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ABSTRACT

Structure mapping experiments (using probes such as dimethyl sulfate [DMS], kethoxal, and T1 and V1 RNases) are used to
determine the secondary structures of RNA molecules. The process is iterative, combining the results of several probes with
constrained minimum free-energy calculations to produce a model of the structure. We aim to evaluate whether particular
probes provide more structural information, and specifically, how noise in the data affects the predictions. Our approach
involves generating ‘‘decoy’’ RNA structures (using the sFold Boltzmann sampling procedure) and evaluating whether we
are able to identify the correct structure from this ensemble of structures. We show that with perfect information, we are
always able to identify the optimal structure for five RNAs of known structure. We then collected orthogonal structure map-
ping data (DMS and RNase T1 digest) under several solution conditions using our high-throughput capillary automated
footprinting analysis (CAFA) technique on two group I introns of known structure. Analysis of these data reveals the error rates
in the data under optimal (low salt) and suboptimal solution conditions (high MgCl2). We show that despite these errors, our
computational approach is less sensitive to experimental noise than traditional constraint-based structure prediction algorithms.
Finally, we propose a novel approach for visualizing the interaction of chemical and enzymatic mapping data with RNA
structure. We project the data onto the first two dimensions of a multidimensional scaling of the sFold-generated decoy
structures. We are able to directly visualize the structural information content of structure mapping data and reconcile multiple
data sets.
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INTRODUCTION

RNA is a multifaceted functional molecule that is capable of
adopting a wide array of highly specific conformations that
confer upon it the ability to carry out highly specialized
functions in the cell (Dolnik 1999; Weinstock 2007; Morton
2008). When a novel RNA is identified, it is common
practice to input its sequence into a folding program, such
as mFold, to reveal structural motifs of interest (Reeder et al.
2006). The resulting structure provides a context upon
which a hypothesis is generated, and new experiments are
designed to probe the molecular details of the RNA. Because
the RNA secondary structure is central to this process,

experimental validation of the structural model is often
desired. Structure mapping offers an experimentally straight-
forward approach for model validation (Tijerina et al. 2007;
Wilkinson et al. 2008).

We use the term ‘‘structure mapping’’ to describe the
broad range of chemical and enzymatic probes used in
RNA structural analysis (Mitra et al. 2008). In particular,
we focus on the subset of probes that modify the base of the
nucleotide (including, but not limited to DMS, Kethoxal,
CMCT [1-cyclohexyl-3-(morpholynoethyl) carbodiimide],
and DEPC [diethyl pyrocarbonate]) (Ehresmann et al.
1987; Brunel and Romby 2000; Harkins 2001) as well as
RNases (Donis-Keller et al. 1977; Lockard and Kumar 1981;
Vary and Vournakis 1984) that selectively cleave single- or
double-stranded RNA (e.g., T1, T2, U2, V1, and CL3).
These probes are of particular interest to this study as they
target the base, unlike probes such as the dOH (hydroxyl)
radical and NMIA (N-methylisatoic anhydride) that cleave
and modify the backbone of the RNA (Latham and Cech
1989; Wilkinson et al. 2005).
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Structure mapping as described above determines
whether a particular base is paired or not, but it does not
identify the partner of the base in the pairing. By itself, this
data may not contain sufficient information to identify the
structure of the RNA. For this reason, structure determi-
nation requires combining the structure mapping data with
a free-energy minimization approach (Mathews 2004; Hart
et al. 2008; Wilkinson et al. 2008). This study investigates
the complex relationship between the free-energy function
and structure mapping data.

Traditionally, a constraint approach is used to incorpo-
rate structure mapping data into structure prediction. The
state of the art for RNA structure prediction is to not allow
chemically accessible nucleotides to be buried in a helix.
Chemically modified nucleotides are constrained to be
single stranded, at the end of a helix, in a GU pair, or
adjacent to a GU pair (Mathews et al. 2004). Furthermore,
for enzymatic data, it has been shown that constraining
only nucleotides between two consistent cuts also improves
structure prediction (Mathews et al. 1999). Although this
approach will generally yield an improved structural pre-
diction, we and others have found that even small de-
viations from perfect data, typical of structure mapping
experiments, results in structures no better than the mini-
mum free-energy (MFE) structure (Deigan et al. 2009).
This result might suggest that the information content of
structure mapping data is low, and that only perfect
information will yield a correct structure. Since chemical
reactivity is dependent on a variety of factors including 3D
structure, base identity (Wilkinson et al. 2009), noncanon-
ical base-pairing (Leontis et al. 2002), and solution condi-
tions, it is difficult to carry out an experiment that yields
perfect information. A recent study incorporating NMIA
(a backbone probe) reactivity directly into the free-energy
function, using as a training set the E. coli 16S rRNA,
showed more than 30% improvement in sensitivity and
positive predictive value (PPV) with the experimental data
(Deigan et al. 2009).

To better characterize the relationship between the free-
energy function and the structure mapping data, we pro-
pose to separate the data and energy minimization in our
analysis. We leverage the ability of sFold to efficiently
sample RNA secondary structures and then evaluate how
well we identify the correct structure from an ensemble of
decoys (Ding et al. 2004, 2005; Waldispuhl and Clote
2007). This approach allows us to evaluate different metrics
for incorporating structure mapping data into RNA struc-
ture and determine the information content of the data
independently of the free-energy function. Furthermore,
this allows us to reconcile data that probe different nucleo-
tides (e.g., DMS and T1 RNase) in a single computational
framework.

Our results will be of particular interest to those un-
dertaking structural determination experiments with mul-
tiple chemical and enzymatic probes, in that they allow

a quantitative analysis of each probe’s structural agreement
with the other. In particular, if one probe systematically
identifies a subset of structures different from the other
probes, our method can help identify this potentially er-
roneous data and suggest a repeat of the experiment.
Fundamentally, we offer a straightforward approach for
reconciling multiple chemical and enzymatic mapping data
sets and optimizing experimental protocols to improve
structure prediction.

