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P
redictions of seasonal climate anomalies have

been made in some form for centuries. One of

the earliest scientifically based schemes is that of

India’s Meteorological Department, which has been

issuing predictions for the all-India monsoon rainfall

since the late nineteenth century using various statis-

tical methods (Blanford 1884; Walker 1923; Bhalme

et al. 1986). One of the more recent developments is

the regular production of seasonal climate forecasts

that are based, at least in part, on global dynamical

climate models [e.g., the U.K. Met Office (UKMO)

since 1988, Ward et al. 1993; the Climate Prediction

Center (CPC) since 1994, O’Lenic 1994; the Canadian

Meteorological Centre (CMC) since 1995, Servranckx

et al. 1999; Derome et al. 2001; Australia’s Bureau of

Meteorology (BoM) since 1997, Frederiksen et al.

2001].

The International Research Institute for Climate

Prediction (IRI) began issuing quarterly seasonal fore-

casts of global climate in October 1997 (Mason et al.

1999). These forecasts are the subjective assessment

and consolidation of many climate prediction tools,

and are thus called “net assessments.” They provided

probabilistic forecasts for below-, near-, and above-

normal precipitation and temperature for the upcom-

ing 3-month period and the subsequent 3-month pe-

riod (more information available online at http://

iri.columbia.edu/climate/forecast/net_asmt/). Since

mid-2001, however, the IRI has issued these forecasts

monthly for the upcoming four overlapping seasons.

Validation studies of the prediction tools used by

various meteorological centers suggest that they can

provide potentially useful information on seasonal

climate variability for many parts of the world. For

many regions physical dynamical models replicate,

and in some cases improve upon, the skill realized

from empirical statistical models, and this has given

greater credibility to seasonal predictions obtained by

both approaches. Thus, regional managers in sectors

such as agriculture, energy, and water resources have
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recently begun to factor seasonal climate forecast in-

formation into planning decisions [Golnaraghi 1997;

the National Oceanic and Atmospheric Administra-

tion (NOAA) 1999; Agrawala et al. 2001]. An impedi-

ment to the use of many operational forecasts, such

as those issued by IRI, has been lack of knowledge

about the real-time operational skill of the forecasts.

Skill measures exist for the constituent prediction

tools, but because the IRI net assessment forecasts are

subjectively constructed, unbiased attempts to fore-

cast previous years retrospectively are not possible.

Now that the net assessments have a verifiable history

of more than 4 yr, from October–December (OND)

1997–2001 (hereafter 3-month periods will be de-

noted by the first letter of each month respectively),

their performance can be examined.

A diagnostic verification of the net assessments was

recently performed by Wilks and Godfrey (2002,

hereafter WG2002) for the period 1997–2000. This

diagnostic verification examines the full joint fre-

quency distribution of the forecasts and the corre-

sponding observations. The results of WG2002

yielded useful information about the biases and reli-

ability1 of the IRI net assessment forecasts. For ex-

ample, they found that the temperature forecasts is-

sued for 1998–2000 contained a strong cold bias by

not predicting the degree to which above-normal

temperatures dominated most land areas throughout

this period. The temperature forecasts were also de-

termined to be too confident for all three categories

at both low and high latitudes. On the other hand, the

forecast probabilities for precipitation during 1997–

2000 were found to be reliable. The diagnostic verifi-

cation analysis of WG2002 requires many forecasts in

order to examine reliability; they consider all forecast

seasons together, and average statistics over space as

well as over time. Thus, maps showing the spatial dis-

tribution of the biases and reliability characteristics

were not possible for the small set of forecasts

available.

The results presented in this study complement

those of WG2002. We only use the scalar skill mea-

sure of the ranked probability skill score (RPSS;

Epstein 1969). This measure can give an overly pes-

simistic view of the performance of the forecasts

(Wilks 2000), but because it is a tough metric, regional

skill becomes more noteworthy. Using a scalar met-

ric also allows us to produce maps showing the spa-

tial character of the forecast skill, which provides more

useful information to those using the forecasts region-

ally. From maps of RPSS one can examine the spatial

distribution of the skill presented in an overall form

in WG2002.

Of particular interest to forecasters, as well as fore-

cast users who may be contemplating the use of a

particular prediction methodology, is to know

whether the subjective human element is adding to

forecast skill, and if so, to what extent. In this paper

the skill of the net assessments is compared to that of

the primary input tools, namely, the dynamical cli-

mate model forecasts and a relatively simple empiri-

cal prediction method based on ENSO phases. The

results provide guidance to IRI forecasters regarding

their use of, and confidence in, individual prediction

tools. This analysis also provides important regional

guidance to current and potential users of the IRI net

assessments.

IRI SEASONAL CLIMATE FORECASTS. The

IRI began issuing forecasts for 3-month total precipi-

tation in October 1997, and for 3-month mean tem-

perature in January 1998. Currently the IRI issues two

types of forecasts. The first, “three category” forecasts,

gives the probabilities that seasonally averaged pre-

cipitation and temperature will be above-, near-, and

below-normal. The three categories are defined from

30 yr of historical data, such that each of the catego-

ries is equiprobable. A forecast of “climatology” im-

plies no information beyond the historically expected

33.3%–33.3%–33.3% probabilities.2 The second type

of forecasts, that of extremes, is a more qualitative

indication of enhanced risk for the seasonally aver-

aged temperature and precipitation occurring in the

upper or lower 15th percentile of the 30-yr historical

distribution. For example, the forecast may indicate

a 25%–40% probability of extremely above-normal

rainfall, which we define as an approximate doubling

of risk over the climatologically expected 15% prob-

ability. This validation study concerns only the three-

category forecasts.

Although the majority of the constituent predic-

tion tools for the IRI net assessments are objective, the

1 Reliability refers to the correspondence between the probabilities given in the forecasts and the subsequent relative frequencies of

occurrence in the observations. For reliable forecasts, these two quantities are equal (see Wilks 1995; Murphy 1993, 1997).
2 Where no region is explicitly designated, a forecast for climatological probabilities is implied. For precipitation, explicit forecasts

are also not issued for “dry regions,” which are indicated. Over these areas the climatological rainfall is so low (less than 30 mm

over the 3-month season) that the below-normal category cannot be well distinguished from the near-normal category.
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subjective element of human intervention is not neg-

ligible as they are combined to arrive at the final fore-

cast product. Recent improvements to the IRI forecast

system have greatly reduced the amount of subjective

work necessary to produce the net assessments

(Barnston et al. 2003). More objective approaches,

such as multimodel ensembling (Rajagopalan et al.

2002), now consolidate much of the information that

had been done subjectively. However, the human ele-

ment is still fundamental to the final forecast product.

Constituent prediction tools. Among the tools subjec-

tively considered and synthesized in the IRI net as-

sessments, atmospheric global climate models

(AGCMs) are the most heavily weighted of the pre-

diction tools considered.3 Where the AGCM(s) have

skill historically (see appendix A) and are predicting

probabilities different from climatology, the predic-

tion is considered for inclusion in the final forecast.

