of molecules, even when they were
based on profiles that are shifted relative to perfect match
amplifications (Figure 2). Therefore, average standard
curves had to be built with perfect match primer pairs (see
Additional file 1) and used to convert Cq values to mole-
cules. This was possible only because the slope-derived
primer pair efficiency of nearly all primer pairs was in the
range of 85 to 90% indicating that primer pairs worked

well with any of the given targets and because of the low
variability of Cq values obtained with perfect match
primer pairs (see Additional file 1). Alternatively, the LRE
method, derived from sigmoidal modeling, uses raw fluo-
rescence data to calculate molecules and amplification
efficiency for each sample, and thus has the advantage of
not requiring or relying on standard curves. There was a
high correlation (R of 0.994) between the numbers of

Amplification profiles and determination of the number molecules with perfect match and mismatch primersFigure 2
Amplification profiles and determination of the number molecules with perfect match and mismatch primers. 
(A) Data generated from amplification profiles presented in (B). The number of molecules calculated with different methods is 
presented. The respective standard curve (SC) data is directly linked to the amplification profiles shown in (B) and input 
number of molecules. The LRE method is dependent only on fluorescence data (B) and instrument calibration. The Avg SC data 
is derived from an average standard curves obtained with perfect match primer pairs. Accuracy is calculated with the respec-
tive standard curves and represents the average ratio of observed to input molecules. Specificity is calculated with LRE or Avg 
SC data and represents the average ratio of observed to input molecules. Sensitivity is the limit of detection of an assay and is 
defined as the lowest input number of molecules generating a complete amplification profile [17]. The input number of mole-
cules was determined optically using a spectrophotometer. (C) Melting profiles associated to the amplification profiles pre-
sented in (B).
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molecules calculated with LRE and average standard
curves (Figure 3). Since LRE and average standard curves
quantification methods generated highly correlated
results, LRE was used for further data presentation.

Coefficients of variation (CVs) calculated on molecule
numbers for each of the primer pairs on a single template
(intra-assay variation) were between 14 and 25% (see
Additional file 1) which are comparable to intra-assay var-
iations observed elsewhere [19-21]. The CVs calculated on
molecules among replicates of all amplifications with per-
fect match primer pairs (combination of intra- and inter-
assay variation) did not exceed 40% (CVs usually between
20–30%), except in the case of low plasmid concentra-
tions (see Additional file 1). On the other hand, the vari-
ances (VAR) were proportional to the numbers of
molecules detected (see Additional file 1); therefore, more
abundant targets gave larger SD and VAR than less abun-
dant targets, even though CVs were uniform. A log2 trans-
formation was applied to the number of molecules for
statistical analyses to have more uniform variances (see
Additional file 1). The robustness of our approach in eval-
uating the impact of SNPs was indicated by the low degree
of variability of log2 transformed data obtained by perfect
match primer pairs and by the close match to the number

of molecules determined optically at 260 nm (see Addi-
tional file 1).

Measuring mispriming frequency

This experimental setup was used to evaluate the impact
of SNPs on amplification efficiency. Results showed that
SNPs did not have a significant impact on efficiency since
perfect match and mismatch primer pairs had nearly iden-
tical amplification efficiencies (see Additional file 1). This
implies that once the mismatch amplifications had
occurred, the amplification profiles were identical to pro-
files produced by perfect match primer pairs. It also sug-
gested that primer annealing to non-target molecules was
independent of components that drive PCR amplification
efficiencies. However, amplification efficiency is largely
influenced by primer annealing to target molecules and it
was entirely possible that additives favoring annealing
directly influenced amplification efficiency and vice versa.

In contrast, the presence of a single mismatch in one of
the primers significantly decreased the number of mole-
cules detected when compared to pairs of perfect match
primers, as might be expected (Table 1 and see Additional
file 1). When using a perfect match primer pair, the
number of molecules amplified in the first cycle was
expected to be a function of the amplification efficiency.
Since amplification efficiency was the same when using
perfect match and mismatch primer pairs, the most likely
explanation for the differences in the number of mole-
cules resides in the capacity for mismatch amplifications.
We used our experimental setup to investigate the param-
eters that govern quantification with mismatch primers.
First, a ratio (log2 differences) was calculated based on the
number of molecules measured with primers containing
mismatches (one mismatch in one primer or in both
primers) over that obtained with perfect match primer
pairs (Table 1). We observed nearly identical ratios for all
seven dilutions of a given target, ranging from 50,000,000
to 50 molecules, when the same mismatch primer pair
was used (see Additional file 1). The consistency with
which these ratios, or relative frequencies, are observed
suggests that they are empirical probabilities of mismatch
amplification (mispriming) in the first cycle or first few
cycles. This is consistent with the number of molecules
present in most amplifications being several magnitudes
over the measured probabilities and it takes into account
that mismatch priming generates the same number of
molecules at each cycle which are perfect match templates
amplified exponentially in following cycles.