RESULTS

Perfect information

We began our investigation of the structural information
content of structure mapping data by considering the case
where perfect information is available, i.e., all base-paired
and unpaired nucleotides are correctly identified by the
data. To evaluate the quality of our prediction we consider
two metrics, positive predictive value (PPV) and sensitivity.
PPV is the percentage of predicted canonical base pairs that
are found in the reference (crystal structure). Sensitivity is
the percentage of reference (crystal) canonical base pairs
that are found in the predicted structure. These metrics
are commonly used to evaluate RNA secondary structure
predictions (Mathews et al. 2004; Deigan et al. 2009). We
aimed to predict RNA structures with the largest PPV and
sensitivity using their crystal structure as a reference. The
crystal structure (Fig. 1A) is a completely independent
source of experimental information on the secondary
structure of the RNA, and for this reason we chose to use
it as a reference (Fig. 1B). For the purposes of this study, we
only considered Watson–Crick canonical and G–U wobble
base pairs as determined in the Nucleic Acid Database
(Lemieux and Major 2002), excluding all tertiary contacts.

Our approach involved generating a large number of
decoy structures using sFold (Ding et al. 2004) and then
using structure mapping data to select the decoy with the
lowest distance to the data (Fig. 1C). We refer to this novel
approach as ‘‘sample and select,’’ as opposed to more
traditional constraint satisfaction (Mathews et al. 2004).
This strategy requires defining a quantitative metric to
evaluate the agreement between the structure mapping data
and the different structures. For the case of perfect in-
formation, a simple ‘‘Manhattan’’ metric is sufficient, where
the structure mapping data is represented as ones (meaning
the base is paired) and zeros (base not paired). We com-
puted such a vector corresponding to each decoy structure
and calculated the distance as the sum of the absolute
differences between the reference and decoy vectors.

We performed this calculation for 106 sFold-generated
decoys of the P4P6 subdomain of the T. thermophila group I
intron (Fig. 1). In Figure 2A, we plot the sum of the sensitivity
and PPV as a function of the Manhattan distance. Several
important results are revealed with this simple analysis:

Information content of chemical mapping data
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1. There is an inverse correlation between higher PPV and
sensitivity and the Manhattan distance (Fig. 2A). There-
fore, decoys with a large Manhattan distance will have
lower PPV and sensitivity (Fig. 1D).

2. The sFold algorithm samples structures very near the
correct crystal structure (for P4P6 a decoy with a Man-
hattan distance of 4 is sampled and is illustrated in Fig.
1C). Highly diverse structures are also sampled that are

very different from the crystal struc-
ture, and thus have low PPV and
sensitivity (Fig. 1D).

3. There is no correlation between the
energy of the structure, PPV, and
sensitivity (see Supplemental Fig. 1).

4. The Manhattan distance metric
(Fig. 2A, x-axis) increases in units
of two, since making or removing
a base pair will always involve two
bases. This also means that our
distance 4 structure (Fig. 1C) is only
two base pairs off from the correct
crystal structure.

We performed similar calculations on
five RNAs of known crystal structure
and report the results in Table 1. We see
that in all cases we sample structures
with high PPV and sensitivity, and that
these structures have a low Manhattan
distance. For cases where we sample mul-
tiple equidistant structures (e.g., HCV
IRES), the mean PPV and sensitivity
of the decoys remains high and is above
that of the MFE structure. In these ex-
amples we never sampled the correct
structure (Manhattan distance = 0), but
our results suggest, though do not
prove, that perfect data will only ‘‘fit’’
one structure in all cases. The constraint
approach (Table 1, far right column)
does not identify the correct structure
with perfect information. It should be
noted that in these cases we use all of
the data (paired and unpaired for all
bases) and that constraint approaches
are designed for incomplete data (e.g.,
only unpaired bases). It is likely that
the poor performance of the constraint
approaches in this case is due to over-
constraining the structure. Table 1 also
shows that the PPV and sensitivity
values we obtain with our sampling
methodology are on par with recent
results incorporating SHAPE chemical
mapping data in RNA structure pre-

diction (Deigan et al. 2009). The results we present below
using experimental structure mapping data show that the
sample and select approach we propose allow us easily to
reconcile multiple data sets and rapidly identify erroneous
(or high error) data.

The advent of high-throughput techniques for obtaining
structure mapping data (Mitra et al. 2008; Vasa et al. 2008)
promises to provide a wealth of structural information on

FIGURE 1. (A) Crystal structure representation of the P4P6 subdomain of the T. thermophila
group I intron (PDB ID 1GID). In this study we used the secondary structure derived from the
crystal structure as a reference as determined by NDB (Berman et al. 2002) excluding all
tertiary contacts. (B) Secondary structure derived from the P4P6 crystal structure used as
a reference. The PPV and sensitivity of the structure are 1 and it has a Manhattan distance of
0 since it is the reference structure. (C) sFold decoy with lowest Manhattan distance and
greatest sum of PPV and sensitivity found in the 106 decoys that we generated for this analysis.
(D) sFold decoy with the largest Manhattan distance and low PPV and sensitivity.
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RNA. However, such data sets can have higher error rates
due to the automated nature of the data fitting (Mitra et al.
2008). Furthermore, collecting structure mapping data
under a wide range of solution conditions becomes trivial
when using a multiplex capillary sequencer (Deigan et al.
2009). It is now possible to collect such data in vivo
where solution conditions cannot be adjusted to opti-
mize the reactivity of a probe to predict secondary
structure (Adilakshmi et al. 2006). As a result it is
important to consider the effects of inaccuracy in the

structure mapping data on our predictions of RNA
structure. We will also show that the error introduced
by our not sampling the correct structure (Table 1) is very
small compared with the error introduced by noise in
experimental chemical mapping data.

Experimental data

We performed a series of structure mapping experiments
with our CAFA technology (Mitra et al. 2008; Vasa et al.

FIGURE 2. (A) Plot of the sum of PPV and sensitivity to the reference crystal structure as a function of the Manhattan distance to perfect
information (ideal) data for 1,000,000 P4P6 decoys generated by sFold (Ding et al. 2005). (B) Similar plot computing the Manhattan distance to
the experimentally obtained DMS chemical mapping data at 100 mM KCl for the P4P6 domain of the Tetrahymena group I intron. The lowest
distance decoy is indicated with a red box, the MFE structure with a blue box, and the crystal (reference) is in green.