The IRI uses several AGCMs that produce seasonal

climate predictions as input to the final IRI seasonal

forecast. During 1997–2001, three AGCMs were used

regularly: version 3.2 of the Community Climate

Model (CCM3.2), developed at the National Centers

for Atmospheric Research (NCAR; Hack et al. 1998)

and run at the IRI; ECHAM3.6, developed by the

Max-Planck Institut für Meteorologie [Deutsche

Klimarechenzentrum (DKRZ) 1992] and run at the

IRI; and the Medium-Range Forecast model (MRF9)

developed by NCEP Environmental Prediction

(Livezey et al. 1996) and run by our collaborators at

the Queensland Centre for Climate Applications in

Australia.

At this time, no observed atmospheric or land sur-

face conditions are used to initialize the AGCM pre-

dictions. The initial conditions for the seasonal pre-

dictions are taken from ongoing updates to long-run

simulations that have been forced with observed SSTs.

These initial conditions constitute the models’ view

of the current atmospheric state together with a rea-

sonable degree of uncertainty, intended to represent

the range of plausible atmospheric states consistent

with prescribed surface boundary conditions.

The AGCMs are typically forced with more than

one scenario of predicted sea surface temperature

anomalies (SSTAs) enabling diagnosis of climate sen-

sitivities to differences in SST predictions. One sce-

nario assumes the SST anomalies will persist through

the forecast season. These persisted SSTA predictions

are used only for the 1-month lead forecasts. The

other scenario uses predictions of evolving SSTA in

the global Tropics and damped persistence of ob-

served SSTA in the midlatitudes. This second sce-

nario, which we refer to as “forecast SSTA,” employs

different methods of SSTA prediction in each tropi-

cal ocean basin (see appendix B).

The IRI also uses empirical data for forecast guid-

ance. Since ENSO affects climate worldwide, although

only robustly over about 25% of land areas (Mason

and Goddard 2001), the probabilities of below-, near-,

and above-normal temperature and precipitation

conditioned on ENSO regularly factor into the net

assessments, particularly during El Niño and La Niña

events. This tool has been modified to look at not only

the strongest warm or cold events but also the “near-

est neighbors” (Lall and Sharma 1996) to the forecast

ENSO SST index. This tool is based on the NINO3.4

index (the SSTA area averaged over 5°S–5°N, 170°–

120°W).4 We identify the 10 yr since 1950 for which

the observed NINO3.4 value (in the analogous sea-

son) was closest to that predicted for the upcoming

season. The climate anomalies for those 10 historical

seasons are then categorized and tallied yielding the

ENSO-associated probabilistic prediction.

In addition to the objective prediction tools, we

have often incorporated the official forecasts issued

by national meteorological services where and when

available. If the IRI has no strong evidence that con-

tradicts the national meteorological service, we defer

to their forecast. The national meteorological services

whose forecasts have been available to us, at least oc-

casionally, include those of Australia, Brazil, Canada,

India, New Zealand, the Philippines, South Africa,

and the United States. Some regions, such as south-

eastern South America, southern Africa, and the

Greater Horn of Africa, hold regular regional climate

outlook forums, during which regional and interna-

tional climate forecasters meet to develop a consen-

sus probabilistic climate outlook for the upcoming 3–

4-month season (Basher et al. 2001). These regional

3 Note that a subtle distinction is drawn between predictions, which are considered the objective output of particular empirical or

dynamical tools, and forecasts, which may be objective or subjective but that constitute the best available guidance offered to

users by the forecaster.
4 During 1997–2001, the net assessments used the coupled model predictions from NCEP for the tropical Pacific SST (Ji et al. 1998).

The ENSO-associated probabilities, as well as the AGCM predictions, are based on this product. During 1997–2000, the season-

ally averaged observed and predicted Niño-3.4 SST index agree well at both 1- and 4-month lead times (Fig. 1).
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forecasts are also considered in the net assessments,

when available.

Verification data. TEMPERATURE. The Climate Anomaly

Monitoring System (CAMS) dataset (Ropelewski et al.

1985) serves as verification data for near-surface air

temperature. These monthly averaged data are based

on over 1200 gauge observations that were applied to

a 2° × 2° lat–long global grid using the Cressman

scheme (Cressman 1959; M. Halpert 2002, personal

communication); missing data points are identified.

Sea surface temperature values are used over ocean

points. This dataset supplies temperature anomalies

relative to the 1971–2000 climatological base period.

We further removed the 30-yr residual mean bias of

the base period appropriate to the forecast: 1961–90

for forecasts issued through 2000, and 1969–98 for

forecasts issued after 2000. In order to define the

anomalies these data require an adequate station time

series, and unfortunately some regions are poorly

sampled. Thus, large areas over South America, Af-

rica, and Asia are masked in the analyses due to data

missing more than 10% of the time.

Precipitation. Precipitation verification data comes

from CPC Merged Analysis of Precipitation (CMAP)

dataset (Xie and Arkin 1997). Both rain gauges and

satellite observations supply input to the monthly

averaged product, which is available globally at 2.5°

× 2.5° resolution. There are no missing data points.

Because CMAP only covers 1979 to the present, we

obtained the climatology and terciles for 1961–90

from the precipitation data of the University of East

Anglia’s Climate Research Unit (New et al. 1999,

2000). Although it is not ideal to use two separate

datasets for the precipitation, it is unavoidable, since

no dataset for precipitation is currently available in

near–real time that extends back far enough to define

the historical climatological characteristics. No large

biases were found between the two datasets in the

period of their overlap.

VERIFICATION MEASURE. For meteorologists,

a clear distinction exists between accuracy and reli-

ability. Perfect reliability and perfect accuracy are syn-

onymous only when the observed category is pre-

dicted every time with 100% confidence. Because of

the inherent uncertainty in the climate system due to

chaos in the atmospheric dynamics and limitations in

specifying initial conditions, seasonal climate forecasts

cannot be given with 100% confidence. Thus, the goal

of climate forecasters is to assign reliable probabili-

ties to categorical forecasts such that the forecast prob-

ability for a particular outcome is consistent with the

observed frequency of that outcome over time.

For users of climate forecasts, there is great temp-

tation to focus on the accuracy of the forecasts. Too

often verification of probabilistic forecasts is incor-

rectly oversimplified by interpreting the probabilis-

tic forecasts deterministically (taking the category

with the greatest probability as the forecast category)

and comparing them to observations. However, judg-

ing a particular forecast in this way, as “right” or

“wrong,” ignores the information provided regarding

the inherent uncertainty for the outcome of a particu-

lar category.