Since mismatches in primers cause a shift in amplification
profiles (Figure 2) we calculated the differences between
quantification cycles (Cq) generated by reactions contain-
ing primers with mismatches to the average Cq obtained
with perfect match primers (ΔCq method; see Additional

Relationship between the number of molecules calculated with LRE and average standard curves methodsFigure 3
Relationship between the number of molecules cal-
culated with LRE and average standard curves meth-
ods. The strong correlation (R of 0.994) indicates that both 
methods generate similar data. The slope of the linear 
regression being close to 1 and the intercept near 0 indicate 
that the numbers of molecules reported by each technology 
are almost identical. This is supported by an R2 of 0.987 and 
an excellent P value of 0.0.
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file 1). As expected, the results are highly concordant with
those obtained with log2 ratios (Table 2). The opposite
signs of the LRE based Log2 ratios and ΔCq are inherent to
units used with each method: the smaller number of mol-
ecules with mismatch primer pairs gives a decreased log2
number of molecules and a higher Cq than the average
with perfect match primers. Probabilities are equivalent to
2(log2ratio) or E-ΔCq, where E is equivalent to the primer pair
efficiency (between 1,84 and 1,96 depending on the

primer pair and the method selected to estimate effi-
ciency; see Additional file 1).

Predicting the impact of SNPs in both primers

We hypothesized that the probability for a misprimed
amplification was independent for each oligonucleotide
in the reaction; therefore, it should be possible to predict
the results obtained with a mismatch in both of the oligo-
nucleotides, based on the ratios obtained for each mis-

Table 1: Ratio of the observed number of molecules with mismatch primers relative to the average number of molecules with perfect 

match primer pairs.

QIAGEN ROCHE

Primer Pairs1 (5' – 3') Observed Effect2 Predicted Effect3 Observed Effect2 Predicted Effect3

Clone GQ0068_E07 (G-G)

T1 – PM 0.021 0.40

T2 – PM 0.20 0.79

T3 – PM 1.2 0.94

PM – A1 1.0 1.2

PM – A2 0.019 0.52

T1-A1 0.022 0.021 0.49 0.47

T1-A2 0.00047 0.00039 0.14 0.21

T2-A1 0.24 0.21 1.1 0.93

T2-A2 0.0045 0.0037 0.35 0.41

T3-A1 1.3 1.2 1.4 1.1

T3-A2 0.025 0.022 0.44 0.49

Clone GQ0065_F11 (T-G)

G1 – PM 0.089 0.79

G2 – PM 0.68 1.3

G3 – PM 1.1 1.1

PM – A1 1.1 1.1

PM – A2 0.024 0.45

G1-A1 0.10 0.098 1.1 0.90

G1-A2 0.0024 0.0021 0.56 0.35

G2-A1 0.66 0.74 1.4 1.4

G2-A2 0.013 0.016 0.58 0.56

G3-A1 1.0 1.2 1.5 1.2

G3-A2 0.022 0.027 0.64 0.48

Clone GQ00612_A24 (G-T)

T1 – PM 0.023 n.d.4

T2 – PM 0.20 n.d.

T3 – PM 1.2 n.d.

PM – C1 0.87 n.d.

PM – C2 0.0062 n.d.

T1-C1 0.018 0.020 n.d.

T1-C2 0.00012 0.00014 n.d.

T2-C1 0.15 0.17 n.d.

T2-C2 0.0015 0.0012 n.d.

T3-C1 0.95 1.1 n.d.

T3-C2 0.0075 0.0076 n.d.

1 Primer pairs with one mismatch primer containing in a single oligonucleotide substitution in combination with one perfect match primer (PM) are 
used to evaluate the effect of SNP (observed effect) on qPCR quantifications.
2 Observed effects are expressed as a ratio of quantified molecules relative to the number of molecules quantified with perfect match primer pairs.
3 Predicted effects are calculated when two mismatch primers are used, by multiplying the observed effect of each of the two single mismatch 
primers. For example the predicted effect of the T1-A1 (0.021) primer pair on clone GQ0068_E07 is equal to the product of the observed effects 
of T1 (T1-PM, 0.021) and A1 (PM-A1, 1.0). There is strong agreement between the observed and predicted effects.
4 not determined
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match primer used with a perfect match primer. If such
was the case, the probability of amplification should be
equal to the product of their probabilities, or the sum of
their log2 probabilities, according to the multiplication
rule of probability [22]. For example, the predicted prob-
ability of T1-A2 amplifying (p: 0.0005, log2p: -11.06)
from clone GQ0068_E07 should be equal to the product
of probabilities (sum of log2 probabilities) associated
with T1 (p T1-PM: 0.0222, log2p: -5.56) and A2 (p PM-A2:
0.0204, log2p: -5.75) (Table 1, see Additional file 1). This
hypothesis was validated by the very high correlation
between the predicted and observed effects for each of 18

primer pairs containing a mismatch in both oligonucle-
otides, and was consistent with two different PCR master
mixes (Figure 4). It also validated nicely with the ΔCq
method (see Additional file 1). This capacity to predict
held for all concentrations tested including amplification
failures when the number of molecules in the sample fell
below the probability of amplification (see Additional file
1). In other words, it was possible to determine an empir-
ical probability of mismatch amplification of an oligonu-
cleotide and calculate the probability of mispriming of a
primer pair for a given target under controlled PCR condi-
tions.