TABLE 1. Prediction of RNA structure performance using perfect information

Max
PPV/sensa

Mean
PPV/sensb

Number
of decoys

in top groupc

Min
Manh

distanced

Total
number

of decoys
MFE

PPV/sense
SHAPE

PPV/sensf
Constraint
PPV/sensg

P4P6
0.96/0.98 0.96/0.98 1 4 106 0.82/0.80 0.98/0.96 0.96/0.60

(1GID)
Twort

0.92/0.98
0.92 6 0.01/

2 12 106 0.66/0.77 N/A 0.75/0.43
(1Y0Q) 0.97 6 0.02
Azoarcus

0.97/0.93 0.97/0.93 1 10 105 0.83/0.79 N/A 0.68/0.80
(1ZZN)
tRNA

0.80/1.0
0.80 6 0.02/

2 10 105 0.65/1.0 1.0/1.0 0.77/0.95
(TRNA07) 0.99 6 0.02
HCV IRES

1.0/0.75
0.99 6 0.02/

15 12 106 0.62/0.40 1.0/1.0 0.21/1.0
(1P5O) 0.72 6 0.03

aMaximum PPV and sensitivity observed in the ensemble of structures.
bMean PPV and sensitivity of decoys with lowest Manhattan distance to crystal structure.
cNumber of decoys with minimum Manhattan distance to crystal structure.
dMinimum Manhattan distance.
ePPV and sensitivity of minimum free-energy structure.
fValues reported in Deigan et al. (2009) using SHAPE chemistry.
gValues using RNAFold (Bernhart et al. 2006) constraint approach with all ideal data.

Information content of chemical mapping data

www.rnajournal.org 1111

 Cold Spring Harbor Laboratory Press on August 9, 2022 - Published by rnajournal.cshlp.orgDownloaded from 

http://rnajournal.cshlp.org/
http://www.cshlpress.com


2008) using a capillary sequencer to analyze fluorescently
labeled cDNA obtained by reverse transcription of the
chemically modified RNA. These experiments were de-
signed to both characterize structure mapping data col-
lected in this way and evaluate our sample and select ap-
proach as a method for determining structure. We aim to
determine the operational characteristics for two com-
monly used chemical and enzymatic probes, DMS and T1
(Donis-Keller et al. 1977; Tijerina et al. 2007). To this end
we chose to study the P4P6 domain of the T. thermophila
group I intron and the Twort group I intron, both of which
have been crystallized (Cate et al. 1996; Golden et al. 2005).
We determined the reference secondary structure of
both introns by analyzing the base-pairing interactions in
their respective crystal structures (PDB ID GID and 1Y0Q),
as the crystal structure is an independent measurement
of structure (Berman et al. 2002). We only considered
canonical Watson–Crick base-pairs and G–U wobbles,
excluding any tertiary contacts from our analysis. Several
comparative structures for our two introns of interest are
published and generally agree with the crystal structure
(maximum distance 12 using our Manhattan metric)
(Cannone et al. 2002).

We conducted duplicates of experiments in which we
probed the folded RNA either in the presence of 100 mM
KCl or 10 mM MgCl2. It is well established that in the
presence of 100 mM KCl, the secondary structure of the
RNA is formed, but only upon addition of MgCl2 does
the RNA fold into its native structure (Mathews et al. 1997;
Laederach et al. 2006, 2007). Structure mapping experi-
ments probe the accessibility of nucleotides, which is

correlated to both secondary and tertiary structure (Vicens
et al. 2007). Thus, we expect to see the best agreement
between the chemical mapping data collected in the pres-
ence of 100 mM KCl and our reference structure. This is
indeed the case for both P4P6 and the Twort ribozyme
when probed with DMS, as the presence of MgCl2 increases
the error rate (Table 2).

We determined the experimental error rates reported in
Table 2 by defining a threshold value above which a base is
considered unpaired and below which it is considered
paired. For the purpose of this study we used a threshold
that minimizes the error rate as defined by Equation 1. In
Figure 3 we plot histograms of the peak areas (as de-
termined by single nucleotide peak fitting of the capillary
trace) (Takamoto et al. 2004; Das et al. 2005; Mitra et al.
2008) for two of our P4P6 data sets. For the DMS data
collected at 100 mM KCl, the choice of the threshold is
relatively straightforward, as the distribution of the DMS
reactivity is bimodal (Fig. 3A) and a relatively large range of
thresholds yield low error rates (Fig. 3B). For data collected
in the presence of 10 mM MgCl2, however, the problem
of determining a threshold is more complex due to the
absence of a truly bimodal distribution in the peak areas
(Fig. 3C). It is only when we determine the error rate as
a function of the threshold that we see that there is a narrow
window in the threshold values that yields a minimal error
rate (shown as a dot–dash line in Fig. 3D). We used this
optimal threshold to compute the error rates in Figure 2.
However, this calculation requires a priori knowledge of
the structure and is therefore not a viable option for RNA
secondary structure prediction.

TABLE 2. RNA structure prediction using experimental data

TPa FPb TNc FNd
Error
ratee

Mean
PPV/sensitivityf

RNAfold
PPV/sensitivityg

RNAstructure
PPV/sensitivityh

P4P6 DMS
37–39 2 33 2 0.05–0.08

0.83 6 0.03/ 0.67–0.75/ 0.87/
100 mM KCl 0.84 6 0.03 0.49–0.61 0.92–0.94
P4P6 DMS