Probabilistic forecasts should be scored according

to a measure that appropriately treats their probabi-

listic information, such as the RPSS. See appendix C

for derivation and examples of the RPSS. The RPSS

gives more credit for forecasting the observed cat-

egory with high probabilities; however, the penalties

for forecasting the wrong category with high prob-

abilities are substantial. The maximum RPSS is 1, but

the score will be expressed in this analysis as a per-

centage of maximum. A score of 100% could only be

obtained by forecasting the observed category with a

100% probability consistently. A score of 0 implies no

skill in the forecasts, which is the same score one

would get by consistently issuing a forecast of clima-

tology. A negative score suggests that the forecasts are

underperforming climatology. For typical climate

forecasts in which skill is generally modest and in

which forecast probabilities therefore typically fall

within 20% of their climatological values (of 33.3%),

FIG. 1. Time series of the 3-month-averaged NINO3.4

index (°C) (SST anomaly area-averaged over 5°S–5°N;

170°–120°W) from observations (black line; Reynolds

and Smith 1994) and from predictions made by the

NCEP coupled ocean–atmosphere model (Ji et al. 1998)

at 1- (solid red line) and 4-month lead (dashed red line).
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RPSS scores are often in the range of 5%–20%. To give

a point of reference for those not familiar with RPSS,

an RPSS of 10% for a three-category forecast system

approximately equals a correlation coefficient of 0.50

(correlating the median of the probability

distribution).

As noted by Wilks (2000), the RPSS scalar mea-

sure of performance often presents an overly pessi-

mistic view of forecast performance. Many contribu-

tions to the performance are represented as a single

score, such as variability of the median of the prob-

ability distribution as well as of the spread of the dis-

tribution. Because errors in any of the contributions

adversely affect the score, the RPSS is a stringent test

of forecast performance. Furthermore, different fore-

casts with very different error characteristics could

score identically, and examination of the scalar score

alone would not permit the differences to be diag-

nosed (Wilks 2000). For these reasons, the more com-

plete diagnostic verification of WG2002 should be

considered together with the results presented in this

analysis, which specifically targets the comparison of

skill between the net assessments and the constituent

objective prediction tools.

RESULTS. Overall skill of net assessments. In evalu-

ating the net assessments using the RPSS, one may

choose to assess only those times and locations for

which a deliberate forecast was made (Figs. 2a, 3a),

or one may choose to assess all points at all times,

including the climatological forecasts (Figs. 2b, 3b).

Comparison of Figs. 2a and 3a shows that on average

higher skill is obtained when the climatological fore-

casts are excluded, implying that for regions contain-

ing nonclimatological forecasts the category having

the highest forecast probability was observed more

often than one-third of the time (i.e., that expected a

priori). Note that in Figs. 2a and 3a, local skill scores

may be based on a reduced sample of forecasts, and

thus may be subject to high sampling variability. At

some high-latitude locations, for example, fewer than

four nonclimatology forecasts may have been issued.

Positive skill exists over a majority of the land area

for both the temperature and precipitation net assess-

FIG. 2. Geographical distribution of RPSS (%) averaged

over 16 quarterly IRI net assessment forecasts of near-

surface air temperature, JFM 1998–OND 2001. (a) Avg

score calculated excluding climatology forecasts. (b)

Avg score calculated including climatology forecasts.

Blank areas over land indicate grid points for which ob-

served data record covers less than 90% of period.

FIG. 3. Same as in Fig. 2, but for 17 quarterly IRI net

assessment forecasts of precipitation: OND 1997–2001.
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ment forecasts. As seen in most predictability stud-

ies, temperature variability is predicted with higher

skill and better coverage than is precipitation variabil-

ity (e.g., Mason et al. 1999; Peng et al. 2000; Derome

et al. 2001). For temperature, higher skill is found over

the Tropics, but even midlatitude regions, such as

western Europe and eastern Canada, show relatively

high levels of skill for 1998–2001 (Fig. 2). For precipi-

tation, higher skill over the Tropics is not as marked,

but many regions documented as potentially predict-

able (Hastenrath 1995) appear with positive skill here,

such as the Indonesia region, the tropical Pacific is-

lands, eastern Africa, northern South America, and

the southeastern United States.

The temporal evolution of net assessment forecast

skill over the 4-yr period is shown in Figs. 4 and 5.

The averaged skills are positive except for the case of

OND 1998. Even at 4-month lead time the skill is

consistently positive, and tends to be only slightly

lower than that obtained from the 1-month lead fore-

casts. Overall positive skill is also found at the conti-

nental scale (Table 1).

No obvious relationship appears between the

strength of ENSO forcing in the tropical Pacific and

skill in near-surface air temperature forecasts over

land. Higher skill is seen in the RPSS of temperature

during mid-1998, which was a time of transition when

the El Niño of 1997/98 was giving way to the devel-

opment of La Niña conditions that persisted through

early 2000. The season of lowest skill is clearly OND

1998. At this time the La Niña event was at full

FIG. 4. (a) Time series of RPSS for IRI net assessment

temperature forecasts area averaged over tropical land

points (25°S–25°N), for 1-month (4-month) lead times

shown by solid (dashed) line showing skill for nonclima-

tology forecasts only in green and for all forecasts in-

cluding climatology ones in red. (b) Percentage of land

area over which nonclimatology forecasts were issued

over tropical region for 1- (bars) and 4-month lead fore-

casts (black line). Gray area indicates percentage of

tropical land points over which observed verification

data is available. (c), (d) Similar to (a) and (b), respec-

tively, but averaged over global land points (60°S–

80°N).
FIG. 5. Same as in Fig. 4, but for precipitation.
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strength, and as is shown later, the AGCMs did a good

job responding to that forcing. However, the IRI fore-

cast for temperature put too much confidence in his-

torical ENSO-related probabilities, which validated

poorly. It was decided after that one season that

ENSO-related probabilities would not be a useful tool

for temperature predictions during this multiyear

La Niña episode, and it was subsequently dropped

from consideration for the temperature forecasts.

Area-averaged RPSS for precipitation is modest

(Fig. 5). However, skill is positive for most forecasts, par-

ticularly in the Tropics, and particularly for the 1-month

lead forecast season. The

precipitation skill in the

Tropics is greater during the

El Niño event of 1997/98,

but clearly positive skill is

again seen in 2000 and 2001,

when tropical Pacific SSTs

were weak and without co-

herent structure.

The seemingly modest

skill of the precipitation

forecasts may just reflect

lower potential predictabil-

ity for precipitation than

for temperature. Examina-

tion of the forecast reliabil-

ity (Table 2) indicates that

the precipitation forecast

probabilities were approxi-

mately reliable. The results

in Table 2 are consistent

with the finding of

WG2002: more confident

forecasts of above- or be-

low-normal precipitation

carry an increased occurrence of that category in the

observations; forecasts favoring the near-normal

category have no skill and should probably not be is-

sued; a wet bias is indicated in the forecasts. On this

final point, it is true that the observations were much

more frequently below-normal than above-normal,

and that the forecasts did not indicate enhanced

probabilities for below-normal precipitation in

enough cases. However, the forecasts did indicate

more regions over which probabilities favored below-

normal than above-normal precipitation, suggesting

that the tendency for drier conditions throughout the

A
f

0.35(487) 0.23(317) 0.42(578) A
f

0.31(312) 0.29(287) 0.40(398) A
f

0.50(535) 0.27(290) 0.23(241)

N
f

0.26(267) 0.26(268) 0.49(506) N
f

0.36(257) 0.26(188) 0.38(276) N
f

0.95(18) 0.05(1) 0.00(0)

B
f

0.26(507) 0.23(446) 0.52(1028) B
f

0.24(255) 0.16(166) 0.60(620) B
f

0.14(140) 0.18(182) 0.67(662)

TABLE 2. Tables showing the relative frequency with which the observed category verified given the

particular categorical forecast issued at the stated confidence level. Forecast categories are listed across

rows and observed categories are listed down columns. The values in parentheses show the total

number (over grid points and forecast occurrences) that a given case occurred. For example, the upper-

left box in each table represents the fraction (number) of times that above-normal precipitation was

observed when a forecast was issued for above-normal seasonal precipitation. Perfect reliability would

appear as diagonal elements, from upper left to lower right, equal to the stated confidence level.