Table 2: Comparison of the results obtained with LRE based log2 ratios to the ΔCq analysis.

LRE based analysis ΔCq based analysis

Mismatch Primer Pair Log2 Ratio SD P Value1 ΔCq SD P Value1

Clone GQ00612 _A24 (G-T)

T1-PM -5,4 0,6 3,4E-141 5,9 1,0 4,9E-109

T2-PM -2,3 0,7 1,3E-66 2,9 1,0 1,3E-54

T3-PM 0,3 0,5 1,4E-02 0,0 0,9 2,7E+01

PM-C1 -0,2 0,4 2,1E-03 0,1 0,3 1,4E+01

PM-C2 -7,3 0,6 7,1E-195 6,9 0,4 1,4E-155

T1-C1 -5,8 0,6 7,8E-113 6,0 0,7 4,0E-84

T1-C2 -13,1 0,9 2,4E-156 13,2 0,7 7,1E-130

T2-C1 -2,7 0,6 2,0E-59 3,0 0,5 1,3E-43

T2-C2 -9,4 0,6 2,1E-136 9,6 0,9 4,9E-108

T3-C1 -0,1 0,5 5,5E-01 0,2 0,4 1,0E+01

T3-C2 -7,1 0,5 2,3E-99 7,0 0,6 1,4E-79

Clone GQ0068 _E07 (G-G)

T1-PM -5,6 0,8 6,7E-154 6,0 0,7 1,0E-164

T2-PM -2,3 0,4 3,9E-97 2,8 0,4 4,2E-123

T3-PM 0,2 0,3 2,2E-04 0,0 0,4 2,9E+01

PM-A1 0,0 0,3 1,8E-02 0,2 0,3 2,3E-03

PM-A2 -5,8 0,8 2,3E-173 6,7 0,6 1,1E-211

T1-A1 -5,5 0,6 1,6E-126 6,2 0,7 3,9E-141

T1-A2 -11,1 0,8 1,2E-171 12,5 0,7 8,3E-186

T2-A1 -2,1 0,5 1,4E-59 2,8 0,6 3,6E-85

T2-A2 -7,8 0,6 1,7E-157 9,4 0,5 9,3E-178

T3-A1 0,4 0,4 2,0E-04 0,0 0,3 3,2E+01

T3-A2 -5,3 0,9 1,1E-120 6,6 0,7 1,2E-144

Clone GQ0065_F11 (T-G)

G1-PM -3,5 0,7 1,8E-109 3,5 0,7 3,9E-113

G2-PM -0,6 0,5 6,3E-15 0,4 0,5 2,1E-08

G3-PM 0,1 0,4 8,6E-04 -0,2 0,3 5,7E+00

PM-A1 0,1 0,4 6,4E-04 0,0 0,4 2,9E+01

PM-A2 -5,4 0,7 1,6E-164 6,2 0,6 1,5E-191

G1-A1 -3,3 0,5 4,4E-75 3,5 0,5 1,5E-94

G1-A2 -8,7 0,7 2,7E-152 9,5 0,9 1,2E-157

G2-A1 -0,6 0,5 1,7E-09 0,6 0,5 2,5E-09

G2-A2 -6,3 0,7 2,3E-129 6,7 0,4 4,6E-147

G3-A1 0,0 0,3 6,1E-01 0,1 0,3 1,7E+01

G3-A2 -5,5 0,6 1,6E-117 6,0 0,5 1,3E-138

1 P values are the result of a two tailed homoscedastic Student T-test comparing log2 ratios or ΔCq obtained with mismatch primers pairs to log2 

ratios or ΔCq obtained with perfect match primer pairs (a Bonferroni correction for multiple testing was applied). The values in bold are very highly 
significant (P < 10-4).



BMC Biotechnology 2009, 9:75 http://www.biomedcentral.com/1472-6750/9/75

Page 9 of 15

(page number not for citation purposes)

Two other findings related to PCR attracted our attention.
First, the position of the SNP within the oligonucleotides
influenced the probability of mismatch amplification, i.e.,
a SNP located at the 3' end influenced quantification
more strongly than the same SNP located at the 5' end of
the primer (Figure 1B, Table 2). This finding was not sur-
prising since this principle is routinely used to increase
specificity in PCR assay design. Second, the same set of
primers was tested at the same temperature, but with a dif-
ferent qPCR master mix. Although the same conclusions

can be drawn, the results obtained with the second mix
were less affected by mismatches (Table 1). This second
finding was less expected since PCR specificity is thought
to mainly reside in primer design and annealing tempera-
tures. This observation is meaningful because it indicated
that priming probabilities may be used to assess very dif-
ferent PCR assays.