36 18–20 15–17 5 0.30–0.33
0.79 6 0.04/ 0.65–0.72/ 0.85–0.86/

10 mM MgCl2 0.78 6 0.03 0.53 0.86–0.92
P4P6 T1

29–30 4–6 5–6 1–4 0.17–0.19
0.81 6 0.07/

0.80/0.80
0.75–0.86/

100 mM KCl 0.93 6 0.07 0.80–0.88
Twort DMS

27–31 12 26–27 9 0.22
0.75 6 0.05/ 0.44–0.79/ 0.85–0.89/

100 mM KCl 0.81 6 0.06 0.46–0.57 0.65–0.76
Twort DMS

34–40 12–14 23–26 6–10 0.24–0.27
0.65 6 0.06/ 0.67–0.80/ 0.87–0.88/

10 mM MgCl2 0.75 6 0.04 0.42–0.53 0.64–0.68
Twort T1

25–28 9–10 1–2 0 0.25–0.26
0.69 6 0.08/ 0.80–0.84/ 0.9/

100 mM KCl 0.79 6 0.06 0.69 0.72–0.80

aNumber of bases correctly identified as base-paired.
bNumber of bases identified as base-paired that are not base-paired in the reference crystal structure.
cNumber of bases correctly identified as not base-paired.
dNumber of bases identified as not base-paired that are base-paired in the reference crystal structure.
eError computed as defined by Equation 1.
fMean PPV and sensitivity of the top 100 decoys (out of 106) with lowest Manhattan distance to both data sets.
gRNAfold PPV and sensitivity for predicted structure using TN bases as constraints (unpaired).
hRNAstructure PPV and sensitivity for predicted structure using data thresholds that minimize error rate of the data.
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One advantage of our sample and select approach is that it
does not require defining a threshold, which can be difficult
for data collected under non-ideal solution conditions (e.g.,
10 mM MgCl2) (Fig. 3B). Our method’s performance is
equal to (and in some cases better than) a constraint
approach with the 100 mM KCl (low error) data, as can
be seen in Table 2. However, it is with data where the false
negative (FN) rates are high (10 mM MgCl2) that our
method shows the greatest improvement. Constraint ap-
proaches generally require choosing a high threshold so as to
minimize the FN rate (Mathews et al. 2004). Although
picking a higher threshold value does decrease the FN rate
(and improve moderately the RNAfold prediction), our 10
mM MgCl2 data has a high FN rate regardless of the choice
of threshold. The high FN rate is due to strong RT stops that
make background subtraction difficult (Mitra et al. 2008)
and thus yield large positive peaks areas. This is an inherent
feature of using a single primer and analyzing hundreds of
nucleotides in a single reaction (Mitra et al. 2008). We used
an automated approach for identifying these stops as well as
background subtraction; nonetheless, in such large and
comprehensive data sets, correctly identifying all RT stops
and therefore eliminating false negatives is challenging to
completely automate.

Visualizing decoy selection
and structural information
content

An interesting outcome of the Boltzmann
sampling procedure for RNA is that the
decoy structures generated form clusters
(Ding et al. 2005). These are easily visual-
ized by performing multidimensional
scaling on the pairwise Manhattan dis-
tance matrix of all decoy structures. We
performed this analysis on 5000 Boltzman
sampled decoys generated by sFold
(Ding et al. 2004) for P4P6 and project
each decoy on the first two dimensions
in Figure 4 as black dots. The first two
components of our analysis capture 34%
of the variance in the sample. We selected
the 30 decoy structures that have the
lowest Manhattan distance to the 100
mM KCl DMS (red), T1 data (Magenta),
and 10 mM MgCl2 DMS (blue) data.
Figure 4A clearly illustrates that lower
error data (red 100 mM KCl DMS) se-
lects a majority of decoys near the ref-
erence crystal structure (green square),
while the high error data (10 mM MgCl2)
selects decoys belonging to a different
cluster. The T1 data (which only probes
guanosines) selects a wider range of
decoy structures (Magenta). It is im-

portant to note that in all cases the 30 structures we selected
are within one unit of Manhattan distance to the top
structure and, therefore, can be considered equidistant within
noise.

To visualize all of the data collected for P4P6 (replicates
included), we project our experimental data onto the two
first dimensions of the multidimensional scaling calcula-
tion of the sFold decoys. The result of this calculation is
illustrated in Figure 4B and allows one to visualize the
experimental reproducibility in RNA multidimensional
space. Colored squares and circles represent the full
replicates of our data, with the green square indicating
the ‘‘correct’’ crystal structure. The low-salt (100 mM KCl
DMS data, red square and circle) is closest to the green
reference structure. This visualization suggests that picking
decoys in this multidimensional space near the experimen-
tal data may lead to better results than using our simple
Manhattan metric. Although this is the case for the 10 mM
MgCl2 data on P4P6 (we see an improvement of PPV/
sensitivity of 0.83 6 0.02/0.81 6 0.03 compared with
0.79 6 0.04/0.78 6 0.03 [Table 2] obtained with the
Manhattan distance metric), the overall improvement does
not seem to justify using this more complex distance metric.
These visualizations remain powerful for the analysis of

FIGURE 3. (A) Histogram of the raw DMS peak areas for adenines and cytosines for the
Tetrahymena group I intron at 100 mM KCl. The distribution of peak areas is bimodal with
several outliers. Some of the very negative and positive values are a result of RT stops that yield
very large peak areas that is one source of noise in the data. (B) Error rate as a function of
threshold when predicting paired/unpaired bases using as the reference the crystal structure
(PDB ID 1GID). The dotted vertical line identifies an optimal threshold above which bases are
considered unpaired (high DMS reactivity). (C) Same histogram as in A, however, for data
collected in the presence of 10 mM MgCl2. (D) Error rate as a function of threshold for data
collected in the presence of 10 mM MgCl2. An optimal threshold value can be found, but it is
not apparent from the histogram (C).
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structure mapping data and suggest possible novel algorith-
mic development for their analysis and interpretation.

DISCUSSION

Structure mapping is a proven technology for the analysis
of RNA structure (Latham and Cech 1989; Shcherbakova
and Brenowitz 2005, 2008; Tijerina et al. 2007; Deigan et al.
2009). The advent of high-throughput approaches for
collecting such data promises to expand the importance
of these techniques for the understanding of RNA structure
and function in the cell. The data collected in this way
present novel computational challenges in terms of their
interpretation, since chemical reactivity to a probe is always
a function of both secondary and tertiary structure. We are
now in a position to more easily and rapidly probe RNA
under different conditions and by using a wide variety of
probes (Mitra et al. 2008). In this work we have attempted to
quantitatively analyze the potential impact of RNA tertiary
structure formation on secondary structure prediction and

found that depending on the method used, the effects are
important (Table 2). One solution is to incorporate the
structure mapping data into the energy function for mini-
mization and ‘‘learn’’ a set of parameters based on a reference
structure. In terms of pure RNA secondary structure pre-
diction, this approach produces remarkable results, correctly
predicting most structures with 99% PPV and sensitivity on
average (Deigan et al. 2009).

Our sample and select approach achieves similar perfor-
mance to the above-mentioned method with perfect data.
Decoy structures with near perfect sensitivity and PPV for
most RNAs in our test set are sampled (first column of
Table 1). As is illustrated in Figure 2, our approach
identifies an ensemble of structures equidistant to a partic-
ular data set instead of a single structure. We also observe
moderate improvements in PPV and sensitivity compared
with the constraint approach when using our sample and
select approach for structure prediction with experimental
data (Table 2). We hypothesize that the uncoupling of the
structure prediction and selection is more robust to
experimental noise because the prediction relies more
heavily on the free-energy rules than in the constraint
approach. A single error in the experimental data cannot
wreck a structure prediction with our sample and select
approach.