40% Confidence: 45% Confidence: ≥≥≥≥≥ 50% Confidence:

A
0

N
0

B
0

A
0

N
0

B
0

A
0

N
0

B
0

TABLE 1. Area-averaged RPSS of IRI net assessment precipitation

forecasts (%) for 1-month lead forecasts (4-month lead in parentheses)

(i.e., perfect skill = 100%).

Globe 5.7 (2.1) 9.5 (5.0) 9.0 (4.3) 4.5 (2.5)

Tropics 8.5 (6.1) 10.3 (6.3) 14.0 (9.0) 13.3 (5.9)

(20°S–20°N)

Africa 14.2 (1.7) 14.9 (9.6) 20.0 (8.8) 22.4 (8.3)

(40°S–40°N, 30°W–60°E)

Asia 4.1 (6.1) 7.6 (3.2) 7.2 (5.1) 7.4 (1.7)

(10°S–80°N, 55°E–170°W)

Australia 5.7 (8.5) 12.4 (8.2) 116 (4.7) 9.2 (3.4)

(40°–10°S, 110°–155°E)

Europe 2.8 (2.2) 9.0 (0.5) 5.0 (2.8) 4.7 (–0.1)

(30°–85°N, 30°W–65°E)

North America 3.5 (–4.7) 6.8 (3.5) 4.7 (3.2) –6.3 (0.9)

(0°–85°N, 170°–45°W)

South America 10.5 (6.0) 13.4 (12.4) 8.9 (3.8) –12.1 (2.0)

(60°–15°N, 95°–35°W)

JFM AMJ JAS OND
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lower latitudes during 1998–2001 was captured in

the forecasts.

The authors speculate that the pervasive below-

normal precipitation was the result of significant

above-normal SSTs in the western Pacific and Indian

Ocean regions. Increased SST in regions that are cli-

matologically convective adds greater heating to the

atmosphere locally, encouraging more convergence

into the region, and thus drawing convective rainfall

from tropical land areas and increasing subsidence

over land (Graham 1995; Kumar et al. 2003). Further-

more, enhanced heating in the Tropics is likely to

strengthen the atmospheric Hadley circulation lead-

ing to increased subsidence and drier conditions over

the subtropics (e.g., Oort and Yienger 1996). Limita-

tions in AGCM representation of the convective re-

gions of the Tropics, particularly in the spatial struc-

ture of the convective regions, may account for the

differences in spatial coverage of below-normal pre-

cipitation seen in the predictions compared to the ob-

servations. Table 2 considers the performance of the

precipitation forecasts over low latitudes (30°S–30°N),

but similar results for forecast reliability apply to the

midlatitudes, although much fewer forecasts were is-

sued with probabilities greater than 50% for the domi-

nant category.

The percentage of land area covered by noncli-

matological forecast probabilities appears to show

some association with ENSO strength, reaching about

75% during OND 1997. However, the drop in cover-

age following 1997 has also to do with the evolution

of the forecast methodology, including increasing

caution in forecasting over the midlatitudes and the

introduction of dry region masking (see footnote 2).

Furthermore, ENSO exhibits statistically robust

teleconnections for precipitation over only 20%–30%

of the land in any one season (Mason and Goddard

2001). Thus, in addition to the assumptions of typi-

cal ENSO impacts, the extensive areal forecast cov-

erage during OND 1997 and JFM 1998 can be attrib-

uted to anomalous SSTs throughout the global

Tropics, to which the models responded through

shifts in regional seasonal climate probabilities (e.g.,

Goddard and Graham 1999; Goddard et al. 2001). The

anomalous SSTs in the tropical oceans are largely cap-

tured in the IRI’s predicted SST scenarios that force

the global climate models, particularly for the

1-month lead forecasts.

Skill of net assessment versus objective prediction tools.

The results shown in Figs. 2–5 and previously de-

scribed document the overall skill of the IRI net as-

sessment forecasts during the OND 1997–2001 pe-

riod, both spatially and temporally. However, the

value of the net assessments is better discerned by

comparing their skill against those of the constituent

objective predictions.

TEMPERATURE FORECAST COMPARISON. In Fig. 6, the RPSS

of the IRI net assessment temperature forecasts are

compared against the ENSO-based probability pre-

dictions and the AGCMs that served as inputs to the

net assessments. (Hereafter, unless otherwise stated,

the skill results for the net assessments refer to those

including forecasts for climatological probabilities.)

The ENSO-based prediction (Fig. 6b) is clearly the

tool of lowest skill during this 4-yr period. Many of

the areas over which the net assessments showed the

highest skill for 1998–2001, and ENSO-associated

probabilities showed the lowest skill, including north-

ern South America, tropical Africa, China, and west-

ern Indonesia, which have experienced particularly

persistent above-normal temperatures during these

4 yr relative to the climatological base period of 1961–

90. The ENSO-based tool failed because 1998–2001

was dominated by La Niña, which historically had

been associated with predominantly below-normal

surface air temperatures over the Tropics.

The AGCM temperature predictions show high

skill over many areas (Fig. 6c–6e). Both the AGCM

predictions and the net assessments yield extensive

coverage of positive skill. These results indicate that

even when forced with predicted SSTs, the AGCMs

perform well for temperature. Over longer validation

periods, in which the AGCMs were forced with simul-

taneous observed SSTA, many of the same regions

with positive skill in this evaluation do show good

skill, such as Central and South America, tropical and

southern Africa, and the Indonesian region. Over

1998–2001 many other regions showing high skill for

temperature, such as eastern Canada, western Europe,

and China are not areas of high skill in the historical

simulations (of 1965–97). During 1998–2001, the

RPSS for the AGCMs are generally higher than those

for the net assessments over areas where both are

positive.

This suggests that perhaps we should place more

confidence in the probabilities determined by the

models. However, closer examination of the skill over

time (Fig. 7) shows that most of the AGCMs’ advan-

tage is due to their very high skill during 1998. Note

that the skill of all AGCMs is higher during the tran-

sition from El Niño to La Niña during 1998 than it

was during the peak of the El Niño (JFM 1998) or the

subsequent La Niña years (Fig. 7). This result is not

yet well understood; however, it is worth noting that
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although the maximum anomaly in tropical SST was

realized in December 1997, the maximum in total

tropical SST occurred in April 1998, and the maxi-

mum SST anomaly over the convective regions of the

tropical oceans (taken approximately as 10°S–10°N,

60°E–180°) reached its peak in July 1998. Since 1998,

the net assessment has scored comparably to, and of-

ten higher than, the AGCM forecasts.