Using priming probabilities to describe assay performance

These observations lead us to predict that priming proba-
bilities could be used to predict the performance of two
assays, if they are inherent characteristics of PCR assays.
We compared two assays that used the same oligonucle-
otides designed to detect each allele identified from our
EST database (see Figure 1) and the same annealing and
elongation (A&E) temperature. The difference between
the two assays resided in the use of master mixes, which
were provided by the same manufacturer (QuantiTect or
QuantiFast from QIAGEN), and in the A&E time (1 min
vs. 2 min). Priming, or mispriming, probabilities can pre-
dict large differences in assay specificity, or sensitivity to
SNPs, even though they use the same oligonucleotides at
the same A&E temperature; here, the assay with a shorter
A&E time was predicted to have less specificity (Table 3).
Based on priming probabilities, we predicted that Assay 1
had the greater potential for discriminating between tar-
gets and closely interfering molecules. Its priming proba-
bilities for perfect match targets varied between 0.70 to
1.0, whereas the probabilities for non-targets varied from
0.085 to 0.0002, which represented discrimination poten-
tials ranging from more than ten-fold to several thousand-
fold, respectively. The capacity of Assay 2 to discriminate
between targets and closely interfering sequences, i.e.,
alleles in this particular case, was predicted to be weak
because the priming (mispriming) probabilities for non-

Relationship between predicted and observed number of moleculesFigure 4
Relationship between predicted and observed 
number of molecules. The strong correlation (R = 0.998) 
indicates that the rate of PCR mispriming of a primer pair can 
be predicted based on the mispriming probability measured 
for individual primers.
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Table 3: PCR assay properties.

Properties Assay 1 Assay 2

Master mix Quantitect Quantifast

A&E temperature 62°C 62°C

A&E time 2 min 1 min

Priming probabilities

99% Confidence interval1 99% Confidence interval1

Lower Mean Upper Lower Mean Upper

T1-C2 on T-G (PM) 0.39 0.79 1.6 0.48 1.1 2.3

G1-C2 on G-G (PM) 0.49 1.0 2.1 0.50 0.95 1.8

G1-A2 on G-T (PM) 0.31 0.70 1.5 0.52 0.91 1.5

T1-C2 on G-T (2) 0.0000032 0.00021 0.0011 0.21 0.51 1.2

T1-C2 on G-G (1) 0.0090 0.015 0.025 0.41 1.2 3.5

G1-C2 on T-G (1) 0.048 0.085 0.15 0.34 0.79 1.8

G1-C2 on G-T (1) 0.0019 0.0061 0.019 0.28 0.65 1.5

G1-A2 on T-G (2) 0.00034 0.0030 0.025 0.25 0.83 2.7

G1-A2 on G-G (1) 0.0026 0.020 0.16 0.51 1.1 2.4

1Three standard deviations above (upper) or below (lower) the mean. Means and intervals were calculated using log2 transformed data.
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targets were between 0.65 and 1.2. This meant that most
non-target molecules were amplified efficiently compared
to target molecules, which had priming probabilities
between 0.91 and 1.1.

In order to validate our predictions based on priming
probabilities, we performed genotyping assays on
genomic DNA from individual white spruce trees (which
have a diploid genome) to verify the allele discrimination
potential of each assay. The expected number of mole-
cules was calculated for 10 ng of genomic DNA for all
homozygous and heterozygous genotypes at these SNP
sites (Figure 5). We estimated the number of molecules
expected from 10 ng of white spruce gDNA to be 912 since
the genome size has been estimated to be around 20 Gb.
Consequently, the number of molecules expected from
each allele was equal to its priming probability (Table 3)
multiplied by 456, and the sum of all alleles represents the
number of molecules expected from an individual (Figure

5A, C). The genotype of individuals could thus be inferred
by comparing the predicted and observed number of mol-
ecules. Rapid examination of predicted values of both
assays (Figure 5A, C) clearly illustrates the better discrim-
ination potential of Assay1 in comparison with Assay2.
Consequently, it was possible to genotype individuals
using Assay1 (Figure 5A, B), whereas this task was impos-
sible with Assay2 (Figure 5C, D). We used 99% confi-
dence intervals to score for the presence or absence alleles.
This analysis correctly identified the presence of each
allele in all individuals when using Assay1 conditions
(Figure 5). The predicted genotypes of the 3 G-T/G-T
homozygote (Trees 2, 4, 6) and the 3 G-T/G-G heterozy-
gote (Trees 14, 17, 20) individuals identified with Assay1
were confirmed by amplifying and sequencing the
genomic region containing the SNPs (see methods). The
use of Assay 2 conditions was inefficient at discriminating
between alleles even though the intervals of confidences
of Assay2 were similar to Assay1 (Table 3), and gave pos-