We observe similarly good predictive performance using
RNAstructure (Table 2) with our experimental data.
RNAstructure does not impose a strict binary constraint
based on chemical data, which clearly improves perfor-
mance (Mathews et al. 2004). Nonetheless, with RNA-
structure, the user must still define a threshold to determine
which bases are unpaired. For the RNAs that we have
collected data on (Table 2), we used the optimal threshold
that minimizes the error in the data (as illustrated in Fig. 3)
as input for RNAstructure. This is possible because the
correct structure is known. If the structure of the RNA is
unknown, different strategies for determining a threshold
would be needed, which may lead to different results. The
RNAstructure and RNAfold performance we report in
Table 2 therefore represent a best-case scenario for these
approaches. We specifically developed our sample and
select approach to eliminate the need for data thresholding
for RNA structure prediction.

A surprising result is that the top decoys selected, even
with our very low error data, (5% error rate at 100 mM
KCl) do not all fall within the same cluster (see red dots in
the lower right cluster in Fig. 4A). There are two possible
interpretations of this result. One is that the structural
information content of structure mapping is low and that
we cannot always identify a single unique structure from
the data. Alternatively, it is possible that the nearest
neighbor rules implemented in RNA structure prediction
are inadequate at identifying the single structure. We will
propose here that RNA does not adopt a single secondary
structure conformation but instead populates an ensemble.

FIGURE 4. (A) Multidimensional scaling of 5000 P4P6 RNA decoys
generated by sFold and projected onto the first two dimensions as
black dots. The green square is the reference (crystal) structure
projected onto the two dimensions. The red dots represent the top
30 equidistant structures to the P4P4 DMS data collected at 100 mM
KCl, while the blue squares represent the same selection for the 10
mM MgCl2 data computed using the Manhattan distance metric. The
magenta diamonds represent the same selection for the 100 mM T1
data. (B) Same decoys as in A; however, in this case we directly
projected the structure mapping data onto the first two dimensions.
The green square represents the crystal (reference) structure, while the
red data represent repeats of the 100 mM KCl DMS, blue 10 mM
MgCl2, and magenta 100 mM KCl T1 data.
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We will argue that the latter interpretation is more likely in
this case and this is supported by our data.

A majority of computational approaches for RNA
secondary structure prediction identify multiple alternative
structures with very similar energies (Mathews 2004; Hart
et al. 2008). The sFold Botzmann sampling we utilized in
this study further illustrates the size of the conformational
space of an RNA. Of the million decoys we generated for
each molecule in our test set, only about 1600 (<0.16%) are
structurally identical. This simple calculation puts into
perspective the vastness of the conformational space acces-
sible to an RNA polymer. Computational analysis of RNA
structure therefore suggests that alternative RNA structures
will also exist in solution.

The evidence for alternative secondary structures is not
limited to computational results. Kinetic studies of the
Tetrahymena group I intron reveal that mutations which
disrupt RNA secondary structure have profound effects on
the folding rates and are dependent on the initial con-
formational ensemble (Shcherbakova et al. 2004, 2008;
Laederach et al. 2007). Furthermore, single molecule exper-
iments reveal significant conformational heterogeneity in
RNA over a wide variety of solution conditions (Bartley et al.
2003; Onoa et al. 2003; Zhuang 2005). In fact, most
protocols for preparing RNA for structural characterization
include several heating and cooling steps to maximize the
homogeneity of the RNA (see Materials and Methods for the
protocols used in our experiments and Uhlenbeck [1995]).

Our structure mapping data presents a significant dy-
namic range (Fig. 3). Although clearly bimodal for the 100
mM KCl solution condition (Fig. 3A), there remains
important variability in the reactivity of individual nucle-
otides that are either paired or unpaired. If an ensemble of
RNA structures exists in solution, the chemical reactivity
observed for each nucleotide would be proportional to the
ratio of unpaired to paired for that nucleotide. The fact that
we observe reproducible differences in chemical reactivity
for different nucleotides further suggests that the structure
mapping experiments we performed are measuring a prob-
ability of base pairing. The ensemble of structures selected
with our method therefore represents an experimentally
constrained version of the sFold Boltzmann sampling.

Practically, our approach is most valuable as a tool for
visualizing structure mapping data. Traditionally, the data
is projected onto a single RNA structure as a visual
validation for the prediction. The visualization proposed
in Figure 4 offers a simple and informative representation
of the data in terms of possible RNA conformations. Figure
4 clearly shows that the two data sets collected at 100 mM
KCl (T1 and DMS, magenta and red, respectively) both
identify the correct structural cluster containing the refer-
ence structure (green square). We clearly identify that the
10 mM MgCl2 data (blue) selects decoys in an alternative
cluster. Furthermore, we are able to visualize the relative
uncertainty in the prediction from each data set from the

relative spread of the points in the selection. When the data
is projected onto the first two dimensions of the multidi-
mensional scaling as in Figure 4B, it is easy to visualize
multiple data sets and determine their relative agreement.

Standardized data sets such as the ones we have collected
here are central to methodological development, and in the
supplement of this manuscript we also provide the raw data
from our experiments. We have also created a web server
at http://cloud.wadsworth.org/mapfold that reproduces
much of the computational functionality we have illus-
trated herein. Our goal is to facilitate the interpretation of struc-
ture mapping data and to relate it to structural ensembles.

MATERIALS AND METHODS

RNA transcription

The L–21 T. thermophila group I intron plasmid was provided by
Nathan Boyd (Stanford University School of Medicine) and Twort
intron plasmid was provided by Michael Brenowitz (Albert
Einstein College of Medicine). Plasmids were transformed in
DH5a electrocompetent cells and the DNA was purified with
a Qiagen miniprep kit. The template DNA was amplified by PCR
with the following primers:

P4P6: 59-ACTCCAAAACTAATCAATATACTTTC-39;
P4P6 forward: 59-CCAAGTAATACGACTCACTATAGGAGGGA

AAA-39;
Twort: 59-AATTATGTTACGGATAGGTTCGTTACTCC-39; and
Twort forward: 59-GCCAAGCTTAATACGACTCACTATAGAGC-39,

Utilizing a T7 promoter, RNA was transcribed using MegaScript
followed by MegaClear (Ambion) according to the manufacturer’s
protocol.