One may ask whether the good skill for tempera-

ture during 1998–2001 resulted from the persistence

of warm temperatures over the period. Although the

AGCMs did predict a dominance of above-average

temperatures and those predictions verified more fre-

quently than did the areas predicted to be below nor-

mal, historical simulations do not indicate that the

AGCMs are more skillful at predicting above-normal

temperature than they are at predicting below-normal

temperature. WG2002 found that the net assessment

forecasts underpredicted above-normal temperatures

and overpredicted below-normal temperatures. This

FIG. 6. RPSS (%) averaged over 16 (1998–2001) seasonal forecasts of near-surface air temperature at 1-

month lead time from (a) IRI net assessment forecasts, (b) ENSO-associated temperature probabili-

ties, conditioned on predictions of Niño-3.4 from CPC coupled ocean–atmosphere model; (c) CCM3.2

AGCM forced with predicted evolving SSTA scenario; (d) ECHAM3.6 AGCM similarly forced; and (e)

NCEP–MRF9 AGCM similarly forced.
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is also the case for the AGCMs, and to a greater de-

gree than found by WG2002 for the net assessments.

The IRI forecasters were aware that cold conditions

were being overforecast and corrected the situation

somewhat, although clearly not enough. This subjec-

tive correction is evident in Fig. 7, particularly in 2000

and 2001 when the AGCMs’ skill is lowest.

PRECIPITATION FORECAST COMPARISON. Precipitation vari-

ability for many regions depends strongly on the sea-

sonal cycle. Furthermore, regions with well-defined

wet seasons typically have activities such as agricul-

ture dependent on a wet season, which makes fore-

casts for that season important. For this reason, we

discuss the precipitation skill comparisons for several

specific regions during their wet season. These regions

were chosen because the potential predictability for

their wet season has been documented.

JANUARY–MARCH (JFM). The west coast of the United

States has a well-defined wet season from approxi-

mately December to March. The southeastern region

of the country, while not subject to the same well-

defined rainy season, does experience significant

interannual variability during JFM. The skill of the net

assessment forecasts (Fig. 8a) is positive across the

southern tier of the United States, with highest skill

found in the southwest and southeast. The objective

prediction tools also show good skill over this region.

Over the western/southwestern United States and

western Canada, the net assessment forecasts give the

best coverage of positive skill, although locally, spe-

cific tools have higher skill. Over the southeastern

United States, all model predictions (Figs. 8c–8e)

show excellent skill, outscoring the net assessment

forecasts and ENSO-associated probabilities. Over

Mexico, the ENSO-associated probabilities and the

models all appear to have some skill; however, over a

multidecadal historical record these tools are not skill-

ful over this area in JFM. The AGCMs and the ENSO-

associated probabilities do have historical skill (not

shown) over the southeastern United States, and some

suggestion of skill in the west of the country.

For southern Africa, the main rainy season is

December–March when the ITCZ is in its southern-

most position. The ENSO-associated probabilities and

the CCM3 and ECHAM3 AGCMs show skill for JFM

historically, and would be expected to do so during

1998–2001. Positive skill exists for most of the tools

over southern Mozambique and Zimbabwe. This is

consistent with historical skill analyses of CCM3 and

ENSO-associated probabilities. Positive RPSSs for the

net assessments cover a broad and coherent region

that includes this area and more.

Indonesia and Australia are directly impacted by

the shift of western Pacific convection associated with

ENSO. During JFM positive RPSSs for historical

AGCM simulations exist only over the Philippines.

FIG. 7. Time series of RPSS for 1-month lead tempera-

ture forecasts area-averaged over (a) tropical (25°S–

25°N), and (b) global (60°S–80°N) land points, compar-

ing IRI net assessment forecast (red line), and the

CCM3.2 (green line), ECHAM3.6 (blue line), and

NCEP–MRF9 (orange line) AGCMs forced with either

persisted SSTA scenario (“_p,” dashed lines) or the

predicted evolving SSTA scenario (“_ f,” solid lines).

The RPSS does not show much difference in skill be-

tween the two different SST scenarios, although there

is a weak suggestion of higher skill over the Tropics

under the persisted SSTA scenario. In the persisted

scenario the tropical SST anomalies are often stron-

ger and closer to the observed SSTA during the

1-month lead forecast, relative to the evolving SSTA

prediction. Warm anomalies tended to dominate the

tropical SSTA pattern during 1998–2001, and those

were better represented in the persisted SSTA sce-

nario. The evolving SSTA predictions, which are sta-

tistically based in the tropical Atlantic and Indian

Oceans, damp the SST toward climatology during sea-

sons for which the SST prediction models do not have

significant skill, resulting in weaker warm forcing of the

global Tropics. However, regional and area-averaged

skill differences were greater among the various

AGCMs for a particular SSTA prediction strategy than

they were between the two SSTA prediction strategies

for a particular AGCM.
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The ENSO-associated probabilities show positive skill

over central and eastern Indonesia and along the coast

of Queensland in northeastern Australia. During JFM

for 1998–2001 all objective prediction tools and the

net assessment demonstrated good skill over much of

Indonesia, and also over the Philippines (Fig. 8). In

fact, over the Philippines and over central Indonesia,

the AGCMs exhibited higher skill than the ENSO-

associated probability predictions. The AGCMs

forced with the evolving SSTA scenario show better

performance than those forced with the persisted

SSTA scenario (not shown). This result is not surpris-

ing since tropical Pacific SST anomalies are typically

weaker in March, by the end of the forecast period,

than they are in November (the month from which

the persisted SSTA for a JFM forecast would have

come). The ECHAM3 and NCEP AGCMs also per-

formed very well over western Australia (Figs. 8d–8e);

however, neither of these AGCMs performed particu-

larly well over this region in simulations of the previ-

ous decades. Again, although the objective tools lo-

cally have higher skill than the net assessments, the

net assessments have more coherent coverage of posi-

tive skill.

FIG. 8. Same as in Fig. 6, but for JFM precipitation. Score is averaged over four cases (1998–2001). Boxes

outline the regions for which skill comparisons are highlighted in text.
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APRIL–JUNE (AMJ). The region of northeast Brazil has

very high predictability during its rainy season (e.g.,

Hastenrath et al. 1984; Ward and Folland 1991),

which covers February–May. Most of the interannual

variability for the entire rainy season, however, ma-

terializes during April and May. Again, the net assess-

ments show a more coherent region of positive skill

than the objective prediction tools during AMJ over

northeastern Brazil (Fig. 9a). For this region, the

ENSO-associated probabilities scored the lowest over-

all during AMJ for 1998–2001, even though this re-

gion is one of those more routinely influenced by

ENSO (Mason and Goddard 2001). Most of the

AGCM predictions performed well over parts of

northeastern Brazil; however, none of them show

positive skill throughout the very important coastal

region of the Nordeste. This may be the result of im-

perfect SST forecasts in the tropical Atlantic. In his-

torical simulations with these AGCMs using observed

SSTs, this region has the highest RPSS of any region

during AMJ. The AGCM predictions counted heavily

in the net assessments and exhibit generally positive

FIG. 9. Same as in Fig. 6, but for AMJ precipitation. Score is averaged over four cases (1998–2001). Boxes

outline the regions for which skill comparisons are highlighted in text.
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skill; however, it appears that subjective human in-

put contributed to a greater areal extent of positive

forecast skill for northeastern Brazil.