Assay comparison for genotypingFigure 5
Assay comparison for genotyping. The discrimination potential of Assay1 (A, B) and Assay2 (C, D) was evaluated with 10 
ng of genomic DNA. Panels A and C represent the number of molecules predicted for known genotypes according to the 
priming probabilities presented in Table 3. The error bars in panels A and C are 99% confidence intervals associated with each 
value. Panels B and D are the results obtained from individual trees of unknown genotypes. The (+) and (-) above each bar indi-
cate whether the observed number of molecules is within (+) or outside (-) of the 99% confidence interval from panels A and 
C, respectively. This criterion was used to discriminate between the presence or absence of an allele. Thus, comparison of pan-
els A and C enables genotyping with Assay1: the numbers of molecules for Trees 14, 17, 20 are within the predicted intervals 
for a GT/GG heterozygote. Similarly, the numbers of molecules for Trees 2, 4, 6 are within the intervals predicted for a GT/
GT homozygote. In contrast, the numbers of molecules predicted for all genotypes with Assay2 are too similar to one another 
to assign genotypes.
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itive scores for all three alleles in every one of these dip-
loid samples.

These same two assays were also compared for determin-
ing RNA transcript levels among trees from the two geno-
types previously determined (Figure 5-B) with perfect
match and mismatch primers. Assay 2 gave less than a
two-fold difference between the average transcript levels
for the two groups of individuals, regardless of the pair of
primers that was used (Table 4). This result was within the
variation acceptable for a reference gene, particularly on
non-normalized data. This observation indicates that
Assay 2 which lacks specificity and has a reduced capacity
to discriminate between alleles is better suited for deter-
mining transcript levels in a population of genetically var-
iable individuals. In contrast, Assay1 conditions gave up
to a 30-fold difference in transcript number when the
primer was designed based on the G-G allele alone (SNP
not accounted for) (Table 4). These differences were of
similar magnitude than those observed with genomic
DNA for these same trees. In the case of gene expression
studies, Assay 1 conditions might lead to spurious results
if a single primer pair was used on non-genotyped indi-
viduals.

Results presented in Figure 5 and Table 4 confirmed the
prediction based on priming probabilities that Assay 1 has
greater discriminatory power than Assay 2. Better discrim-
ination is useful for genotyping assays or molecular diag-
nostics, whereas less sensitivity to SNPs is useful to buffer
the effects of genotypic variation in gene expression
assays. These results show that the use of priming proba-
bilities provided a precise and quantitative description of
assay performance, for two assays which had not previ-
ously been tested or optimized for diagnostic or gene
expression purposes.

Factors influencing primer to template annealing

Our results indicated that PCR parameters greatly influ-
ence the rate of primer annealing to target molecules.
Therefore, we explored the potential impact of modifying

PCR conditions on priming probabilities during qPCR
quantifications with test primers containing a mismatch
near the 3' end. We tested parameters that influence
primer template annealing and elongation. Increasing the
primer Tm or reducing the annealing temperature reduced
the impact of SNPs (see Additional file 1). Changing both
parameters simultaneously resulted in further attenua-
tion. No further increase in the number of molecules were
observed once all molecules were quantified, and the ratio
of observed to expected molecules stabilized around 1.
Increasing the annealing and elongation time also
reduced the impact of SNPs (see Additional file 1). How-
ever, low plasmid concentrations occasionally gave
abnormally large numbers of molecules (ratio of observed
to expected molecules above 1.5) with the fast mixes
(Roche and QuantiFast). This was particularly true with
higher Tm oligonucleotides. Since no artefactual melting
profiles were observed, we concluded that this problem
may be linked to the additives introduced in fast mixes to
favor primer template annealing which may cause reprim-
ing within a single round of amplification, under certain
conditions.

Generally, the impact of SNPs was reduced by conditions
that favor primer to template annealing, including lower
cycling temperature relative to primer Tm, and longer
annealing and elongation times. Both of the "fast" master
mixes that were tested (Roche and QuantiFast) were less
impacted by SNPs than QuantiTect (Table 1, see Addi-
tional file 1).

Discussion
This study provided evidence that PCR mispriming (or
priming) occurs with measurable frequencies relative to
the expected number of molecules. Consequently, such
frequencies can be considered as empirical probabilities.
We demonstrated that the probability of generating an
amplicon is equal to the product of the annealing proba-
bilities of the individual primers as expected from two
events with independent probabilities.

Table 4: Validation of predicted assay performance on cDNA (Molecules measured from the cDNA equivalent of 10 nanograms of 

total RNA from secondary phloem).