Folding conditions

Each experiment was performed in 100 mM KCl and in the
presence or absence of 10 mM MgCl2. The first condition contained
the following: 10 mL of RNA (1 mM concentration), 2.5 mL of 10X
CE (10 mM K+ cacodylate at pH 7.3/0.1 mM EDTA) buffer, 1.25
mL of 2 M KCl (Ambion Buffer Kit), and 11.25 mL of dH2O. (Final
volume: 25 mL of final concentrations 0.4 mM RNA, 1X CE buffer,
and 100 mM KCl.) The second condition contained the same as
above but also included 1.25 mL of 100 mM MgCl2 (diluted from
1M MgCl2 Ambion Buffer Kit) and only 10 mL of dH2O. (Final
volume: 25 mL of final concentrations 0.4 mM RNA, 1X CE buffer,
100 mM KCl, and 10 mM MgCl2.)

The RNA mixture, 25 mL (MgCl2 free), was heated at 90°C for
2 min. Samples were removed from heat and cooled to room
temperature for 15 min. Samples were then placed at 50°C for 10
min and MgCl2 was added to a final concentration of 10 mM and
incubation continued at 50°C for 15–30 min. Then samples were
folded at 37°C and incubated for at least 1 h. Similarly, an unfolded
sample was prepared in an identical way, but MgCl2 was not added.

DMS modification

To previously folded RNA, 0.5 mL of DMS solution (15 mL of
100% ethanol, 3 mL of Dimethyl sulfate [Sigma Aldrich]) was
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added and the reaction was incubated for 2 min at 37°C. To stop
the reaction, 475 mL of quench solution (28% b-mercaptoethanol
and 0.3 M Na-OAc) was added. For precipitation, 1 mL of 100%
ethanol was added and incubated overnight at �80°C.

T1 digest protocol

To 5 rmol of RNA, 5.8 mL of 1X TE (10mM Tris, 1mM EDTA at
pH 8) buffer was added. Samples were heated at 95°C for 2 min,
followed by a 10-min incubation at 50°C. While at 50°C, 1 mL
(1 U) of RNase T1 enzyme (Ambion) was added and incubation
continued for 1 min. Samples were removed from heat and placed
on ice to stop reaction. Following the digestion, samples were
treated twice with phenol/chloroform and RNA was precipitated
using 3 mL of 3 M Na-OAc and 400 mL of 100% ethanol.

Primer extension of cleaved/modified RNA

After each chemical modification, RNA was resuspended in 9 mL
of annealing buffer (50 mM Tris at pH 8.3, 60 mM NaCl, 10 mM
DTT [Dithiothreitol, threo-2,3-dihydroxy-1,4-dithiolbutane])
and 1 mL of 5 mM Cy5 labeled primer (59 Cy5 reverse primer
defined above for P4P6 and Twort) was added. Samples were
heated at 90°C for 3 min and then slowly cooled to 25°C for 1.5 h
for primer annealing. Then, 9 mL of reverse transcription mix
(4 mL of 5X FS [First Strand] buffer supplied with Superscript III,
1 mL of 0.1 M DTT, 2 mL of RNase Inhibitor, 2 mL of 10 mM dNTP
mix) was added to each tube. For dideoxy sequencing reactions,
6 mL of 5 mM ddNTP (GE Healthcare) was added to this mixture.
Tubes were incubated at 55°C for 5 min, and then 1 mL (200 U) of
Superscript III (Invitrogen) enzyme was added. The final reaction
volume was 20 mL, which was incubated for an additional 15 min
at 55°C. Upon completion of the reverse transcription extension,
the following process was used to degrade the RNA: 2 mL of 2 M
NaOH was added to the reaction and then incubated at 95°C for
3 min. The solution was then neutralized by adding 2 mL of 2 M
HCl, followed by 3 mL of 3 M Na-OAc to aid in cDNA pre-
cipitation. Lastly, 1 mL of 100 mM MgCl2 and 90 mL of 100%
ethanol was added to the tube. Finally, the pellet was rinsed using
70% ethanol. The dried cDNA pellet was then resuspended in 60
mL of SLS (Beckman Coulter) and analyzed using a CEQ 8000. All
experiments were run entirely duplicated to estimate overall
experimental error. Data traces were integrated using the CAFA
and Shapefinder software (Mitra et al. 2008; Vasa et al. 2008).

Computational methods

All computations were carried out on a Mac OS X server (10.5)
using a combination of Python, Matlab, and Perl for analysis. All
optimizations were carried out using an Ansi-C–implemented
version of a nonlinear large-scale bounded least-squares optimi-
zation routine based on the interior reflective Newton method
(Coleman and Li 1996). Error rates reported in Table 1 were
computed using Equation 1:

Error =
FP + FN

TP + FP + FN + TN
, ð1Þ

where FP, FN, TP, and TN are the false positive and negative and
true positive and negative rates, respectively. The Manhattan
distance metric is the sum of the absolute differences between

all elements of two vectors of equal length. We used the stand-
alone version of sFold available from http://sfold.wadsworth.org
for generating decoy structures. Multidimensional scaling was
performed in the Matlab using the Statistics toolbox. We created
a web server interface that allows users to upload and visualize
their structure mapping data in the context of sFold sampling at
http://cloud.wadsworth.org/mapfold. Two-dimensional structure
visualizations were generated using the VARNA visualization
applet (Darty et al. 2009).

We used the ‘‘fold RNA single strand’’ command of RNA-
structure while constraining unpaired bases using our experimen-
tal T1 and DMS data for Table 2. Only residues having DMS or T1
reactivity above the optimum threshold were constrained as being
‘‘unpaired’’ in RNAstructure (Mathews et al. 2004). We deter-
mined thresholds by minimizing the error rate as computed in
Equation 1. We therefore used the correct structure to determine
the threshold and thus provide input data for RNAstructure. We
report in Table 2 the range of PPV and sensitivity for RNAfold and
RNAstructure obtained for each of our independently collected
data sets.

SUPPLEMENTAL MATERIAL

Supplemental material can be found at http://www.rnajournal.org.

ACKNOWLEDGMENTS

We thank Somdeb Mitra, Joerg Schlatterer, and Michael
Brenowitz (all at Albert Einstein College of Medicine) for their
assistance with the structure mapping data collection and pro-
viding us with the Twort plasmid. We also thank Nathan Boyd
(Stanford University) for the Tetrahymena plasmid. We thank Ye
Ding (Wadsworth Center) for providing the source code for
sFold. We also thank Dave Mathews (University of Rochester) for
his insightful comments while reviewing this manuscript. This
work was supported by grants R00 GM079953 (NIGMS) and R21
MH087336 (NIMH) to A.L., and grant R37-GM39422 (NIH) to
A.B. and L.D.-N.