JULY–SEPTEMBER ( JAS). During JAS, rainfall associated

with the intertropical convergence zone (ITCZ)

reaches its northernmost extent to the Sahelian region

of Africa, making this an important season for rain-

fall predictions there. Of the existing tools, only the

ECHAM3 AGCM has demonstrated positive RPSS

over the Sahel in the historical record. During JAS

1998–2001, however, most of the objective predictions

show scattered positive skill over the region (Fig. 10).

For the entire Sahel region, spanning approximately

10°–17.5°N, 17.5°W–25°E, the net assessments show

the best areal coverage of positive skill. Although the

objective predictions may show higher skill in local-

ized areas, the irregular and sparse distribution of

these areas suggests that the overall structure of the

anomalous climate signals is not being captured.

The southwestern Indian monsoon occurs during

June–September. The variability in monsoon rains has

FIG. 10. Same as in Fig. 6, but for JAS precipitation. Score is averaged over four cases (1998–2001). Boxes

outline the regions for which skill comparisons are highlighted in text.
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been linked to ENSO variability (e.g., Shukla and

Paolino 1983) and other dynamical variability over the

Indian Ocean region (e.g., Kawamura et al. 2001).

Although statistical predictability has been demon-

strated, the AGCMs typically do not perform well

over the Indian subcontinent during June–

September. The ECHAM3 and NCEP AGCMs do

exhibit a small region of positive RPSS historically

during JAS, but the skill of the ENSO-associated prob-

abilities is higher and more widespread during this

season. During the 1998–2001 forecast period, the

ENSO-associated probability skill (Fig. 10b) outper-

forms the AGCMs (Figs. 10c–10e) over southern In-

dia. Positive skill for the net assessments does cover

southern India more coherently than the best per-

forming objective tool. In this case, the subjective el-

ement led to more coherent positive skill by spatially

smoothing the prediction indicated by the ENSO-as-

sociated probabilities, which reduced the spatial noise

of the prediction.

OCTOBER–DECEMBER (OND). The rainfall variability of

southeastern Brazil has good predictability during

OND and experiences a statistically significant asso-

ciation with ENSO events, particularly La Niña events

(Mason and Goddard 2001). The ENSO-associated

probabilities score better than other objective predic-

tions for southernmost Brazil and northern Uruguay

during the OND season 1997–2001 (Fig. 11). The

AGCMs do show areas of positive skill, but the posi-

tive skill of the net assessments shows a smoother,

more coherent pattern. The region of positive skill in

the AGCMs and ENSO-associated probabilities over

southern Brazil, to the north of Paraguay, does not

exist in the IRI forecast. Historical analyses indicate

that ENSO-associated probabilities and the CCM3

model both have positive RPSS skill in the area. It ap-

pears that these predictions were not given enough

credit in the production of the net assessment forecasts.

Over the Greater Horn of Africa the variability of

the OND rainfall is significantly associated with

ENSO (Farmer 1988; Beltrando and Camberlin 1993;

Mutai et al. 1998; Mason and Goddard 2001), albeit

indirectly through changes in Indian Ocean SSTs

(Goddard and Graham 1999). The historical RPSS of

the AGCMs suggests some predictability in this re-

gion, but it is not high and does not cover much area.

However, other skill measures, such as correlation,

indicate quite significant predictability for eastern

Africa (not shown); thus, the low RPSS in the histori-

cal runs may reflect overconfidence in the AGCMs’

probabilities. For the OND 1997–2001 set of forecasts,

the AGCMs again show spotty regions of positive skill

(Figs. 11c–11e). The ENSO-associated probabilities

(Fig. 11b) perform better than the AGCMs, and his-

torically this is true also. The net assessment forecasts

(Fig. 11a) again show a larger and more coherent re-

gion of positive skill than seen in any of the individual

objective predictions.

OND is a time of transition from the east Asian

monsoon to the Australian monsoon and also a time

when ENSO variability, which directly impacts the

climate over the Indonesian region, typically peaks.

Over Indonesia and Australia the historical skill, as

measured by RPSS, is strong for the ENSO-associated

probabilities, averaging at about 20% over the region.

For the AGCMs the historical RPSS is weak, and posi-

tive values are not coherent across the region. How-

ever, during OND 1997–2001, the AGCMs, particu-

larly those forced with evolving SSTA predictions,

performed equal to or better than the ENSO-associ-

ated probability predictions over central Indonesia

and the Philippines (Figs. 11b–11e). The IRI forecast

skill is positive and coherent throughout this region

and even shows positive skill over Sumatra and New

Guinea where there is less consistent skill among the

objective tools.

Table 3 summarizes the precipitation skill averaged

over the regions described above, and shown in

Figs. 8–11, for all seasons. Area-averaged scores are

also provided for the continental regions, for the

Tropics, and for all global land areas from the IRI net

assessments and, in parentheses, the ENSO-associated

probability scores. The overall skill is positive, with

the exception of JAS. The lower average RPSS skill in

JAS precipitation results in part from the difficulty of

predicting the variability of the monsoon systems ac-

tive in that season. At the continental and regional

scale the net assessments generally score positively,

and they outscore ENSO-associated probabilities in

most cases. For the majority of the regions discussed

above, the wet season is the season with the highest

skill for the 1997–2001 period. The exceptions are

southern Africa for which the forecasts performed

best on average for the AMJ and OND seasons than

for the JFM season, and for the region covering In-

donesia, parts of southeastern Asia, and northern

Australia (see Fig. 11), for which the JFM forecasts had

slightly higher average skill than the OND forecasts.

SUMMARY. The IRI net assessment forecasts cover

the period of late 1997 to the present. These probabi-

listic three-category forecasts for temperature and

precipitation result from subjective consideration and

synthesis of many objective prediction tools, with

considerable weight given to the predictions from
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atmospheric global climate models (AGCMs).

Although the IRI forecast system is becoming increas-

ingly objective (Barnston et al. 2003), forecasts issued

during the 1997–2001 period relied heavily on fore-

caster interpretation of the objective predictions.