Assay 1
(Quantitect, 2 min A&E)

Primer Pairs

Assay 2
(Quantifast, 1 min A&E)

Primer Pairs

Tree number (genotype) T1-C2 G1-A2 G1-C2 T1-C2 G1-A2 G1-C2

Tree-14 (G-T/G-G) 1100 16000 18000 17000 53000 47000

Tree-17 (G-T/G-G) 1400 23000 29000 22000 54000 31000

Tree -20 (G-T/G-G) 1500 32000 21000 30000 81000 74000

Mean ± SD 1400 ± 200 24000 ± 8000 23000 ± 6000 23000 ± 7000 63000 ± 16000 51000 ± 22000

Tree-2 (G-T/G-T) 18 24000 380 11000 27000 20000

Tree-4 (G-T/G-T) 67 51000 1100 15000 35000 25000

Tree-6 (G-T/G-T) 69 54000 630 23000 60000 47000

Mean ± SD 51 ± 29 43000 ± 16000 690 ± 30 17000 ± 6000 41000 ± 17000 31000 ± 14000
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Validation of the LRE methodology

To date, there is no consensus method to perform qPCR
data analysis. The LRE procedure is simple to use once for-
mulas are programmed (for example, in an Excel work-
sheet) and the qPCR apparatus has been calibrated. The
raw fluorescence data is exported from the qPCR instru-
ment to directly calculate numbers of molecules and
amplification efficiencies from individual reactions
(wells). In contrast, for the construction of standard
curves, quantification cycle (Cq) values are determined
using the second derivative maximum in the LC480 soft-
ware supplied with the instrument. These Cq values
obtained with serial dilutions of target molecules are used
to derive standard curves which were in turn used to con-
vert Cq values to molecules. Standard curves are generated
for each primer pair against each target. Primer pair effi-
ciencies are derived from the slope of the linear regression
of the standard curves. There are several standard curves
when dealing with primer mismatches; therefore, a prob-
lem arises as to which standard curve to use. Primer mis-
matches cause shifts in the fluorescence profiles resulting
in higher Cq values (Figure 2). This shift to higher Cq val-
ues caused by primer mismatches should have been indic-
ative of lower number of molecules. However, converting
back Cq values to molecules using the respective standard
curves always reported the number of molecules deter-
mined optically at 260 nm indicating that standard curves
have the capacity to compensate for primer mismatches.
To avoid this problem we constructed average standard
curves with perfect match primers and used these as refer-
ence to evaluate the impact of mismatches. Results were
nearly identical when using the average standard curve
approach and the LRE method, clearly indicating that LRE
is a valid methodology for analyzing qPCR data as previ-
ously reported [18]. However, although very highly corre-
lated, the numbers of molecules determined by the LRE
method were slightly different from the input numbers of
molecules and average standard curve data (ratio to input
molecules of 0.69, 0.73 and 1.27; see Additional file 1).
These differences could be most likely attributed to the
different manipulations required to produce serial dilu-
tions of plasmid DNA (plasmid DNA isolation, restric-
tion, optical assessment of DNA concentration and serial
dilutions). In other words, the standard curve methods
were based on input numbers of molecules added to the
reaction, whereas the LRE determined molecules were
measured from the reaction. This slight discrepancy
between LRE and standard curve data, or input numbers
of molecules, should not be considered a limitation to the
study.

Since variances increase along with molecule numbers in
qPCR (heteroscedasticity), we used a log2 transformation
for statistical analyses of qPCR data. Although log trans-
formation has been proposed earlier, log2 may be more

representative of PCR reactions as molecules nearly dou-
ble at each cycle. We found that log2 transformations gen-
erate variances similar to the ones observed with Cq
determination (see Additional file 1).

Mispriming probabilities and molecular diagnostic

The ability to assign a rate of success or failure to a given
assay has tremendous implications in PCR-based molecu-
lar diagnostics. This study used the ratio of observed to
expected number of molecules and showed that it is
reproducible as long as the PCR conditions are controlled.
As such, the ratio of observed to expected number of mol-
ecules is indicative of the success or failure rate of a given
assay on a given target molecule. The ratio should repre-
sent the primer pair efficiency for the molecule(s) targeted
by the assay and, ideally, should be close to 1 (100% suc-
cess rate). This primer efficiency is distinct from the ampli-
fication efficiency. Furthermore, a ratio can be established
for all known targets, thus providing a benchmark for
other closely related DNA molecules that may interfere in
the assay and cause misprimed amplification.