Received November 5, 2009; accepted February 20, 2010.

REFERENCES

Adilakshmi T, Lease RA, Woodson SA. 2006. Hydroxyl radical
footprinting in vivo: Mapping macromolecular structures with
synchrotron radiation. Nucleic Acids Res 34: e64. doi: 10.1093/nar/
gkl1291.

Bartley LE, Zhuang X, Das R, Chu S, Herschlag D. 2003. Exploration
of the transition state for tertiary structure formation between an
RNA helix and a large structured RNA. J Mol Biol 328: 1011–1026.

Berman HM, Westbrook J, Feng Z, Iype L, Schneider B, Zardecki C.
2002. The Nucleic Acid Database. Acta Crystallogr D Biol Crys-
tallogr 58: 889–898.

Bernhart SH, Hofacker IL, Stadler PF. 2006. Local RNA base pairing
probabilities in large sequences. Bioinformatics 22: 614–615.

Brunel C, Romby P. 2000. Probing RNA structure and RNA-ligand
complexes with chemical probes. Methods Enzymol 318: 3–21.

Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM,
Du Y, Feng B, Lin N, Madabusi LV, Muller KM, et al. 2002.
The comparative RNA web (CRW) site: An online database of
comparative sequence and structure information for ribosomal,

Quarrier et al.

1116 RNA, Vol. 16, No. 6

 Cold Spring Harbor Laboratory Press on August 9, 2022 - Published by rnajournal.cshlp.orgDownloaded from 

http://rnajournal.cshlp.org/
http://www.cshlpress.com


intron, and other RNAs. BMC Bioinformatics 3: 2. doi: 10.1186/
1471-2105-3-2.

Cate JH, Gooding AR, Podell E, Zhou K, Golden BL, Kundrot CE,
Cech TR, Doudna JA. 1996. Crystal structure of a group
I ribozyme domain: Principles of RNA packing. Science 273:
1678–1685.

Coleman TF, Li Y. 1996. An interior, trust region approach for
nonlinear minimization subject to bounds. SIAM J Optim 6: 418–
445.

Darty K, Denise A, Ponty Y. 2009. VARNA: Interactive drawing and
editing of the RNA secondary structure. Bioinformatics 25: 1974–
1975.

Das R, Laederach A, Pearlman SM, Herschlag D, Altman RB. 2005.
SAFA: Semi-automated footprinting analysis software for high-
throughput quantification of nucleic acid footprinting experi-
ments. RNA 11: 344–354.

Deigan KE, Li TW, Mathews DH, Weeks KM. 2009. Accurate SHAPE-
directed RNA structure determination. Proc Natl Acad Sci 106: 97–
102.

Ding Y, Chan CY, Lawrence CE. 2004. Sfold web server for statistical
folding and rational design of nucleic acids. Nucleic Acids Res 32:
W135–W141.

Ding Y, Chan CY, Lawrence CE. 2005. RNA secondary structure
prediction by centroids in a Boltzmann weighted ensemble. RNA
11: 1157–1166.

Dolnik V. 1999. DNA sequencing by capillary electrophoresis (re-
view). J Biochem Biophys Methods 41: 103–119.

Donis-Keller H, Maxam AM, Gilbert W. 1977. Mapping adenines,
guanines, and pyrimidines in RNA. Nucleic Acids Res 4: 2527–
2538.

Ehresmann C, Baudin F, Mougel M, Romby P, Ebel JP, Ehresmann B.
1987. Probing the structure of RNAs in solution. Nucleic Acids Res
15: 9109–9128.

Golden BL, Kim H, Chase E. 2005. Crystal structure of a phage Twort
group I ribozyme-product complex. Nat Struct Mol Biol 12: 82–89.

Harkins EW. 2001. References to commonly used techniques. In
Current protocols in nucleic acid chemistry (ed. SL Beaucage et al.),
Appendix 3A. Wiley, New York.

Hart JM, Kennedy SD, Mathews DH, Turner DH. 2008. NMR-assisted
prediction of RNA secondary structure: Identification of a probable
pseudoknot in the coding region of an R2 retrotransposon. J Am
Chem Soc 130: 10233–10239.

Laederach A, Shcherbakova I, Liang M, Brenowitz M, Altman RB.
2006. Local kinetic measures of macromolecular structure reveal
partitioning among multiple parallel pathways from the earliest
steps in the folding of a large RNA molecule. J Mol Biol 358: 1179–
1190.

Laederach A, Shcherbakova I, Jonikas MA, Altman RB, Brenowitz M.
2007. Distinct contribution of electrostatics, initial conformational
ensemble, and macromolecular stability in RNA folding. Proc Natl
Acad Sci 104: 7045–7050.

Latham JA, Cech TR. 1989. Defining the inside and outside of
a catalytic RNA molecule. Science 245: 276–282.

Lemieux S, Major F. 2002. RNA canonical and non-canonical base
pairing types: A recognition method and complete repertoire.
Nucleic Acids Res 30: 4250–4263.

Leontis NB, Stombaugh J, Westhof E. 2002. The non-Watson-Crick
base pairs and their associated isostericity matrices. Nucleic Acids
Res 30: 3497–3531.

Lockard RE, Kumar A. 1981. Mapping tRNA structure in solution
using double-strand-specific ribonuclease V1 from cobra venom.
Nucleic Acids Res 9: 5125–5140.

Mathews DH. 2004. Using an RNA secondary structure partition
function to determine confidence in base pairs predicted by free
energy minimization. RNA 10: 1178–1190.

Mathews DH, Banerjee AR, Luan DD, Eickbush TH, Turner DH.
1997. Secondary structure model of the RNA recognized by the
reverse transcriptase from the R2 retrotransposable element. RNA
3: 1–16.

Mathews DH, Sabina J, Zuker M, Turner DH. 1999. Expanded
sequence dependence of thermodynamic parameters improves
prediction of RNA secondary structure. J Mol Biol 288: 911–
940.

Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M,
Turner DH. 2004. Incorporating chemical modification con-
straints into a dynamic programming algorithm for prediction
of RNA secondary structure. Proc Natl Acad Sci 101: 7287–
7292.