The quarterly forecasts for the period OND 1997

through OND 2001 are judged in this paper using the

ranked probability skill score (RPSS), a measure that,

although stringent, does consider the probabilistic

content of the forecasts. It is recommended that the

results from this analysis should be considered in

combination with the more thorough diagnostic veri-

fication of Wilks and Godfrey (2002). Nonetheless,

they demonstrate that the skill of the net assessments

is a clear improvement over the skill that would have

been achieved by other means of prediction, such as

empirical predictions based on ENSO or that from the

individual AGCM predictions. The comparison be-

tween the net assessments and the constituent predic-

tion tools illuminates to what degree the subjective

element of the net assessments is aiding or impairing

the forecast product.

It is difficult to accurately estimate the skill of the

various tools and of the net assessments given such a

FIG. 11. Same as in Fig. 6, but for OND precipitation. Score is averaged over five cases (1997–2001).

Boxes outline the regions for which skill comparisons are highlighted in text.
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small sample of verifiable forecasts. The details shown

in maps and time series include considerable sampling

noise that will not necessarily remain constant in the

future. However, some conclusions can be drawn

about the net assessments and the constituent predic-

tion tools even over this relatively short period.

Overall, the skill of both the temperature and pre-

cipitation net assessments does not seem to be domi-

nated by ENSO, nor does the area covered by

nonclimatological forecasts. Forecast skill within the

Tropics was somewhat better during the peak of

El Niño, particularly for precipitation, but skill is gen-

erally positive from late 1997 to 2001 regardless of

ENSO phase or strength. This period saw particularly

warm temperatures throughout the Tropics and even

over much of the midlatitudes, and also a preponder-

ance of below-normal precipitation throughout the

lower latitudes. These are features one might associ-

ate more with warm conditions in the tropical Pacific

rather than cold conditions, although El Niño was

only in place for approximately 6 months out of the

greater than 4-yr period examined here.

The greatest overall skill for temperature was re-

alized during the transition between El Niño and

La Niña, rather than during the peak of either one.

Similar increases in globally averaged skill of all the

AGCM predictions during the ENSO transition sug-

gest that the potential predictability was high that sea-

son and that the dynamical tools were able to capi-

talize on that predictability. This result requires

TABLE 3. Area-averaged RPSS of IRI net assessment precipitation forecasts (%), and ENSO-

associated probability predictions in parentheses. Values in bold highlight the seasonal area-

averaged RPSS values of regions for which the performance of the wet season prediction is

discussed in the text.

Globe 0.9 (–5.8) 1.6 (–5.9) –0.7 (–9.2) 0.8 (–6.9)

Tropics 3.1 (–3.3) 2.7 (–3.7) –1.1 (–9.3) 2.6 (–3.3)

(20°S–20°N)

Africa 0.1 (–6.0) 3.0 (–1.0) 1.0 (–8.9) 1.9 (–7.5)

(40°S–40°N, 30°W–60°E)

GHA 8.0 (–19.5) 1.3 (–3.9) –0.8 (–15.1) 13.5 (2.9)

Sahel 4.2 (–1.8) 0.4 (–0.3) 7.5 (–21.1) –2.8 (–12.2)

South Africa –0.9 (–4.3) 3.2 (–1.3) –0.2 (–9.4) 4.1 (–0.9)

Asia 1.0 (–7.1) 2.2 (–4.6) –2.0 (9.3) 0.1 (–6.3)

(10°S–80°N, 55°E–170°W)

India –1.6 (–14.7) –1.4 (–9.6) –6.4 (–11.6) –2.7 (–16.7)

Australia –0.9 (-8.7) –0.1 (–11.0) 0.3 (2.6) –0.9 (–0.9)

(40°–10°S, 110°–155°E)

Indonesia–Australia 6.7 (–0.6) 5.0 (1.3) –3.1 (–3.1) 5.7 (6.2)

Indonesia 7.4 (1.2) 5.4 (–0.1) –3.6 (–4.7) 6.0 (6.5)

Europe –2.9 (–4.4) 1.7 (–3.3) –0.1 (–10.9) 1.1 (–12.8)

(30°–85°N, 30°W–65°E)

North America 2.9 (–6.3) 0.3 (–11.5) –1.3 (–6.9) 0.8 (–8.3)

(0°–85°N, 170°–45°W)

United States 3.6 (–6.5) –1.2 (–14.1) –0.9 (5.9) –2.2 (–8.9)

South America 4.5 (–5.0) 2.0 (–9.6) –1.9 (–16.7) 2.0 (–5.4)

(60°–15°N, 95°–35°W)

Northeast Brazil 5.5 (4.5) 18.5 (–11.8) –0.6 (–3.9) 3.8 (–3.7)

South America 4.1 (–8.8) 7.2 (–2.2) 0.8 (–25.7) 7.7 (1.8)

JFM AMJ JAS OND
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further investigation, but it appears to be related to

the anomalous state of the Tropics as a whole rather

than merely to the state of the eastern equatorial Pa-

cific, a finding that emphasizes the need to move be-

yond ENSO to consider the broader issue of climate

prediction.

During 1997–2001, the overall precipitation skill

remained approximately constant globally and tropi-

cally, although the area covered by nonclimatology

forecasts did not. The decrease in area covered by

nonclimatology forecasts for precipitation occurred

for reasons other than ENSO variability. First, the

forecasting philosophy has evolved since 1997.

Changes occurred in SST prediction strategies, in the

methods used to estimate the AGCMs’ probabilistic

predictions, and even in the specific use of some tools.

For example, the ENSO-based statistical tool was ex-

cluded from input to the temperature forecasts

following the verification of the first couple of sea-

sons when cool conditions dominated the tropical

Pacific while the tropical land temperatures remained

warm (see also Kumar et al. 2001), which was uncom-

mon in the historical record, and for some regions

unprecedented. Second, dry season masking was in-

troduced to the precipitation forecasts in mid-1998,

coincident with the most noticeable decrease in the

percentage of area over which a nonclimatological

forecast is issued.

Some of the conclusions reached by the IRI fore-

casters as a result of their experiences during this pe-

riod and of the evaluation presented here include the

following.

For temperature:

• Net assessment forecasts and AGCM predictions

yielded high skill during the 1998–2001 period, but

the spatial extent of above-normal temperatures

was underforecast. The same conclusion regard-

ing a cold bias in the forecasts was reached in the

diagnostics verification of the IRI net assessments

(Wilks and Godfrey 2002) and of the CPC long-

lead outlooks for the period 1995–98 (Wilks 2000).

• ENSO-associated probabilities did not perform

well during this period. La Niña events are nor-

mally associated with below-normal temperatures

over land, but during the La Niña of 1998–2000

warm temperatures dominated most land areas.

This poor performance is likely the result of un-

precedented warming over the convectively active

regions of the tropical oceans, such as the western

Pacific and the Indian Oceans, which enhances the

strength of the tropical convection and thus the

heating of the troposphere.

• Given the dominance of above-normal tempera-

tures and the relative lack of below-normal tem-

peratures throughout the entire verification pe-

riod, the use of a 30-yr period for defining

climatological normals should be reconsidered. A

frequently updated 10-yr normal may be more ap-

propriate and informative for user needs.