These observations are consistent with the recommenda-
tions of the MIQE guidelines for proper quantitative
assessment of accuracy, specificity and sensitivity. Sensi-
tivity is defined as the limit of detection of an assay, and
is well described in the MIQE guidelines [17]. Although
accuracy (the difference between experimentally meas-
ured and actual concentration) and analytical specificity
(detection of the appropriate target sequence rather than
other sequences also present) are well defined in the
MIQE guidelines, the procedures for determining these
important parameters are not described. The first and
most important factor influencing these two parameters is
the method used to determine the number of molecules
in the sample. Our results show a very strong correlation
between the molecules obtained with LRE and average
standard curves which indicates that these numbers
should be considered as the correct number of molecules
detected by an assay. The difference between the number
of molecules determined by LRE (or average standard
curves with perfect match primers) and the number of
molecules in the sample is mostly a measure of analytical
specificity and should be presented as priming probabili-
ties for target or other nonspecific targets. Our results
show that amplification profiles shift when mismatches
are introduced and that standard curves can compensate
for this shift because they depend on input target number
of molecules during their construction. Therefore, evalu-
ating accuracy with standard curves is appropriate because
it consistently reports the number of molecules present in
the sample. Standard curves should also be used for deter-
mining the limit of detection of an assay. Figure 2 pro-
vides examples of assay description with different priming
probabilities. From these examples it is clear that assays
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can be accurate without being at their maximal specificity.
However, these results also show that designing accurate
assays that are less specific always decreases sensitivity.

The voluntary introduction of mismatches in primers is
commonly used in combination with 3' end single nucle-
otide polymorphism during amplification refractory
mutation system (ARMS-PCR) with the clear objective of
destabilizing primer annealing [23]. This has long been
thought to increase the specificity of traditional PCR diag-
nostic assays relying on the presence or absence of a frag-
ment on agarose gels [23]. However, our qPCR results and
those of others [24] clearly show that the introduction of
mismatches shifts the Cq towards higher values and
decreases the number of molecules. Therefore, this prac-
tice decreases the analytical specificity because only a frac-
tion of the molecules in the sample are counted. The
apparent increase in specificity is unfortunately associated
with a shift in the amplification profile such that no band
in observed on agarose gels, or in qPCR, that the negative
allele produces a Cq above the accepted threshold for an
assay. Similar results could have been obtained by reduc-
ing the amount of DNA used in the assay and using oligo-
nucleotides without voluntary addition of mismatches. As
a consequence, the introduction of additional mis-
matches inevitably reduces the sensitivity of assays as
demonstrated in Figure 2.

A recent review of clinical applications of rapid diagnostic
test methods identified PCR as the most promising tech-
nology for the detection and identification of bacterial
intestinal pathogens in feces and food [25]. However, the
study also reported disparate results when comparing the
established culture procedures and PCR-based diagnos-
tics, as the latter always yielded more positive results.
Because of the lack of a common reference between the
two technologies, it has therefore been impossible to dis-
tinguish between the lack of sensitivity of cultures and the
lack of specificity of rapid testing [25]. Amplification
probabilities to known specific and interfering targets that
are associated with such assays would provide a means of
evaluating their specificity and sensitivity and would
likely help to explain some of the discrepancies between
rapid testing and traditional culture-based methods.
Moreover, the combination of primer pairs with estab-
lished probabilities for false positives should greatly
increase the confidence level during diagnostic testing.
Furthermore, mispriming probabilities can also describe
assay limitations regarding the detection of target mole-
cules in a pool of closely interfering molecules. For exam-
ple, an assay with a 0.001 probability of mispriming on a
non-target molecule will produce the same results
whether 10 target or 10,000 non-target molecules are
detected. In this regard, our genotyping assay (Assay 1)
provides sufficient discriminatory power to accurately

genotype individuals (two possible alleles), but has lim-
ited capacity to detect rare alleles in a pool of individuals
(n individuals × 2 alleles).

However, the ability to measure amplification probabili-
ties is dependent on the quantitative nature of qPCR. This
means that evaluating assay performance as outlined here
is only possible for quantitative assays, as such. Therefore,
the inclusion of a quantitative component could be bene-
ficial during assay development of PCR-based molecular
diagnostics, as it would likely aid in describing, improv-
ing, or validating the robustness of assays.

SNPs and populational analysis of gene expression

The occurrence of SNPs that could interfere with PCR
priming has posed a particular problem for gene expres-
sion studies in populations where genotypic variation in
the target molecules is unknown. The occurrence of SNPs
in human, Drosophila and plant transcript sequences has
been estimated to be between 1/50 and 1/250 bases [4-7].
When considering only the SNPs with population fre-
quencies above 1%, the occurrence in humans is around
1/290 bases [8]. Since a pair of oligonucleotides used in
PCR-based gene expression analysis spans an average of
50 non-overlapping nucleotides, the probability that a
SNP (including rare variants) falls within one of the prim-
ers can range from 20 to 100%, when analyzing a popula-
tion of genetically diverse individuals. Furthermore, that
same probability can be estimated to be 17% for variants
with population frequencies of 1% and above in humans.
This potential limitation of PCR-based assays becomes a
major concern when numerous genes are analyzed. This
concern was supported by a recent study using oligonucle-
otide microarrays that identified a dramatic lack of con-
cordance between differential expression results analyzed
with or without masking sequence variants, which
affected approximately 16% of the array's probe sets [1].
The mispriming probabilities of Assay 2 and the results
presented in Additional file 1 illustrated that PCR condi-
tions can be modulated to minimize the influence of
SNPs, thereby reducing the large number of aberrant
measurements of gene expression that could be expected
due to SNPs present in primer binding sites.