Mitra S, Shcherbakova IV, Altman RB, Brenowitz M, Laederach A.
2008. High-throughput single-nucleotide structural mapping by
capillary automated footprinting analysis. Nucleic Acids Res 36:
e63. doi: 10.1093/nar/gkn267.

Morton NE. 2008. Into the post-HapMap era. Adv Genet 60: 727–742.
Onoa B, Dumont S, Liphardt J, Smith SB, Tinoco I Jr, Bustamante C.

2003. Identifying kinetic barriers to mechanical unfolding of the
T. thermophila ribozyme. Science 299: 1892–1895.

Reeder J, Hochsmann M, Rehmsmeier M, Voss B, Giegerich R. 2006.
Beyond Mfold: Recent advances in RNA bioinformatics. J Bio-
technol 124: 41–55.

Shcherbakova I, Brenowitz M. 2005. Perturbation of the hierarchical
folding of a large RNA by the destabilization of its Scaffold’s
tertiary structure. J Mol Biol 354: 483–496.

Shcherbakova I, Brenowitz M. 2008. Monitoring structural changes in
nucleic acids with single residue spatial and millisecond time
resolution by quantitative hydroxyl radical footprinting. Nat
Protoc 3: 288–302.

Shcherbakova I, Gupta S, Chance MR, Brenowitz M. 2004. Mono-
valent ion-mediated folding of the Tetrahymena thermophila
ribozyme. J Mol Biol 342: 1431–1442.

Shcherbakova I, Mitra S, Laederach A, Brenowitz M. 2008. Energy
barriers, pathways, and dynamics during folding of large, multi-
domain RNAs. Curr Opin Chem Biol 12: 655–666.

Takamoto K, Chance MR, Brenowitz M. 2004. Semi-automated,
single-band peak-fitting analysis of hydroxyl radical nucleic acid
footprint autoradiograms for the quantitative analysis of transi-
tions. Nucleic Acids Res 32: e119. doi: 10.1093/nar/gnh117.

Tijerina P, Mohr S, Russell R. 2007. DMS footprinting of structured
RNAs and RNA-protein complexes. Nat Protoc 2: 2608–2623.

Uhlenbeck OC. 1995. Keeping RNA happy. RNA 1: 4–6.
Vary CP, Vournakis JN. 1984. RNA structure analysis using T2

ribonuclease: Detection of pH and metal ion induced conforma-
tional changes in yeast tRNAPhe. Nucleic Acids Res 12: 6763–6778.

Vasa SM, Guex N, Wilkinson KA, Weeks KM, Giddings MC. 2008.
ShapeFinder: A software system for high-throughput quantitative
analysis of nucleic acid reactivity information resolved by capillary
electrophoresis. RNA 14: 1979–1990.

Vicens Q, Gooding AR, Laederach A, Cech TR. 2007. Local RNA
structural changes induced by crystallization are revealed by
SHAPE. RNA 13: 536–548.

Waldispuhl J, Clote P. 2007. Computing the partition function and
sampling for saturated secondary structures of RNA, with respect
to the Turner energy model. J Comput Biol 14: 190–215.

Weinstock GM. 2007. ENCODE: More genomic empowerment.
Genome Res 17: 667–668.

Wilkinson KA, Merino EJ, Weeks KM. 2005. RNA SHAPE chemistry
reveals nonhierarchical interactions dominate equilibrium struc-
tural transitions in tRNA(Asp) transcripts. J Am Chem Soc 127:
4659–4667.

Wilkinson KA, Gorelick RJ, Vasa SM, Guex N, Rein A, Mathews DH,
Giddings MC, Weeks KM. 2008. High-throughput SHAPE analysis
reveals structures in HIV-1 genomic RNA strongly conserved
across distinct biological states. PLoS Biol 6: e96. doi: 10.1371/
journal.pbio.0060096.

Wilkinson KA, Vasa SM, Deigan KE, Mortimer SA, Giddings MC,
Weeks KM. 2009. Influence of nucleotide identity on ribose
2’-hydroxyl reactivity in RNA. RNA 15: 1314–1321.

Zhuang X. 2005. Single-molecule RNA science. Annu Rev Biophys
Biomol Struct 34: 399–414.

Information content of chemical mapping data

www.rnajournal.org 1117

 Cold Spring Harbor Laboratory Press on August 9, 2022 - Published by rnajournal.cshlp.orgDownloaded from 

http://rnajournal.cshlp.org/
http://www.cshlpress.com


 10.1261/rna.1988510Access the most recent version at doi:
 2010 16: 1108-1117 originally published online April 22, 2010RNA

  
Scott Quarrier, Joshua S. Martin, Lauren Davis-Neulander, et al. 
  
for secondary structure prediction
Evaluation of the information content of RNA structure mapping data

  
Material

Supplemental
  

 http://rnajournal.cshlp.org/content/suppl/2010/04/01/rna.1988510.DC1

  
References

  
 http://rnajournal.cshlp.org/content/16/6/1108.full.html#ref-list-1

This article cites 48 articles, 14 of which can be accessed free at:

  
License

Service
Email Alerting

  
 click here.top right corner of the article or 

Receive free email alerts when new articles cite this article - sign up in the box at the

 http://rnajournal.cshlp.org/subscriptions
 go to: RNATo subscribe to 

 Cold Spring Harbor Laboratory Press on August 9, 2022 - Published by rnajournal.cshlp.orgDownloaded from 

http://rnajournal.cshlp.org/lookup/doi/10.1261/rna.1988510
http://rnajournal.cshlp.org/content/suppl/2010/04/01/rna.1988510.DC1
http://rnajournal.cshlp.org/content/16/6/1108.full.html#ref-list-1
http://rnajournal.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by& saveAlert=no&cited_by_criteria_resid=rna;16/6/1108&return_type=article&return_url=http://rnajournal.cshlp.org/content/16/6/1108.full.pdf
http://rnajournal.cshlp.org/cgi/adclick/?ad=56351&adclick=true&url=https%3A%2F%2Fhorizondiscovery.com%2Fen%2Fresources%2Ftreasury%3Freferrer%3D%7BAD4C1C0D-2A94-4FB2-A2C4-EEC923A91CDE%7D%26utm_source%3DRNAjournal%26utm_medium%3Dbanner%26utm_campaign%3D22q
http://rnajournal.cshlp.org/subscriptions
http://rnajournal.cshlp.org/
http://www.cshlpress.com