For precipitation:

• The net assessment forecasts yield more coherent

coverage of positive skill over potentially predict-

able regions, and more positive skill overall, than

from any single prediction tool.

• ENSO-associated probabilities are a useful tool for

precipitation overall, but they often do not outper-

form the AGCMs even in areas with known ENSO

teleconnections such as Australia, Indonesia, the

southern tier of the United States, and northeast-

ern Brazil. This tool is most useful during the lim-

ited times when a moderate-to-strong ENSO event

is mature in the tropical Pacific. Compared to the

ENSO-based statistical tool, the AGCMs are bet-

ter able to capture the more subtle forcing of the

tropical global oceans that may not be directly re-

lated to ENSO, particularly at times when the

tropical Pacific forcing is weak.

• Forecasts over regions for which coherent patterns

of positive skill exist should be considered areas

where the forecasts are potentially useable for in-

put to decision making. In cases where the regions’

rainfall variability is seasonal, the forecasts are gen-

erally most skillful during the historically defined

wet season.

The IRI forecast system is continuously evolving.

Insights gained from this analysis, and others such as

Goddard and Mason (2002), should aid the subjec-

tive element in the short run and add to improve-

ments in the objective system in the long run.

The forecast evaluation presented in this paper is

only one way of viewing the performance of the fore-

casts. We have, however, subjected the forecasts to a

very strict measure of forecast performance, and re-

gions that exhibit good skill in this analysis are likely

to appear skillful when subject to other verification

measures. Ultimately, a meteorologist’s determination

of a skillful forecast is only valuable to the extent that

the forecast can provide benefit to those incorporat-

ing the information into their decision process. Thus,

a forecast provider’s definition of forecast quality may

vary greatly from a user’s definition of quality, and

such a definition may even vary among different us-

ers (Hartmann et al. 2002). We welcome others to
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analyze the forecasts for themselves. The net assess-

ment forecast data are freely available through the IRI

data library (see online at http://iridl.ldeo.columbia.

edu/SOURCES/.IRI/.FD/.Seasonal_Forecast).

ACKNOWLEDGMENTS. This paper was funded by

a cooperative agreement from the National Oceanic and

Atmospheric Administration (NOAA) NA07GP0213.

The views expressed herein are those of the authors and

do not necessarily reflect the view of NOAA or any of its

subagencies.

APPENDIX A: USE OF THE CONSTITU-

ENT ATMOSPHERIC MODELS. Multidecadal

simulations of approximately 50 yr, using observed

SSTs, have been produced for each of the constituent

atmospheric general circulation models (AGCMs),

each of which has produced at least nine ensemble

members. These long historical runs provide esti-

mates of model potential predictability and charac-

teristics of model climatology that are essential to in-

terpreting the seasonal predictions from each model

(Mason et al. 1999). Work is under way to generate

multidecadal retrospective forecasts, which are long

runs where the SST anomalies are prescribed using

the same strategy for SST prediction as is used by the

real-time forecast system. Such historical runs permit

a more realistic assessment of operational model skill

and model characteristics relevant to real-time fore-

casting (Goddard and Mason 2002).

Model skill is determined using temporal anomaly

correlation scores and areas beneath the relative op-

erating characteristics curve; (ROC Mason 1982;

Stanski et al. 1989; Mason and Graham 2002) for

model simulation runs of 30 yr or more. The IRI pro-

cesses the model output using several approaches to

estimate categorical likelihood based on past perfor-

mance of the particular AGCM, many of which are

described in Mason et al. (1999). Additional subjec-

tivity is involved in ascertaining whether the retained

model signals are resulting from anomalous SST forc-

ing that seems realistic. For example, if there are

known weaknesses in the tropical Indian SST anomaly

(SSTA) prediction, added caution will be exercised in

forecasting for regions over which tropical Indian SST

variability is known to exert influence.

APPENDIX B: SEA SURFACE TEMPERA-

TURE PREDICTION FOR THE TROPICAL

OCEANS. The tropical Pacific SSTA has been taken

from the NCEP coupled ocean–atmosphere model (Ji

et al. 1998). Over the Indian Ocean, SSTA is predicted

using a canonical correlation analysis (CCA) model

developed at the IRI. The predictors are the recent ob-

servations of SSTA in the Indian and tropical Pacific

Oceans and also the prediction of SSTA for the tropi-

cal Pacific, since much of the Indian Ocean SSTA

variability correlates highly with that of the tropical

Pacific approximately 3 months earlier (Goddard and

Graham 1999). The SSTA of the tropical Atlantic

Ocean is obtained from a CCA model developed at

the Centro de Previsão de Tempo e Estudos

Climáticos (CPTEC) in Brazil (Repelli and Nobre

2003) or is prescribed as damped persistence if the

forecast season is one in which the CCA skill is not

high for the tropical Atlantic SSTA. The IRI began

using the tropical Atlantic SSTA predictions in mid-

1998. Potential modifications and refinements to the

SSTA prediction tools have been identified, and other

operational SST predictions are under consideration.

APPENDIX C: THE RANK PROBABILITY

SKILL SCORE. The RPSS measures the cumulative

squared error between the categorical forecast prob-

abilities and the observed category relative to some

reference forecast (Epstein 1969; Wilks 1995). The

RPSS considers the forecast probabilities of all three

categories in computing the error with respect to the

observation. The computation of RPSS begins with

computation of the ranked probability score, or RPS.

The RPS is defined as

where N
cat 

= 3 for tercile forecasts. The vector CPFm

represents the cumulative probabilities of the forecast

up to category m, and CPOm is the cumulative observed

“probability” up to category m. The probability dis-

tribution of the observation is 100% for the category

that was observed and is zero for the other two cat-

egories. The cumulative probability for the observa-

tion (CPO), then, is zero until the observed category

is reached, at which time it becomes 1 (see Fig. A1).

Low RPS indicates high skill, and vice versa. The RPSS

is the RPS of the forecast compared with the RPS of

the reference forecast of climatology that assigns

33.3% for each of the tercile categories:

where RPS
fcst

 is the RPS for the actual forecast, and

RPS
ref

 (= RPS
clm

) is the RPS of the climatology fore-
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cast. The value of RPS
clm

 depends on which category

was observed, being lower for the middle category

than the two outer categories.

A series of examples of the RPSS are given in

Fig. A1. The forecast is the same in each case: 50%

probability for below-normal, 30% probability for

near-normal, and 20% probability for above-normal

precipitation. In the first case (Fig. A1.1), the below-

normal category is observed. Thus the dominant fore-

cast category was observed,

and the RPSS is positive. No-

tice that even though the cat-

egory predicted with a rela-

tively confident probability

of 50% was observed, the

RPSS is only 48%. In the

second case, near-normal

conditions were observed.

The RPSS value is negative.

Note that RPS
clm

 is smaller in

this case than it is when the

observation falls in one of the

outer categories (Figs. A1.1,

A1.3). In the last case,

above-normal conditions

are observed, and the RPSS

attains a large negative value

(–59%) that is of greater

magnitude than the positive

value obtained in Fig. A1.1.
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