The best approach to developing PCR assays that are
insensitive to SNPs is to avoid them during oligonucle-
otide design by using software, such as SNPmasker [26],
designed for this purpose. Currently, there are over 50
million SNP submissions to consider for the human
genome in build 129 of dbSNP http://
www.ncbi.nlm.nih.gov/projects/SNP/. Twenty-seven per-
cent of those have been added to dbSNP in the last 6
months, which indicates that periodic reevaluation of the
oligonucleotide design is essential for such an approach
to be viable. Furthermore, extensive knowledge of SNPs is

http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.ncbi.nlm.nih.gov/projects/SNP/
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available for very few species. Including humans, only 10
species (7 mammals, 2 insects, 1 plant) have more than
one million dbSNP entries, while an additional three spe-
cies have between 100,000 and one million entries in
dbSNP (1 mammal, 1 fish, 1 protozoan). The dbSNP is
not the only repository for SNPs and further efforts are
needed to identify an appropriate genomic diversity
resource. For example 0.56 million SNPs for the model
plant Arabidopsis are available on the TAIR website (The
Arabidopsis Information Resource) whereas there are only
301 dbSNP entries. Outside of the very few model organ-
isms with large SNP collections, information is greatly
lacking for most species that would allow researchers to
effectively avoid SNPs during oligonucleotide design. For
those species, our study has shown that expression assays
can be designed with greatly reduced sensitivity to SNPs.
Genotyping of individuals for the presence of SNPs in oli-
gonucleotide binding sites should also be considered,
especially for data validation or confirmatory analyses.

The results presented here demonstrated that the influ-
ence of SNPs can be diminished, for nucleotides ranging
from the 5' terminus to the fourth nucleotide from the 3'
end, in oligonucleotides that were designed at melting
temperatures ranging from 62 to 66°C. The impact of
SNPs situated closer to the 3' end was not tested as such,
but their stronger impact is more likely to be difficult to
circumvent. Consequently, the probability that a SNP
influencing quantification will occur in a primer pair may
be recalculated, assuming that only the last three nucle-
otides of each primer have an effect on qPCR; the proba-
bility would subsequently drop from 20–100% to 2.5–
6%, and as low as 2% for SNPs with a population fre-
quency of 1% or higher. The likelihood of two or more
SNPs occurring was, of course, much lower.

Current knowledge versus priming probabilities

Current knowledge regarding PCR assay design has been
mostly intuitive and based on many years of optimizing
PCR conditions by trial and error. For example, such intu-
itive knowledge would have predicted small differences in
performance between Assay 1 and Assay 2 because both
assays used the same primers at the same A&E tempera-
ture. However, since A&E times differed between assays,
intuition would have predicted that the assay with the
shortest time of A&E would have been more specific, or
had greater discriminatory potential. Examination of the
priming probabilities (Table 3) predicted the opposite
response. The data presented in Figure 5 and Table 4 con-
firmed that the predictions based on priming probabili-
ties were more accurate; suggesting that PCR conditions,
including master mix composition, have great impacts on
quantitative PCR. Consequently, priming probabilities
are good and universal features to quantitatively assess
assay performance because they can be measured with any

primer pair, on any given target, with any master mix, and
in any PCR conditions. Furthermore, priming probabili-
ties are essential to describe analytical specificity as
required in the MIQE guidelines [17]. These results also
have underscored the importance of PCR assay conditions
in the determination of assay specificity.

Conclusion
The major challenge for designing PCR assays is to detect
all molecules of interest without detecting interfering
molecules. Our results have shown that mispriming, or
priming, on a given target occurs with a measurable prob-
ability under standardized PCR conditions, which is
broadly applicable for quantitative description of PCR
assay performance. Therefore, false positive rates can be
established for all known interfering molecules in molec-
ular diagnostic applications. Similarly, priming probabil-
ities can be used to describe the relative sensitivity to SNPs
of assays designed to measure gene expression in popula-
tion studies. Our results also demonstrate that although
primer design is critical for successful PCR, other parame-
ters influencing primer to template annealing are equally
important for assay design. For PCR based diagnostic pur-
poses, where power of discrimination is critical, users
should favor more specific master mixes, place SNPs as
close as possible to the 3' end of primers and optimize
temperature, and annealing and elongation times. In con-
trast, for accurate transcript quantification in populations,
primer design should avoid known SNPs, utilize master
mixes that are less impacted by SNPs, increase the differ-
ences between primer Tm and annealing temperature and,
use longer primer annealing and elongation steps.
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